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Plan of talk

§Plan of talk

Preliminaries for Finsler manifolds

Definition of weighted Ricci curvature

Geometric & analytic applications

Partly joint with Karl-Theodor Sturm (Univ. Bonn).
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Finsler manifolds

§Finsler manifolds

A C∞-Finsler manifold will be a pair (M, F) of a
connected C∞-manifold M and F : T M −→ [0,∞) s.t.

.

.

. ..

.

.

(1) F is C∞ on T M \ {0},
(2) F(cv) = cF(v) for all v ∈ T M and c > 0,
(3) For any v ∈ T M \ {0}, the n × n-symmetric matrix

gi j(v) :=
1
2
∂2(F2)
∂vi∂v j , where v =

n∑
i=1

vi ∂

∂xi ,

is positive-definite (strong convexity).
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Finsler manifolds

Strong convexity

For each v ∈ TxM \ {0}, gi j(v) defines the inner product
gv of TxM by (n = dim M)

gv

( n∑
i=1

ai
∂

∂xi ,

n∑
j=1

b j
∂

∂x j

)
:=

n∑
i, j=1

aib jgi j(v).

This approximates the (Minkowski) norm F|TxM in the
direction v in the following sense.
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Finsler manifolds

6

--v/F(v)

gv(·, ·) = 1

F(·) = 1

The unit sphere of gv tangents to the unit sphere of
F|TxM at v/F(v) up to the second order.

Shin-ichi Ohta (Kyoto University) Ricci curvature in Finsler geometry 23/Aug/2012 (St. Petersburg) 5 / 24



. . . . . .

Finsler manifolds

Metric structure of (M, F)

A Finsler structure F naturally induces

the distance d(x, y) as the infimum of the lengths of
curves from x to y (possibly d(x, y) , d(y, x)),

geodesics as constant-speed, locally shortest
curves w.r.t. d,

the forward completeness as the extendability of
any geodesic η : [0, ε] −→ M to η̄ : [0,∞) −→ M.
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Finsler manifolds

Curvature? Measure?

.

.

. ..

.

.

Easy to see: a lower or upper curvature bound in the
sense of Alexandrov implies that all tangent spaces are
inner product spaces. So it is Riemannian.

.

.

. ..

. .

Ricci curvature comparison is possible! But how?
The Ricci curvature is defined by using a connection.
However, there is no canonical measure like the volume
measure in Riemannian geometry.
Thus we start with an arbitrary measure m on M and
modify the Ricci curvature according to m.
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Weighted Ricci curvature

§Weighted Ricci curvature

Instead of giving the precise definition, we explain
Z. Shen’s interpretation of the Finsler-Ricci curvature
Ric(v) of a unit vector v ∈ UM = F−1(1):

Extend v to a C∞-vector field V in such a way that every
integral curve is geodesic (always possible).

.

.

. ..

.

.

Then Ric(v) coincides with the Ricci curvature RicV(v)
of v w.r.t. the Riemannian structure gV .
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Weighted Ricci curvature

Weighted version

We fix an arbitrary positive C∞-measure m on M and
modify Ric(v) as follows (for v,V as above):

Decompose m as m = e−ψ volV , where volV is the
Riemannian volume measure of gV , and let η be the
geodesic with η̇(0) = v.

.

.

. ..

.

.

For N ∈ (n,∞) (n = dim M), define

RicN(v) := Ric(v) + (ψ ◦ η)′′(0) − (ψ ◦ η)′(0)2

N − n
,

RicN(cv) := c2 RicN(v) for c > 0.

Shin-ichi Ohta (Kyoto University) Ricci curvature in Finsler geometry 23/Aug/2012 (St. Petersburg) 9 / 24



. . . . . .

Weighted Ricci curvature

Weighted version

We fix an arbitrary positive C∞-measure m on M and
modify Ric(v) as follows (for v,V as above):

Decompose m as m = e−ψ volV , where volV is the
Riemannian volume measure of gV , and let η be the
geodesic with η̇(0) = v.

.

.

. ..

.

.

