Infinitesimal rigidity of convex surfaces: Variational methods and duality

Ivan Izmestiev

TU Darmstadt, FU Berlin

Alexandrov 100 Conference
Isometric deformations of polyhedral surfaces

$P \subset \mathbb{R}^3$ a polyhedron (for simplicity, assume all faces of P to be triangles) with vertices $\{p_i\}$
Isometric deformations of polyhedral surfaces

$P \subset \mathbb{R}^3$ a polyhedron (for simplicity, assume all faces of P to be triangles) with vertices $\{p_i\}$

A deformation of P is a smooth family $P(t), t \in [0, 1]$ of polyhedra combinatorially isomorphic to P
Isometric deformations of polyhedral surfaces

$P \subset \mathbb{R}^3$ a polyhedron (for simplicity, assume all faces of P to be triangles) with vertices $\{p_i\}$

A deformation of P is a smooth family $P(t), t \in [0, 1]$ of polyhedra combinatorially isomorphic to P

A deformation of P is called isometric, if it preserves edge lengths: $\|p_i(t) - p_j(t)\| = \text{const}$ for all edges ij
Isometric deformations of polyhedral surfaces

\(P \subset \mathbb{R}^3 \) a polyhedron (for simplicity, assume all faces of \(P \) to be triangles) with vertices \(\{p_i\} \)

A deformation of \(P \) is a smooth family \(P(t), t \in [0, 1] \) of polyhedra combinatorially isomorphic to \(P \)

A deformation of \(P \) is called \textit{isometric}, if it preserves edge lengths:

\[\|p_i(t) - p_j(t)\| = \text{const} \quad \text{for all edges } ij \]

\(P \) is called rigid, if every isometric deformation of it is trivial (extends to an ambient isometry)
Isometric deformations of polyhedral surfaces

$P \subset \mathbb{R}^3$ a polyhedron (for simplicity, assume all faces of P to be triangles) with vertices $\{p_i\}$

A deformation of P is a smooth family $P(t), t \in [0, 1]$ of polyhedra combinatorially isomorphic to P.

A deformation of P is called **isometric**, if it preserves edge lengths: $\|p_i(t) - p_j(t)\| = \text{const}$ for all edges ij.

P is called rigid, if every isometric deformation of it is trivial (extends to an ambient isometry).

There exist flexible polyhedra (Connelly).
Infinitesimal isometric deformations
A deformation is a path, an infinitesimal deformation is a tangent vector.
Infinitesimal isometric deformations

A deformation is a path, an infinitesimal deformation is a tangent vector.

With every vertex p_i of P, associate a vector $q_i \in \mathbb{R}^3$.
Infinitesimal isometric deformations
A deformation is a path, an infinitesimal deformation is a tangent vector.
With every vertex p_i of P, associate a vector $q_i \in \mathbb{R}^3$.
Move vertices linearly: $p_i(t) := p_i + tq_i$.
An infinitesimal deformation (q_i) is called isometric, if

$$\frac{d}{dt} \bigg|_{t=0} \| p_i(t) - p_j(t) \| = 0$$

for all edges ij.
Infinitesimal isometric deformations

A deformation is a path, an infinitesimal deformation is a tangent vector.

With every vertex p_i of P, associate a vector $q_i \in \mathbb{R}^3$.

Move vertices linearly: $p_i(t) := p_i + t q_i$.

An infinitesimal deformation (q_i) is called isometric, if

$$\left. \frac{d}{dt} \right|_{t=0} \| p_i(t) - p_j(t) \| = 0 \quad \text{for all edges } ij$$

P is called infinitesimally rigid, if every infinitesimal isometric deformation is trivial (extends to a Killing field on \mathbb{R}^3).
Infinitesimal isometric deformations

A deformation is a path, an infinitesimal deformation is a tangent vector.

With every vertex p_i of P, associate a vector $q_i \in \mathbb{R}^3$.

Move vertices linearly: $p_i(t) := p_i + tq_i$.

An infinitesimal deformation (q_i) is called isometric, if

$$\left. \frac{d}{dt} \right|_{t=0} \| p_i(t) - p_j(t) \| = 0 \quad \text{for all edges } ij$$

P is called infinitesimally rigid, if every infinitesimal isometric deformation is trivial (extends to a Killing field on \mathbb{R}^3).

There are lots of infinitesimally flexible polyhedra.
Smooth case

Similar definitions in the smooth case. **Infinitesimal deformation** of $M \subset \mathbb{R}^3$ is a vector field $\xi : M \to \mathbb{R}^3$.

