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Herbert Busemann (1905 - 1994) was a German-American
mathematician specializing in convex and differential geometry.

Werner Fenchel, Aleksander Danilovič Aleksandrov
Herbert Busemann and Borge Jessen (1954)
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Herbert Busemann was born on 12 May 1905 in Berlin. His
father was one of the directors of Krupp, where Busemann also
worked for several years.

He studied at University of Munich, Paris, and Rome. He
defended his dissertation in University of Göttingen in 1931,
where his advisor was Richard Courant.
He remained in Göttingen as an assistant until 1933, when he
escaped Nazism to Copenhagen. He worked at the University
of Copenhagen until 1936, when he left to the United States.

He had positions at the Institute of Advanced Studies, Johns
Hopkins University, Illinois Institute of Technology, Smith
College, and eventually became a professor in 1947 at
University of Southern California. He advanced to a
distinguished professor in 1964, and continued working at USC
until his retirement in 1970. At USC he supervised over 10
Ph.D. students.
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He is the author of six monographs, two of which were
translated into Russian. According to the Los Angeles Times,
the Lobachevsky Medal he received in 1985, was honored with
2,000 roubles for his book The geometry of geodesics
(Academic Press, 1959).

He was a member of the Royal Danish Academy. He was also
a Fulbright scholar in New Zealand in 1952. Busemann was
also the president of the California chapter of Mathematical
Association of America, and a member of the council of the
American Mathematical Society.

Busemann was also an accomplished linguist; he was able to
read and speak in French, German, Spanish, Italian, Russian,
and Danish. He could also read Arabic, Latin, Greek and
Swedish. He translated a number of papers and monograph,
most notably from Russian.

He died in Santa Ynez, California on February 3, 1994, at the
age of 88.
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After retiring from USC as a professor emeritus in 1970,
Busemann spent the rest of his life painting in Santa Ynez,
California. Fittingly, his paintings were also geometrical and
executed with mathematical precision.

Conflict (1972)
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Beginning in 1942, Herbert Busemann developed the notion of
a G-space as a way of putting a Riemannian like geometry on a
metric space.

Definition: A Busemann G-space is a metric space that
satisfies four basic axioms on a metric space.

These axioms imply the existence of geodesics, local
uniqueness of geodesics, and local extension properties.

These axioms also infer homogeneity and a cone structure for
small metric balls.

Busemann Conjecture (1955): Every n-dimensional G-space
(n ∈ N) is a topological n-manifold.
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Definition: Let (X ,d) be a metric space. X is said to be a
Busemann G-space provided it satisfies the following axioms:

Menger Convexity: Given distinct points x , y ∈ X , there is a
point z ∈ X − {x , y} such that d(x , z) + d(z, y) = d(x , y).

Finite Compactness: Every d-bounded infinite set has an
accumulation point.

Local Extendibility: For every point w ∈ X , there is a radius
ρw > 0, such that for any pair of distinct points x , y ∈ B(w , ρw ),
there is a point z ∈ int B(w , ρw )− {x , y} such that
d(x , y) + d(y , z) = d(x , z).

Uniqueness of the Extension: Given distinct points x , y ∈ X , if
there are points z1, z2 ∈ X for which both

d(x , y) + d(y , zi) = d(x , zi) for i = 1,2,

and d(y , z1) = d(y , z2) hold, then z1 = z2.
Dušan Repovš Busemann G-spaces



Definition: Let (X ,d) be a metric space. X is said to be a
Busemann G-space provided it satisfies the following axioms:

Menger Convexity: Given distinct points x , y ∈ X , there is a
point z ∈ X − {x , y} such that d(x , z) + d(z, y) = d(x , y).

Finite Compactness: Every d-bounded infinite set has an
accumulation point.

Local Extendibility: For every point w ∈ X , there is a radius
ρw > 0, such that for any pair of distinct points x , y ∈ B(w , ρw ),
there is a point z ∈ int B(w , ρw )− {x , y} such that
d(x , y) + d(y , z) = d(x , z).

Uniqueness of the Extension: Given distinct points x , y ∈ X , if
there are points z1, z2 ∈ X for which both

d(x , y) + d(y , zi) = d(x , zi) for i = 1,2,

and d(y , z1) = d(y , z2) hold, then z1 = z2.
Dušan Repovš Busemann G-spaces



Definition: Let (X ,d) be a metric space. X is said to be a
Busemann G-space provided it satisfies the following axioms:

Menger Convexity: Given distinct points x , y ∈ X , there is a
point z ∈ X − {x , y} such that d(x , z) + d(z, y) = d(x , y).

Finite Compactness: Every d-bounded infinite set has an
accumulation point.

Local Extendibility: For every point w ∈ X , there is a radius
ρw > 0, such that for any pair of distinct points x , y ∈ B(w , ρw ),
there is a point z ∈ int B(w , ρw )− {x , y} such that
d(x , y) + d(y , z) = d(x , z).