For N ∈ (n,∞) (n = dim M), define

RicN(v) := Ric(v) + (ψ ◦ η)′′(0) − (ψ ◦ η)′(0)2

N − n
,

RicN(cv) := c2 RicN(v) for c > 0.

Shin-ichi Ohta (Kyoto University) Ricci curvature in Finsler geometry 23/Aug/2012 (St. Petersburg) 9 / 24



. . . . . .

Weighted Ricci curvature

As the limits,

.

.

. ..

.

.

Ric∞(v) := Ric(v) + (ψ ◦ η)′′(0) (Bakry-Émery tensor),

Ricn(v) :=
{

Ric(v) + (ψ ◦ η)′′(0) if (ψ ◦ η)′(0) = 0,
−∞ otherwise.

Ric∞ ≥ RicN ≥ Ricn by definition.

(ψ ◦ η)′(0) coincides with Shen’s S-curvature S(v).

S ≡ 0 does not hold for any m in some spaces
(O. 2011), so there is no nice reference measure.

Shin-ichi Ohta (Kyoto University) Ricci curvature in Finsler geometry 23/Aug/2012 (St. Petersburg) 10 / 24



. . . . . .

Weighted Ricci curvature

As the limits,

.

.

. ..

.

.

Ric∞(v) := Ric(v) + (ψ ◦ η)′′(0) (Bakry-Émery tensor),
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Application I: Curvature-dimension condition

§Application I: Curvature-dimension condition

The following theorem generalizes the corresponding
theorem in the (weighted) Riemannian case by Lott,
Renesse, Sturm and Villani.

.

Theorem (O. 2009)

.

.

.

. ..

.

.

Let (M, F,m) be forward complete, N ∈ [n,∞], K ∈ R.
Then the lower bound RicN ≥ K (i.e., RicN(v) ≥ KF(v)2)
is equivalent to the curvature-dimension condition
CD(K,N).
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Application I: Curvature-dimension condition

CD(K,N) is a convexity condition of an entropy function
on the space P(M) of probability measures on M
(minimal geodesics in P(M) = ‘optimal transports’).

Geometric image of CD(K,N)

K > 0 K < 0

µ0 µ1µ1/2
µ0 µ1

µ1/2

(K > 0 case: less concentrated = less entropy at µ1/2)
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Application I: Curvature-dimension condition

Metric measure spaces satisfying CD(K,N) behave like
spaces with Ric ≥ K & dim ≤ N (Sturm, Lott-Villani).
By the general theory of CD(K,N), we have:

Bishop-Gromov volume comparison for N < ∞;

Talagrand inequality, log-Sobolev inequality, global
Poincaré inequality & normal concentration of
measures for K > 0 & N = ∞;

Bonnet-Myers diameter bound, Lichnerowicz
inequality for K > 0 & N < ∞.
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Application II: Nonlinear Laplacian

§Application II: Nonlinear Laplacian

We introduce:

the gradient vector ∇u(x) ∈ TxM as the Legendre
transform of the derivative Du(x) ∈ T ∗x M
(F∗(Du) = F(∇u), Du[∇u] = F∗(Du)2),

the nonlinear Laplacian ∆u := divm(∇u) in the
distributional sense that∫

M
φ∆u dm = −

∫
M

Dφ(∇u) dm ∀φ ∈ C∞c (M).
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Application II: Nonlinear Laplacian

It is not difficult to see (for forward complete M):

.

Laplacian comparison theorem (O.-Sturm 2009)

.

.

.

. ..

.

.

If RicN ≥ K for some K < 0 and N ∈ [n,∞), then
u(x) := d(z, x) for fixed z ∈ M satisfies

∆u(x) ≤
√
−(N − 1)K coth

(√ −K
N − 1

d(z, x)
)

point-wise on M \ ({z} ∪ Cut(z)), and in the weak sense
on M \ {z}. The RHS will be (N − 1)/d(z, x) if K = 0;√

(N − 1)K cot(
√

K/(N − 1)d(z, x)) if K > 0.