![Diagram of a vector field on a surface M.]
Smooth case

Similar definitions in the smooth case. Infinitesimal deformation of $M \subset \mathbb{R}^3$ is a vector field $\xi : M \to \mathbb{R}^3$. An infinitesimal deformation is isometric if

$$\frac{d\phi^*_t(\text{can}_{\mathbb{R}^3})}{dt} = 0.$$

Cohn-Vossen: Examples of infinitesimally flexible C^2-surfaces.
Smooth case

Similar definitions in the smooth case. An infinitesimal deformation of $M \subset \mathbb{R}^3$ is a vector field $\xi : M \to \mathbb{R}^3$. An infinitesimal deformation is isometric if

$$\frac{d\phi_t^*(\text{can}_{\mathbb{R}^3})}{dt} = 0.$$

Cohn-Vossen: Examples of infinitesimally flexible C^2-surfaces.

It is not known whether a higher order smoothness implies infinitesimal rigidity.
Convex surfaces are infinitesimally rigid

Theorem (Dehn, Legendre-Cauchy)

Convex polyhedra in \mathbb{R}^3 are infinitesimally rigid.
Convex surfaces are infinitesimally rigid

Theorem (Dehn, Legendre-Cauchy)

Convex polyhedra in \mathbb{R}^3 are infinitesimally rigid.

Theorem (Liebmann, Blaschke-Weyl)

Smooth surfaces in \mathbb{R}^3 with $K > 0$ are infinitesimally rigid.
Convex surfaces are infinitesimally rigid

Theorem (Dehn, Legendre-Cauchy)
Convex polyhedra in \mathbb{R}^3 are infinitesimally rigid.

Theorem (Liebmann, Blaschke-Weyl)
Smooth surfaces in \mathbb{R}^3 with $K > 0$ are infinitesimally rigid.

We present a common variational approach to these theorems.
Convex surfaces are infinitesimally rigid

Theorem (Dehn, Legendre-Cauchy)
Convex polyhedra in \(\mathbb{R}^3 \) are infinitesimally rigid.

Theorem (Liebmann, Blaschke-Weyl)
Smooth surfaces in \(\mathbb{R}^3 \) with \(K > 0 \) are infinitesimally rigid.

We present a common variational approach to these theorems.

The first idea is easier to explain on the example of isometric embedding theorems.
Isometric embedding theorems

Theorem (Weyl, Levy, Pogorelov, Nirenberg)

\(g \) a Riemannian metric on \(S^2 \), with everywhere positive Gauss curvature.

Then there exists a unique isometric embedding \((S^2, g) \rightarrow \mathbb{R}^3 \).
Isometric embedding theorems

Theorem (Weyl, Levy, Pogorelov, Nirenberg)

g a Riemannian metric on \mathbb{S}^2, with everywhere positive Gauss curvature.

Then there exists a unique isometric embedding $(\mathbb{S}^2, g) \to \mathbb{R}^3$.

Theorem (Alexandrov)

g a Euclidean metric on \mathbb{S}^2, with cone singularities of positive curvature.

Then there exists a unique isometric embedding $(\mathbb{S}^2, g) \to \mathbb{R}^3$.
Isometric embedding theorems

Theorem (Weyl, Levy, Pogorelov, Nirenberg)

Let g be a Riemannian metric on \mathbb{S}^2, with everywhere positive Gauss curvature. Then there exists a unique isometric embedding $(\mathbb{S}^2, g) \to \mathbb{R}^3$.

Theorem (Alexandrov)

Let g be a Euclidean metric on \mathbb{S}^2, with cone singularities of positive curvature. Then there exists a unique isometric embedding $(\mathbb{S}^2, g) \to \mathbb{R}^3$.

An equivalent reformulation:

Metric g on $\mathbb{S}^2 = \partial \mathbb{B}^3$ can be extended to a flat metric \tilde{g} on \mathbb{B}^3.
Isometric embedding theorems

Theorem (Weyl, Levy, Pogorelov, Nirenberg)

\(g \) a Riemannian metric on \(S^2 \), with everywhere positive Gauss curvature.

Then there exists a unique isometric embedding \((S^2, g) \to \mathbb{R}^3\).

Theorem (Alexandrov)

\(g \) a Euclidean metric on \(S^2 \), with cone singularities of positive curvature.

Then there exists a unique isometric embedding \((S^2, g) \to \mathbb{R}^3\).