Uniqueness of the Extension: Given distinct points x , y ∈ X , if
there are points z1, z2 ∈ X for which both

d(x , y) + d(y , zi) = d(x , zi) for i = 1,2,

and d(y , z1) = d(y , z2) hold, then z1 = z2.
Dušan Repovš Busemann G-spaces



Definition: Let (X ,d) be a metric space. X is said to be a
Busemann G-space provided it satisfies the following axioms:

Menger Convexity: Given distinct points x , y ∈ X , there is a
point z ∈ X − {x , y} such that d(x , z) + d(z, y) = d(x , y).

Finite Compactness: Every d-bounded infinite set has an
accumulation point.

Local Extendibility: For every point w ∈ X , there is a radius
ρw > 0, such that for any pair of distinct points x , y ∈ B(w , ρw ),
there is a point z ∈ int B(w , ρw )− {x , y} such that
d(x , y) + d(y , z) = d(x , z).

Uniqueness of the Extension: Given distinct points x , y ∈ X , if
there are points z1, z2 ∈ X for which both

d(x , y) + d(y , zi) = d(x , zi) for i = 1,2,

and d(y , z1) = d(y , z2) hold, then z1 = z2.
Dušan Repovš Busemann G-spaces



Definition: Let (X ,d) be a metric space. X is said to be a
Busemann G-space provided it satisfies the following axioms:

Menger Convexity: Given distinct points x , y ∈ X , there is a
point z ∈ X − {x , y} such that d(x , z) + d(z, y) = d(x , y).

Finite Compactness: Every d-bounded infinite set has an
accumulation point.

Local Extendibility: For every point w ∈ X , there is a radius
ρw > 0, such that for any pair of distinct points x , y ∈ B(w , ρw ),
there is a point z ∈ int B(w , ρw )− {x , y} such that
d(x , y) + d(y , z) = d(x , z).

Uniqueness of the Extension: Given distinct points x , y ∈ X , if
there are points z1, z2 ∈ X for which both

d(x , y) + d(y , zi) = d(x , zi) for i = 1,2,

and d(y , z1) = d(y , z2) hold, then z1 = z2.
Dušan Repovš Busemann G-spaces



Facts: From these basic properties, a rich structure on a
G-space can be derived. Let (X ,d) be a G-space and let
x ∈ X . Then (X ,d) satisfies the following properties:

Complete Inner Metric: (X ,d) is a locally compact complete
metric space.

Existence of Geodesics: Any two points in X are joined by a
geodesic.

Local Uniqueness of Joins: There is a radius rx > 0 such that
any two points y , z ∈ Brx (x) in the closed ball can be joined by
a unique segment in X .

Local Cones: There is a radius εx > 0 for which the closed
metric ball Bεx (x) is homeomorphic to the cone over its
boundary.

Homogeneity: X is homogeneous and the homogeneity
homeomorphisms can be chosen so that it is isotopic to the
identity.
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Busemann Theorem (1955): Busemann G-spaces of
dimension n = 1,2 are manifolds.

Busemann Conjecture (1955): Every (n ≥ 3)-dimensional
Busemann G-space is a topological n-manifold.

Krakus Theorem (1968): Busemann G-spaces of dimension
n = 3 are topological 3-manifolds.

Already in the 1950’s Busemann predicted: “Although this
conjecture is probably true for any G-space, the proof seems
quite inaccessible in the present state of topology.” His
prediction was correct – the proof of the case n = 4 required the
theory of 4-manifolds, developed almost three decades later.

Thurston Theorem (1996): Every Busemann G-space of
dimension n = 4 is a topological 4-manifold.
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The general case of Busemann’s Conjecture of n ≥ 5 remains
unsolved. However, there is a proof, due to Berestovskii, of the
special case when the Busemann G-space (X ,d) has the
Aleksandrov curvature ≤ K , which means that geodesic
triangles in X are at most as "fat"as corresponding triangles in
a surface SK of constant curvature K , i.e. the length of a
bisector of the triangle in X is at most the length of the
corresponding bisector of the corresponding triangle in SK .

Example: The boundary of a convex region in Rn has
nonnegative Alexandrov curvature.

Berestovskii Theorem (2002): Busemann G-spaces of
dimension n ≥ 5 having Aleksandrov curvature bounded above
are topological n-manifolds.
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We now pass to geometric topology, because the Busemann
Conjecture is closely related to another classical (and also still
unproven conjecture) stated in the 1960’s by Bing and Borsuk.
We begin by some preliminaries concerning the so-called
Recognition Problem for Topological Manifolds.

Definition: Let Y be a metric space. Y is said to be an
absolute neighborhood retract (ANR) provided for every closed
embedding e : Y → Z of Y into a metric space Z , there is an
open neighborhood U of the image e(Y ) which retracts to
e(Y ). That is, there is a continuous surjection r : U → e(Y )
with r(x) = x for all x ∈ e(Y ).

