The CMP admits a natural extension to hedgehogs

- **The classical Minkowski problem (CMP):**

 Existence, uniqueness and regularity of a closed convex hypersurface of \mathbb{R}^{n+1} whose Gauss curvature is prescribed as a positive function on S^n.

- **Central role in:**
 - the theory of convex bodies.
 - the theory of elliptic Monge-Ampère equations.

- **The CMP admits a natural extension to hedgehogs.**

 Hedgehogs $= \text{Minkowski differences of convex bodies (or hypersurfaces)}$

- **A way for exploring Monge-Ampère equations of mixed type.**
Hedgehogs as differences of convex bodies

Let \((\mathcal{K}^{n+1}, +, .)\) be the set of convex bodies of \(\mathbb{R}^{n+1}\) equipped with Minkowski addition and multiplication by nonnegative real numbers:

\[
\mathcal{K} + \mathcal{L} = \{x + y | x \in \mathcal{K}, y \in \mathcal{L}\};
\]
\[
\lambda \mathcal{K} = \{\lambda x | x \in \mathcal{K}\}.
\]

\((\mathcal{K}^{n+1}, +, .)\) is not a linear space: no subtraction in \(\mathcal{K}^{n+1}\).

Formal differences of convex bodies of \(\mathbb{R}^{n+1}\) do constitute a linear space \((\mathcal{H}^{n+1}, +, .)\).

Any formal difference \(\mathcal{K} - \mathcal{L}\) of two convex bodies \(\mathcal{K}, \mathcal{L} \in \mathcal{K}^{n+1}\) has a nice geometrical representation in \(\mathbb{R}^{n+1}\), (Y.M.², Canad. J. Math 2006).
Case of convex bodies with positive Gauss curvature

- Subtracting two convex hypersurfaces (with positive Gauss curvature) by subtracting the points corresponding to a same outer unit normal to obtain a (possibly singular and self-intersecting) hypersurface:

Figure: Hedgehogs as differences of convex bodies of class C^2_+
Interest of hedgehogs

- To study convex bodies or hypersurfaces by decomposition into a sum of hedgehogs.

Ex: **Study of a conjectured characterization of the sphere**

Idea: \(S = S \left(0_{\mathbb{R}^3}; r \right) + \left(S - S \left(0_{\mathbb{R}^3}; r \right) \right) \) and study of \((S - S \left(0_{\mathbb{R}^3}; r \right)) \).

- To geometrize analytical problems by considering functions as support functions.

Ex: **Geometrical proof of the Sturm-Hurwitz theorem**
Support functions

Every \(K \in \mathcal{K}^{n+1} \) is determined by its support function

\[
h_K : \mathbb{S}^n \longrightarrow \mathbb{R} \\
u \longmapsto \sup \{ \langle x, u \rangle : x \in K \}.
\]

A closed convex hypersurface of class \(C^2_+ \) is determined by its support function \(h \in C^2(\mathbb{S}^n; \mathbb{R}) \) as the envelope \(\mathcal{H}_h \subset \mathbb{R}^{n+1} \) of the hyperplanes \(\langle x, u \rangle = h(u) \).
The natural parametrization of the envelope \mathcal{H}_h of the hyperplanes with equation $\langle x, u \rangle = h(u)$ assigns to each $u \in S^n$, the unique solution of the system

\[
\begin{align*}
\langle x, u \rangle &= h(u) \\
\langle x, u \rangle &= dh_u(u)
\end{align*}
\]

that is $x_h(u) = h(u)u + (\nabla h)(u)$. In fact, $\mathcal{H}_h = x_h(S^n)$ is defined for any $h \in C^2(S^n; \mathbb{R})$. It is called hedgehog with support function h.

At each regular point $x_h(u) \in \mathcal{H}_h$, u is normal to \mathcal{H}_h.
Gauss curvature

- The singularities of $\mathcal{H}_h \subset \mathbb{R}^{n+1}$ are the very points where the Gauss curvature $\kappa_h(u) = 1/ \det [T_{px}h]$ is infinite.

- The curvature function $R_h := 1/\kappa_h$ is well-defined and continuous on \mathbb{S}^n, so that the Minkowski Problem arises for hedgehogs.

- A calculation gives: $R_h(u) = \det [H_{ij}(u) + h(u) \delta_{ij}]$, where $(H_{ij}(u))$ is the Hessian of h at u with respect to an orthonormal frame on \mathbb{S}^n.

\[\text{Case } n = 2 \]

- The curvature function of $\mathcal{H}_h \subset \mathbb{R}^3$ is given by

\[1/\kappa_h = h^2 + h\Delta_2 h + \Delta_{22} h \]

(Δ_2 is the Laplacian and Δ_{22} the Monge-Ampère operator, i.e. the sum and the product of the eigenvalues of Hess h).