An equivalent reformulation:

metric \(g \) on \(S^2 = \partial \mathbb{B}^3 \) can be extended to a flat metric \(\tilde{g} \) on \(\mathbb{B}^3 \), in a unique way up to a reparametrization of \(\mathbb{B}^3 \) (Blaschke-Herglotz, 1937)
Isometric embedding theorems

Theorem (Weyl, Levy, Pogorelov, Nirenberg)

\(g \) a Riemannian metric on \(S^2 \), with everywhere positive Gauss curvature.

Then there exists a unique isometric embedding \((S^2, g) \to \mathbb{R}^3\).

Theorem (Alexandrov)

\(g \) a Euclidean metric on \(S^2 \), with cone singularities of positive curvature.

Then there exists a unique isometric embedding \((S^2, g) \to \mathbb{R}^3\).

An equivalent reformulation:
metric \(g \) on \(S^2 = \partial \mathbb{B}^3 \) can be extended to a flat metric \(\tilde{g} \) on \(\mathbb{B}^3 \), in a unique way up to a reparametrization of \(\mathbb{B}^3 \) (Blaschke-Herglotz, 1937)

Isometric embedding = geometrization with boundary conditions
Infinitesimal rigidity revisited

An infinitesimal isometric deformation of a Riemannian metric \tilde{g} is a field h of symmetric bilinear forms.

\[\tilde{g}_t := \tilde{g} + th \]

is a Riemannian metric for small t

h is curvature-preserving def \iff $\sec t = o(t)$

\((N, \tilde{g})\)

inf. rigid def \iff every curvature-preserving deformation (vanishing on the boundary) is trivial

Theorem (Calabi, Weil)

Compact hyperbolic manifolds of dim ≥ 3 are infinitesimally rigid.
An infinitesimal isometric deformation of a Riemannian metric \tilde{g} is a field h of symmetric bilinear forms.

$\tilde{g}_t := \tilde{g} + th$ is a Riemannian metric for small t
Infinitesimal rigidity revisited

An infinitesimal isometric deformation of a Riemannian metric \tilde{g} is a field h of symmetric bilinear forms. $\tilde{g}_t := \tilde{g} + th$ is a Riemannian metric for small t

h is curvature-preserving $\iff \sec_t = o(t)$
Infinitesimal rigidity revisited

An infinitesimal isometric deformation of a Riemannian metric \(\tilde{g} \) is a field \(h \) of symmetric bilinear forms.

\[\tilde{g}_t := \tilde{g} + th \] is a Riemannian metric for small \(t \)

\(h \) is curvature-preserving \(\iff \) \(\sec t = o(t) \)

\((N, \tilde{g}) \) inf. rigid \(\iff \) every curvature-preserving deformation (vanishing on the boundary) is trivial
Infinitesimal rigidity revisited

An infinitesimal isometric deformation of a Riemannian metric \tilde{g} is a field h of symmetric bilinear forms. $\tilde{g}_t := \tilde{g} + th$ is a Riemannian metric for small t

h is curvature-preserving \iff $\sec_t = o(t)$

(N, \tilde{g}) inf. rigid \iff every curvature-preserving deformation (vanishing on the boundary) is trivial

Theorem (Calabi, Weil)
Compact hyperbolic manifolds of dim ≥ 3 are infinitesimally rigid.
Infinitesimal rigidity revisited

An infinitesimal isometric deformation of a Riemannian metric \tilde{g} is a field h of symmetric bilinear forms.

$\tilde{g}_t := \tilde{g} + th$ is a Riemannian metric for small t

h is curvature-preserving \iff $\sec_t = o(t)$

(N, \tilde{g}) inf. rigid \iff every curvature-preserving deformation (vanishing on the boundary) is trivial

Theorem (Calabi, Weil)

Compact hyperbolic manifolds of dim ≥ 3 are infinitesimally rigid.
Infinitesimal rigidity for polyhedra

May consider deformations of a very special sort.
Infinitesimal rigidity for polyhedra

May consider deformations of a very special sort.

Changing \((r_i)\) creates curvatures \((\kappa_i)\) around the radial edges.

\[
\kappa_i := 2\pi - \omega_i
\]
Infinitesimal rigidity for polyhedra

May consider deformations of a very special sort.

Changing \((r_i)\) creates curvatures \((\kappa_i)\) around the radial edges.

\[\kappa_i := 2\pi - \omega_i\]

\[P \text{ infinitesimally rigid } \iff \dim \ker \left(\frac{\partial \kappa_i}{\partial r_j} \right) = 3\]
May consider deformations of a very special sort.