(Extended to general metric measure spaces with
CD(K,N) recently by Gigli.)
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Application III: Bochner-Weitzenböck formula

§Application III: Bochner-Weitzenböck formula

We further need:

∆∇u f := divm(∇∇u f ): the Laplacian linearized via
g∇u (Note: ∆u = ∆∇uu),

∇2u := D∇u(∇u) : T M −→ T M: the ‘Hessian’ of u,

‖∇2u‖HS (∇u): the Hilbert-Schmidt norm of ∇2u
w.r.t. g∇u.
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Application III: Bochner-Weitzenböck formula

.

Bochner-Weitzenböck formula (O.-Sturm 2011)

.

.

.

. ..

.

.

For u ∈ C∞(M),

∆∇u
(F(∇u)2

2

)
− D(∆u)(∇u) = Ric∞(∇u) + ‖∇2u‖2HS (∇u)

point-wise on {∇u , 0}, and in the weak sense on M.

There arise some technical difficulties on {∇u = 0}
since the Legendre transform is not differentiable on
{0} ⊂ T M.
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Application III: Bochner-Weitzenböck formula

By a standard argument, we moreover obtain:

.

Bochner inequality for N < ∞ (O.-Sturm 2011)

.

.

.

. ..

.

.

For u ∈ C∞(M) and N ∈ [n,∞),

∆∇u
(F(∇u)2

2

)
− D(∆u)(∇u) ≥ RicN(∇u) +

(∆u)2

N

point-wise on {∇u , 0}, and in the weak sense on M.
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Application III: Bochner-Weitzenböck formula

Notes

(a) What happens when F is replaced with g∇u?

∆∇uu =∆u, but Ric∇u
∞ (∇u) , Ric∞(∇u) (unless all

integral curves of ∇u are geodesic). Therefore the
above formula is not the Bochner formula for the
Riemannian structure g∇u.

(b) Applications include the Bakry-Émery gradient
estimate (N = ∞), the Li-Yau gradient estimate and the
Harnack inequality (N < ∞) for the heat flow associated
with our nonlinear Laplacian.
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Application IV: Splitting theorems

§Application IV: Splitting theorems

Finally, we consider a generalization of the
Cheeger-Gromoll splitting theorem.

Let (M, F,m) be both forward & backward complete and

.

.

. ..

.

.

RicN ≥ 0 for some N ∈ [n,∞],

supψ < ∞ if N = ∞ (ψ : UM −→ R is the weight
function as in the definition of RicN),

there is a straight line η : R −→ M
(i.e., d(η(s), η(t)) = t − s, ∀s < t).
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Application IV: Splitting theorems

Analysis of Busemann functions

Define

ft(x) := t − d
(
x, η(t)

)
, bη(x) := lim

t→∞
ft(x) for x ∈ M.

- η
η(0)

ft = 0bη = 0
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Application IV: Splitting theorems

.

Lemma

.

.

.

. ..

.

.

The Laplacian comparison theorem implies that bη is
subharmonic (i.e., ∆bη ≥ 0 in the distributional sense).

.

Lemma

.

.

.

. ..

.

.

The maximum principle shows that bη is harmonic
(∆bη ≡ 0). Moreover, F(∇bη) ≡ 1 and bη is C∞.

(The harmonicity means that bη is a static solution to
the heat equation. Then the non-vanishing of ∇bη
shows that bη is C∞.)
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Application IV: Splitting theorems

Applying the Bochner inequality to bη, the weighted
Riemannian manifold (M, g∇bη,m) splits isometrically.

In particular,

.

Diffeomorphic splitting for general Finlser manifolds
(O. 2012)

.

.

.

. ..

.

.

(M,m) splits off R as

M = M′ × R diffeomorphically, m = m|M′ × L1,

where M′ := b−1
η (0), L1 is the Lebesgue measure on R.
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Application IV: Splitting theorems

Remarks

We know only a little about the structure of M′ in
general, so this procedure can not be iterated.

We can go further only in the special case of
Berwald spaces (⇒ all tangent spaces are
isometric each other).
In this case, M′ is totally geodesic and isometric to
b−1
η (t) for all t ∈ R. Thus the splitting can be

iterated, and we can also obtain the Betti number
estimate à la Cheeger-Gromoll.
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