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Plan of talk

§Plan of talk

@ Preliminaries for Finsler manifolds
@ Definition of weighted Ricci curvature

@ Geometric & analytic applications

Partly joint with Karl-Theodor Sturm (Univ. Bonn).
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Finsler manifolds

§Finsler manifolds

A C*-Finsler manifold will be a pair (M, F) of a
connected C*-manifold M and F : TM — [0, ) s.1.

(1) FisC”onTM \ {0},
(2) F(cv) =cF(v)forallve TM and ¢ > 0,
(3) Forany v e TM \ {0}, the n X n-symmetric matrix

1 8*(F?) 0
(V) = ———=, here v = —
8ij(v) ” w V ; y Ep

is positive-definite (strong convexity).
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Finsler manifolds

Strong convexity

Foreachv e T,M \ {0}, g;j(v) defines the inner product
gy of T,M by (n = dim M)

(Za’a i Z e ,) Zab]gz_,(\))

i,j=1

This approximates the (Minkowski) norm F|r s in the
direction v in the following sense.
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Finsler manifolds

F()=1

&) =1

N

The unit sphere of g, tangents to the unit sphere of
Flr.y at v/F(v) up to the second order.

v/F(v= .
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Finsler manifolds

Metric structure of (M, F)

A Finsler structure F naturally induces
@ the distance d(x,y) as the infimum of the lengths of
curves from x to y (possibly d(x, y) # d(y, x)),

@ geodesics as constant-speed, locally shortest
curves w.r.t. d,

@ the forward completeness as the extendability of
any geodesic n: [0,e] — M to 7 : [0, 00) — M.
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Finsler manifolds

Curvature? Measure?

Easy to see: a lower or upper curvature bound in the
sense of Alexandrov implies that all tangent spaces are
inner product spaces. So it is Riemannian.
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Finsler manifolds

Curvature? Measure?

Easy to see: a lower or upper curvature bound in the
sense of Alexandrov implies that all tangent spaces are
inner product spaces. So it is Riemannian.

Ricci curvature comparison is possible! But how?

The Ricci curvature is defined by using a connection.
However, there is no canonical measure like the volume
measure in Riemannian geometry.

Thus we start with an arbitrary measure m on M and
modify the Ricci curvature according to m.
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Weighted Ricci curvature

§Weighted Ricci curvature

Instead of giving the precise definition, we explain
Z. Shen’s interpretation of the Finsler-Ricci curvature
Ric(v) of a unit vectorve UM = F~1(1):

Shin-ichi Ohta (Kyoto University) Ricci curvature in Finsler geometry 23/Aug/2012 (St. Petersburg)

8/24



Weighted Ricci curvature

§Weighted Ricci curvature

Instead of giving the precise definition, we explain
Z. Shen’s interpretation of the Finsler-Ricci curvature
Ric(v) of a unit vectorve UM = F~1(1):

Extend v to a C*™-vector field V in such a way that every
integral curve is geodesic (always possible).

Then Ric(v) coincides with the Ricci curvature Ric" (v)
of v w.r.t. the Riemannian structure gy.
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Weighted Ricci curvature

Weighted version

We fix an arbitrary positive C*-measure m on M and
modify Ric(v) as follows (for v, V as above):
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Weighted Ricci curvature

Weighted version

We fix an arbitrary positive C*-measure m on M and
modify Ric(v) as follows (for v, V as above):

Decompose m as m = e¥ voly, where voly is the

Riemannian volume measure of gy, and let  be the

geodesic with 77(0) = v.

For N € (n, o) (n = dim M), define
Ricy(v) := Ric(v) + (¥ o 17)"(0) —

Ricy(cv) := ¢ Ricy(v)  fore > 0.

(¥ o 1)’ (0)
N-n °~
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Weighted Ricci curvature

As the limits,

Rico(v) := Ric(v) + (¢ o 17)”"(0) (Bakry-Emery tensor),
Bk ) 7= { Ric(r) + (p 01)"(0) 1 W o1)/(0) =0,

00 otherwise.
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Weighted Ricci curvature

As the limits,

Rico(v) := Ric(v) + (¢ o 17)”"(0) (Bakry-Emery tensor),
Bk ) 7= { Ric(r) + (p 01)"(0) 1 W o1)/(0) =0,

00 otherwise.

@ Ric, > Ricy > Ric, by definition.
@ (¥ o n)’(0) coincides with Shen’s S-curvature S(v).

@ S = 0 does not hold for any m in some spaces
(O. 2011), so there is no nice reference measure.
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Application I: Curvature-dimension condition

§Application I: Curvature-dimension condition

The following theorem generalizes the corresponding
theorem in the (weighted) Riemannian case by Lott,
Renesse, Sturm and Villani.