Changing \((r_i)\) creates curvatures \((\kappa_i)\) around the radial edges.

\[
\kappa_i := 2\pi - \omega_i
\]

Because trivial deformations (moving the central point around) form a space of dimension 3.
Infinitesimal rigidity for polyhedra

May consider deformations of a very special sort.

Changing \((r_i)\) creates curvatures \((\kappa_i)\) around the radial edges.

\[\kappa_i := 2\pi - \omega_i \]

Because trivial deformations (moving the central point around) form a space of dimension 3

How to study \(\left(\frac{\partial \kappa_i}{\partial r_j} \right)\)?
The discrete Hilbert-Einstein functional

$$\text{HE}(r) := \sum_i r_i \kappa_i + \sum_{ij} \ell_{ij} \lambda_{ij}$$
The discrete Hilbert-Einsten functional

$$\text{HE}(r) := \sum_i r_i \kappa_i + \sum_{ij} \ell_{ij} \lambda_{ij}$$

We have $\frac{\partial \text{HE}}{\partial r_i} = \kappa_i$ (from the Schlaefli formula)
The discrete Hilbert-Einstein functional

\[\text{HE}(r) := \sum_i r_i \kappa_i + \sum_{ij} \ell_{ij} \lambda_{ij} \]

We have \(\frac{\partial \text{HE}}{\partial r_i} = \kappa_i \) (from the Schlaefli formula)

Thus we are investigating the rank of the Hessian \(\left(\frac{\partial^2 \text{HE}}{\partial r_i \partial r_j} \right) = \left(\frac{\partial \kappa_i}{\partial r_j} \right) \)
The discrete Hilbert-Einstein functional

\[\text{HE}(r) := \sum_i r_i \kappa_i + \sum_{ij} \ell_{ij} \lambda_{ij} \]

We have \(\frac{\partial \text{HE}}{\partial r_i} = \kappa_i \) (from the Schlaefli formula)

Thus we are investigating the rank of the Hessian

\[\left(\frac{\partial^2 \text{HE}}{\partial r_i \partial r_j} \right) = \left(\frac{\partial \kappa_i}{\partial r_j} \right) \]

Theorem

\(\left(\frac{\partial^2 \text{HE}}{\partial r_i \partial r_j} \right) \) has the signature \((+, 0, 0, 0, -, \ldots, -)\)

Corollary

Convex polyhedra in \(\mathbb{R}^3 \) are infinitesimally rigid.
Duality with the Minkowski theorem

Theorem (Minkowski)

\(\nu_1, \ldots, \nu_n \) unit vectors spanning \(\mathbb{R}^3 \),

Then there exists a unique convex polyhedron \(Q \subset \mathbb{R}^3 \) with outer unit normals \((\nu_i) \) and face areas \((F_i) \).

Can formulate an infinitesimal rigidity statement:

If the faces of a convex polyhedron \(Q \subset \mathbb{R}^3 \) are parallelly translated so that \(F_i(t) = F_i + o(t) \), then this is a parallel translation of the whole polyhedron (in the first order).

Equivalently: \(\dim \ker (\partial F_i / \partial h_j) = 3 \) support numbers \((h_i) \mapsto \text{face areas} (F_i) \).
Duality with the Minkowski theorem

Theorem (Minkowski)

\(\nu_1, \ldots, \nu_n \) unit vectors spanning \(\mathbb{R}^3 \), \(F_1, \ldots, F_n > 0 \) such that

\[
\sum_{i} F_i \nu_i = 0
\]
Duality with the Minkowski theorem

Theorem (Minkowski)
\(\nu_1, \ldots, \nu_n\) unit vectors spanning \(\mathbb{R}^3\), \(F_1, \ldots, F_n > 0\) such that
\[
\sum_i F_i \nu_i = 0
\]

Then there exists a unique convex polyhedron \(Q \subset \mathbb{R}^3\) with outer unit normals \((\nu_i)\) and face areas \((F_i)\)
Duality with the Minkowski theorem

Theorem (Minkowski)

\(\nu_1, \ldots, \nu_n \) unit vectors spanning \(\mathbb{R}^3 \), \(F_1, \ldots, F_n > 0 \) such that

\[
\sum_i F_i \nu_i = 0
\]

Then there exists a unique convex polyhedron \(Q \subset \mathbb{R}^3 \) with outer unit normals \((\nu_i) \) and face areas \((F_i) \)

Can formulate an infinitesimal rigidity statement:
Duality with the Minkowski theorem