- The type of the equation $h^2 + h\Delta_2 h + \Delta_{22} h = 1/\kappa$ is given by $\text{sgn}[1/\kappa]$. So, the PB leads to PDE’s of mixed type for non-convex hedgehogs.
Key results on the CMP

- Major contributions by Minkowski, Alexandrov, Nirenberg, Pogorelov, Cheng-Yau and others.
- **Existence of a weak solution:**

Theorem (Minkowski - 1903)

If \(\kappa \in C(S^n; \mathbb{R}) \) is positive and such that

\[
\int_{S^n} \frac{u}{\kappa(u)} \, d\sigma(u) = 0
\]

then \(\kappa \) is the Gauss curvature of a unique (up to translation) closed convex hypersurface \(\mathcal{H}_h \) of \(\mathbb{R}^{n+1} \).

- **Strong result:**

Theorem (Pogorelov - 1975, Cheng and Yau - 1976)

If \(\kappa \in C^m(S^n; \mathbb{R}) \), with \(m \geq 3 \), then: \(\forall \alpha \in [0, 1[\), \(h \in C^{m+1,\alpha}(S^n; \mathbb{R}) \).
Existence problem

Existence of a C^2-solution:

What are necessary and sufficient conditions for $R \in C(S^n; \mathbb{R})$ to be the curvature function of some hedgehog $\mathcal{H} = \mathcal{K} - \mathcal{L}$?

- Integral condition (1) $\int_{S^n} uR(u) \, d\sigma(u) = 0$ is still necessary (but of course not sufficient: consider -1).
- Equations with no solution (Y.M.², Adv. in Math. 2001):

 For every $v \in S^2$, $R(u) = 1 - 2 \langle u, v \rangle^2$ satisfies (1) and changes sign cleanly on S^2 but is not a curvature function:

 there is no $h \in C^2(S^2; \mathbb{R})$ such that $R_h = R$.

- Can the curvature function of a hedgehog \mathcal{H}_h be nonpositive on S^2?

This problem is equivalent to the following conjecture:
Conjecture \((C)\): If \(S \subset \mathbb{R}^3 \) is a closed convex surface of class \(C^2_+ \) such that

\[(k_1 - c)(k_2 - c) \leq 0, \]

with \(c = \text{cst} \), then \(S \) must be a sphere of radius \(1/c \).

\((C)\) is equivalent to \((H)\):

\((H)\) If \(H_h \subset \mathbb{R}^3 \) is a hedgehog such that \(R_h \leq 0 \), then \(H_h \) is a point.

Counter-example to \((H)\) \((Y.M.^2, \text{C. R. Acad. Sci. Paris 2001}) \).
Uniqueness problem

Uniqueness of a C^2-solution:

Let $R \in C(S^n; \mathbb{R})$ be the curvature function of some hedgehog H_h. What are necessary and sufficient conditions on R for H_h to be uniquely determined by R (up to parallel translations and identifying h with $-h$)?

In the convex case, the uniqueness comes from the equality condition in a well-known Minkowski’s inequality. This inequality cannot be extended to hedgehogs and uniqueness is lost.

Question. Does there exist any pair of noncongruent analytic hedgehogs with the same curvature function?
Results relative to the uniqueness

Let H_3 be the linear space of C^2-hedgehogs defined up to a translation in \mathbb{R}^3.

Theorem (Y.M.², Central European J. Math. 2012). Let \mathcal{H} and \mathcal{H}' be C^2-hedgehogs that are linearly independent in H_3. If some linear combination of \mathcal{H} and \mathcal{H}' is of class C^2_+, then \mathcal{H} and \mathcal{H}' have distinct curvature functions.

Our second result relies on the extension to hedgehogs of the notion of mixed curvature function.

Theorem (Y.M.², Central European J. Math. 2012). Let \mathcal{H} and \mathcal{H}' be analytic (resp. projective C^2) hedgehogs of \mathbb{R}^3 that are linearly independent in H_3. If the mixed curvature function of \mathcal{H} and \mathcal{H}' does not change sign, then \mathcal{H} and \mathcal{H}' have distinct curvature functions.
Example of a uniqueness result

The following result relies on the decomposition of hedgehogs into centered and projective parts.

Theorem (Y.M. 2, Central European J. Math. 2012). Let \mathcal{H} and \mathcal{H}' be C^2-hedgehogs that are linearly independent in H_3 and the centered parts of which are non-trivial and proportional to one and the same convex surface of class C^2_+. Then \mathcal{H} and \mathcal{H}' have distinct curvature functions.

Corollary. Two C^2-hedgehogs of nonzero constant width that are linearly independent in H_3 must have distinct curvature function.

Consequence. The Monge-Ampère equation $h^2 + h\Delta_2 h + \Delta_{22} h = R, \quad R \in C\left(S^2;\mathbb{R}\right)$, cannot admit more than one solution of the form $f + r$, where $f \in C^2\left(S^2;\mathbb{R}\right)$ is antisymmetric and r is a nonzero constant.

(Solutions are identified if they are opposite or if they differ by the restriction to S^2 of a linear form on \mathbb{R}^3)
Thank you very much

Thank you very much for your attention!

Figure: European hedgehog