Theorem (O. 2009)

Let (M, F, m) be forward complete, N € [n, ], K € R.
Then the lower bound Ricy > K (i.e., Ricy(v) > KF(v)?)
is equivalent to the curvature-dimension condition
CD(K, N).
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Application I: Curvature-dimension condition

CD(K, N) is a convexity condition of an entropy function
on the space P(M) of probability measures on M
(minimal geodesics in P(M) = ‘optimal transports’).
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Application I: Curvature-dimension condition

CD(K, N) is a convexity condition of an entropy function
on the space P(M) of probability measures on M
(minimal geodesics in P(M) = ‘optimal transports’).

Geometric image of CD(K, N)

Mo, M po MUz
K>0 K <0

(K > 0 case: less concentrated = less entropy at 112)
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Application I: Curvature-dimension condition

Metric measure spaces satisfying CD(K, N) behave like
spaces with Ric > K & dim < N (Sturm, Lott-Villani).
By the general theory of CD(K, N), we have:
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Application I: Curvature-dimension condition

Metric measure spaces satisfying CD(K, N) behave like
spaces with Ric > K & dim < N (Sturm, Lott-Villani).
By the general theory of CD(K, N), we have:

@ Bishop-Gromov volume comparison for N < oo;
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Application I: Curvature-dimension condition

Metric measure spaces satisfying CD(K, N) behave like
spaces with Ric > K & dim < N (Sturm, Lott-Villani).
By the general theory of CD(K, N), we have:

@ Bishop-Gromov volume comparison for N < oo;

@ Talagrand inequality, log-Sobolev inequality, global
Poincaré inequality & normal concentration of
measures for K > 0 & N = oo;
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Application I: Curvature-dimension condition

Metric measure spaces satisfying CD(K, N) behave like
spaces with Ric > K & dim < N (Sturm, Lott-Villani).
By the general theory of CD(K, N), we have:

@ Bishop-Gromov volume comparison for N < oo;

@ Talagrand inequality, log-Sobolev inequality, global
Poincaré inequality & normal concentration of
measures for K > 0 & N = oo;

@ Bonnet-Myers diameter bound, Lichnerowicz
inequality for K > 0 & N < 0.
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Application II: Nonlinear Laplacian

§Application Il: Nonlinear Laplacian

We introduce:

@ the gradient vector Vu(x) € T .M as the Legendre
transform of the derivative Du(x) € TM
(F*(Du) = F(Vu), Du[Vu] = F*(Du)?),
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Application II: Nonlinear Laplacian

§Application Il: Nonlinear Laplacian

We introduce:

@ the gradient vector Vu(x) € T .M as the Legendre
transform of the derivative Du(x) € TM
(F*(Du) = F(Vu), Du[Vu] = F*(Du)?),

@ the nonlinear Laplacian Au := div,,(Vu) in the
distributional sense that

f¢Audm = —f Dp(Vu)dm V¢ € CZ(M).
M M
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Application II: Nonlinear Laplacian

It is not difficult to see (for forward complete M):

Laplacian comparison theorem (O.-Sturm 2009)

If Ricy > K for some K < 0 and N € [n, o), then
u(x) := d(z, x) for fixed z € M satisfies

Au(x) < /=N = DK coth ( \ /N_—fld(z, x))

point-wise on M \ ({z} U Cut(z)), and in the weak sense
on M \ {z}. The RHS will be (N — 1)/d(z, x) if K = 0;
V(N = 1K cot(VK/(N — 1)d(z, x)) if K > 0.

(Extended to general metric measure spaces with
CD(K, N) recently by Gigli.)
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Application Ill: Bochner-Weitzenbdck formula

§Application lll: Bochner-Weitzenbock formula

We further need:

@ AVUf :=div,(VV"f): the Laplacian linearized via
gv. (Note: Au = AV"u),
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Application Ill: Bochner-Weitzenbdck formula

§Application lll: Bochner-Weitzenbdck formula

We further need:

@ AVUf :=div,(VV"f): the Laplacian linearized via
gv. (Note: Au = AV"u),

@ Vu:=DV4(Vu): TM — TM: the ‘Hessian’ of u,

@ ||[V2ullys(wy): the Hilbert-Schmidt norm of V2u
w.r.t. gv,.
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Application Ill: Bochner-Weitzenbdck formula

Bochner-Weitzenbdck formula (O.-Sturm 2011)
Foru € C*(M),

F(Vu)?
2

AV“( )_ D(Au)(Vu) = Rice( V) + 1V ull3ys v

point-wise on {Vu # 0}, and in the weak sense on M.