Theorem (Minkowski)

\[\nu_1, \ldots, \nu_n \text{ unit vectors spanning } \mathbb{R}^3, \quad F_1, \ldots, F_n > 0 \text{ such that} \]

\[\sum_{i} F_i \nu_i = 0 \]

Then there exists a unique convex polyhedron \(Q \subset \mathbb{R}^3 \) with outer unit normals \((\nu_i) \) and face areas \((F_i) \)

Can formulate an infinitesimal rigidity statement:

If the faces of a convex polyhedron \(Q \subset \mathbb{R}^3 \) are parallelly translated so that \(F_i(t) = F_i + o(t) \), then this is a parallel translation of the whole polyhedron (in the first order)
Duality with the Minkowski theorem

Theorem (Minkowski)

\(\nu_1, \ldots, \nu_n \) unit vectors spanning \(\mathbb{R}^3 \), \(F_1, \ldots, F_n > 0 \) such that

\[
\sum_i F_i \nu_i = 0
\]

Then there exists a unique convex polyhedron \(Q \subset \mathbb{R}^3 \) with outer unit normals \((\nu_i) \) and face areas \((F_i) \)

Can formulate an infinitesimal rigidity statement:

If the faces of a convex polyhedron \(Q \subset \mathbb{R}^3 \) are parallelly translated so that \(F_i(t) = F_i + o(t) \), then this is a parallel translation of the whole polyhedron (in the first order)

Equivalently: \(\dim \ker \left(\frac{\partial F_i}{\partial h_j} \right) = 3 \)

support numbers \((h_i) \leftrightarrow \) face areas \((F_i) \)
Minkowski rigidity and the volume functional

Again, there is a functional Vol (just the usual volume) such that
\[\frac{\partial \text{Vol}}{\partial h_i} = F_i \]
Minkowski rigidity and the volume functional

Again, there is a functional Vol (just the usual volume) such that

$$\frac{\partial \text{Vol}}{\partial h_i} = F_i$$

Theorem

$$\left(\frac{\partial^2 \text{Vol}}{\partial h_i \partial h_j} \right) \text{ has the signature } (+, 0, 0, 0, -, \ldots, -)$$
Minkowski rigidity and the volume functional

Again, there is a functional Vol (just the usual volume) such that
$$\frac{\partial \text{Vol}}{\partial h_i} = F_i$$

Theorem

$$\left(\frac{\partial^2 \text{Vol}}{\partial h_i \partial h_j} \right) \text{ has the signature } (+, 0, 0, 0, -, \ldots, -)$$

This is a bit stronger than the second Minkowski inequality

$$\text{Vol}(K, \ldots, K, L)^2 \geq \text{Vol}(K) \text{ Vol}(K, \ldots, L, L)$$

(interpreted as the negativity of a 2×2-determinant)
Minkowski rigidity and the volume functional

Again, there is a functional Vol (just the usual volume) such that

$$\frac{\partial \text{Vol}}{\partial h_i} = F_i$$

Theorem

$$\left(\frac{\partial^2 \text{Vol}}{\partial h_i \partial h_j} \right) \text{ has the signature } (+, 0, 0, 0, -, \ldots, -)$$

This is a bit stronger than the second Minkowski inequality

$$\text{Vol}(K, \ldots, K, L^2) \geq \text{Vol}(K) \text{ Vol}(K, \ldots, L, L)$$

(interpreted as the negativity of a 2×2-determinant)

A “mysterious” identity:

$$\frac{\partial^2 \text{HE}}{\partial r_i \partial r_j}(P) = \frac{\partial^2 \text{Vol}}{\partial h_i \partial h_j}(P^*)$$
And now, the smooth case

When deforming the metric on \mathbb{B}^3, it suffices to consider only warped products

$$
\tilde{g}_r = d\rho^2 + \rho^2 \left(\frac{g - dr \otimes dr}{r^2} \right),
$$

where $r : \mathbb{S}^2 \to \mathbb{R}^+$ is a smooth function.
And now, the smooth case

When deforming the metric on \mathbb{B}^3, it suffices to consider only warped products

$$\tilde{g}_r = d\rho^2 + \rho^2 \left(\frac{g - dr \otimes dr}{r^2} \right),$$

where $r : \mathbb{S}^2 \to \mathbb{R}_+$ is a smooth function.

The curvature of \tilde{g}_r is determined by a function $\sec : \mathbb{S}^2 \to \mathbb{R}$.
And now, the smooth case

When deforming the metric on \mathbb{B}^3, it suffices to consider only warped products

$$\tilde{g}_r = d\rho^2 + \rho^2 \left(g - \frac{dr \otimes dr}{r^2} \right),$$

where $r : \mathbb{S}^2 \to \mathbb{R}_+$ is a smooth function.

The curvature of \tilde{g}_r is determined by a function $\sec : \mathbb{S}^2 \to \mathbb{R}$.

Inf. rigidity \iff if $\sec \cdot = 0$, then r comes from moving the center around.
The Hilbert-Einstein functional

$$\text{HE}(\tilde{g}) = 2 \int_{B^3} \text{scal}\tilde{g} \, d\text{vol}\tilde{g} + \frac{1}{2} \int_{S^2} H \, d\text{area}$$
The Hilbert-Einstein functional

\[HE(\tilde{g}) = 2 \int_{\mathbb{B}^3} \text{scal}_{\tilde{g}} \, d\text{vol}_{\tilde{g}} + \frac{1}{2} \int_{\mathbb{S}^2} H \, d\text{area} \]

\[HE' = \int_M \dot{r} \frac{\text{sec}}{\cos \alpha} \, d\text{area}_g, \]

\[0 = \int_M \dot{r} \left(\frac{\text{sec}}{\cos \alpha} \right) \, d\text{area} = HE'' = \int_M 2h \det \dot{B} \, d\text{area} \leq 0 \]

where \(\text{sec}(x) = \text{sec}\tilde{g}(T_x M) \) is the sectional curvature in a tangent plane to \(M \)
The Hilbert-Einstein functional

\[
\text{HE}(\tilde{g}) = 2 \int_{B^3} \text{scal}_{\tilde{g}} \, d\text{vol}_{\tilde{g}} + \frac{1}{2} \int_{S^2} H \, \text{darea}
\]

\[
\text{HE}^\cdot = \int_{M} \dot{r} \frac{\sec}{\cos \alpha} \, \text{darea}_g,
\]

\[
0 = \int_{M} \dot{r} \left(\frac{\sec}{\cos \alpha} \right) \, \text{darea} = \text{HE}^\cdot = \int_{M} 2h \det \dot{B} \, \text{darea} \leq 0
\]

where \(\sec(x) = \sec(\tilde{g})(T_x M) \) is the sectional curvature in a tangent plane to \(M \)

\[\det \dot{B} = 0 \Rightarrow \dot{B} = 0 \] (yes, there is no mistake! we use \((\det B)^\cdot = 0\))
The Hilbert-Einstein functional

\[\text{HE}(\tilde{g}) = 2 \int_{\mathbb{B}^3} \text{scal}_\tilde{g} \, \text{dvol}_\tilde{g} + \frac{1}{2} \int_{\mathbb{S}^2} H \, \text{darea} \]

\[\text{HE}^\cdot = \int_{M} \dot{r} \frac{\sec}{\cos \alpha} \, \text{darea}_g, \]

\[0 = \int_{M} \dot{r} \left(\frac{\sec}{\cos \alpha} \right) \cdot \text{darea} = \text{HE}^{\cdot \cdot} = \int_{M} 2h \det \dot{B} \, \text{darea} \leq 0 \]

where \(\sec(x) = \sec(\tilde{g}(T_x M)) \) is the sectional curvature in a tangent plane to \(M \)

\[\det \dot{B} = 0 \Rightarrow \dot{B} = 0 \] (yes, there is no mistake! we use \((\det B)^\cdot = 0 \))

The shape does not change \(\Rightarrow \) the deformation is trivial.
Results and problems

- Inf. rigidity is dual to the “Minkowski” rigidity in two different ways. This makes part of the Darboux’ wreath of 12 surfaces.
- Koiso’78: infinitesimal rigidity of Einstein manifolds under certain restrictions on the curvature operator;
- Schlenker’06: infinitesimal rigidity of hyperbolic 3-manifolds with convex smooth boundary.
Results and problems

- Inf. rigidity is dual to the “Minkowski” rigidity in two different ways. This makes part of the Darboux’ wreath of 12 surfaces.
- Koiso’78: infinitesimal rigidity of Einstein manifolds under certain restrictions on the curvature operator;
- Schlenker’06: infinitesimal rigidity of hyperbolic 3-manifolds with convex smooth boundary.
- hyperbolic 3-manifolds with convex polyhedral boundary?
- hyperbolic 3-manifolds with convex irregular boundary? (an approach to the Pleating Lamination Conjecture through the rigidity of the convex core)