There arise some technical difficulties on {Vu = 0}
since the Legendre transform is not differentiable on
{0} cTM.
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Application Ill: Bochner-Weitzenbdck formula

By a standard argument, we moreover obtain:

Bochner inequality for N < oo (O.-Sturm 2011)
Foru e C*(M) and N € [n, o),

F(Vu)? (Au)?

AV”( ) — D(Au)(Vi) > Ricy(Vu) +

point-wise on {Vu # 0}, and in the weak sense on M.
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Application Ill: Bochner-Weitzenbdck formula

Notes

(a) What happens when F is replaced with gy, ?
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Application Ill: Bochner-Weitzenbdck formula

Notes

(a) What happens when F is replaced with gy, ?

AV"u = Au, but RicY"“(Vu) # Rice(Vu) (unless all
integral curves of Vu are geodesic). Therefore the
above formula is not the Bochner formula for the
Riemannian structure gv,.
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Application Ill: Bochner-Weitzenbdck formula

Notes

(a) What happens when F is replaced with gy, ?

AV"u = Au, but RicY"“(Vu) # Rice(Vu) (unless all
integral curves of Vu are geodesic). Therefore the
above formula is not the Bochner formula for the
Riemannian structure gv,.

(b) Applications include the Bakry-Emery gradient
estimate (N = o), the Li-Yau gradient estimate and the
Harnack inequality (N < oo) for the heat flow associated
with our nonlinear Laplacian.
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Application IV: Splitting theorems

§Application IV: Splitting theorems

Finally, we consider a generalization of the
Cheeger-Gromoll splitting theorem.
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Application IV: Splitting theorems

§Application IV: Splitting theorems

Finally, we consider a generalization of the
Cheeger-Gromoll splitting theorem.

Let (M, F, m) be both forward & backward complete and

@ Ricy > 0 for some N € [n, 0],

@ supy < oo if N =00 (¢ : UM — R is the weight
function as in the definition of Ricy),

@ thereis a straightlinen: R — M
(i.e., dn(s),n®) =t—s, Vs <1).
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Application IV: Splitting theorems

Analysis of Busemann functions

Define
fi(x) =t —d(x,n(), byx):= tlim fi(x) forxe M.

b,=0 f,=0

n(0)
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Application IV: Splitting theorems

The Laplacian comparison theorem implies that b, is

subharmonic (i.e., Ab, > 0 in the distributional sense).
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Application IV: Splitting theorems

The Laplacian comparison theorem implies that b, is
subharmonic (i.e., Ab, > 0 in the distributional sense).

The maximum principle shows that b,, is harmonic
(Ab,, = 0). Moreover, F(Vb,) =1 and b, is C*.

(The harmonicity means that b,, is a static solution to
the heat equation. Then the non-vanishing of Vb,
shows that b, is C*.)

[m] = = = = QR
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Application IV: Splitting theorems

Applying the Bochner inequality to b,, the weighted
Riemannian manifold (M, g, , m) splits isometrically.
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Application IV: Splitting theorems

Applying the Bochner inequality to b,, the weighted
Riemannian manifold (M, gwvy, , m) splits isometrically.

In particular,

Diffeomorphic splitting for general Finlser manifolds
(0. 2012)

(M, m) splits off R as
M = M’ x R diffeomorphically, m = m|y x L',

where M’ := b, '(0), L' is the Lebesgue measure on R.
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Application IV: Splitting theorems

Remarks

@ We know only a little about the structure of M’ in
general, so this procedure can not be iterated.
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Application IV: Splitting theorems

Remarks
@ We know only a little about the structure of M’ in
general, so this procedure can not be iterated.

@ We can go further only in the special case of
Berwald spaces (= all tangent spaces are
isometric each other).
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Application IV: Splitting theorems

Remarks

@ We know only a little about the structure of M’ in
general, so this procedure can not be iterated.

@ We can go further only in the special case of
Berwald spaces (= all tangent spaces are
isometric each other).

In this case, M’ is totally geodesic and isometric to
b, ' (») for all t € R. Thus the splitting can be
iterated, and we can also obtain the Betti number
estimate a la Cheeger-Gromoll.

Shin-ichi Ohta (Kyoto University) Ricci curvature in Finsler geometry 23/Aug/2012 (St. Petersburg) 24 /24



	Plan of talk
	Finsler manifolds
	Weighted Ricci curvature
	Application I: Curvature-dimension condition
	Application II: Nonlinear Laplacian
	Application III: Bochner-Weitzenböck formula
	Application IV: Splitting theorems