Fact: Let Y be a finite-dimensional, locally contractible
separable metric space. Then Y is an ANR.

Definition: A topological space X is said to be homogeneous if
for any two points x1, x2 ∈ X , there is a homeomorphism of X
onto itself taking x1 to x2.
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Definition: A (closed) topological n-manifold (n ∈ N) is a
connected, compact n-dimensional metric space which is
locally Euclidean (i.e. homeomorphic to Rn).

Fact: Every topological n-manifold is a homogeneous ANR.

Bing and Borsuk Theorem (1965): For n < 3, every
n-dimensional homogeneous ANR is a topological n-manifold.

Bing-Borsuk Conjecture (1965): For every n ≥ 3, any
n-dimensional homogeneous ANR is a topological n-manifold.

Jakobsche Theorem (1978): In dimension n = 3, the
Bing-Borsuk Conjecture implies the Poincaré Conjecture.
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Definition: A Euclidean neighborhood retract (ENR) is a
finite-dimensional, locally compact, locally contractible subset
X of the Euclidean n-space Rn.

Definition: An n-dimensional (n ∈ N) locally compact
Hausdorff space X is called a Z-homology n-manifold (n-hmZ)
if for every point x ∈ X and all k ∈ N,
Hk (X ,X − {x};Z) ∼= Hk (Rn,Rn − {0};Z).

Bredon Theorem (1967): If X is an n-dimensional
homogeneous ENR (n ∈ N) and for some (and, hence all)
points x ∈ X , the groups Hk (X ,X − {x};Z) are finitely
generated, then X is a Z-homology n-manifold.

Remark: This theorem was reproved by Bryant in 1987 with a
more geometric argument.
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Definition: An n-dimensional topological space X is called a
generalized n-manifold (n ∈ N) if X is an ENR and a
Z-homology n-manifold.

Fact: Every generalized (n ≤ 2)-manifold is a topological
n-manifold. However, for every n ≥ 3 there exist totally singular
generalized n-manifolds X .

Definition: A proper onto map f : M → X is said to be cell-like
if for every point x ∈ X , the point-inverse f−1(x) contracts in
any neighborhood of itself.

The following classical result was proved for n ≤ 2 by Wilder,
for n = 3 by Armentrout, for n = 4 by Quinn and for n ≥ 5 by
Siebenmann.

Cell-like Approximation Theorem: Every cell-like map
between topological manifolds is a near-homeomorphism.
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Definition: An n-dimensional space X is said to be resolvable
if there is a cell-like map f : M → X where M is a topological
n-manifold.

Resolution Conjecture (1978): Every generalized
(n ≥ 3)-manifold has a resolution.

In dimension 3, the Resolution Conjecture implies the Poincaré
Conjecture. In dimensions ≥ 6 it turns out to be false:

Bryant-Ferry-Mio-Weinberger Theorem (1996): There exist
non-resolvable generalized n-manifolds, for every n ≥ 6.

Remark: By the work of Quinn, these nonresolvable
generalized manifolds must be totally singular.
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Definition: A metric space X is said to have the disjoint disks
property (DDP) if for every ε > 0 and every pair of maps
f ,g : B2 → X there exist ε-approximations f ′,g′ : B2 → X with
disjoint images.

Cannon Manifold Recognition Problem (1978): Is every
resolvable generalized (n ≥ 5)-manifold with the DDP a
topological n-manifold?

Edwards DDP Theorem (1977): For n ≥ 5, topological
n-manifolds are precisely the n-dimensional resolvable spaces
(hence generalized n-manifolds) with the DDP.

Bryant-Ferry-Mio-Weinberger Theorem (2007): For every
n ≥ 7 there exist non-resolvable generalized n-manifolds with
the DDP.
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Bryant-Ferry-Mio-Weinberger Conjecture (2007): Every
generalized n-manifold (n ≥ 7) satisfying the disjoint disks
property, is homogeneous.

Remark: If the Bryant-Ferry-Mio-Weinberger Conjecture is
true, then the Bing Borsuk conjecture is false for n ≥ 7.

Bryant Modified Bing-Borsuk Conjecture (2002): Every
homogeneous (n ≥ 3)-dimensional ENR is a generalized
n-manifold.
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In 1991 Repovš, Skopenkov and Ščepin proved the smooth
version of the Bing-Borsuk Conjecture.

Definition: A subset K ⊂ Rn is said to be C1–homogeneous if
for every pair of points x , y ∈ K there exist neighborhoods
Ox ,Oy ⊂ Rn of x and y , respectively, and a C1–diffeomorphism

h : (Ox ,Ox ∩ K , x)→ (Oy ,Oy ∩ K , y),

i.e. h and h−1 have continuous first derivatives.

Repovš-Skopenkov-Ščepin Theorem (1991): Let K be a
locally compact (possibly nonclosed) subset of Rn. Then K is
C1–homogeneous if and only if K is a C1–submanifold of Rn.
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Remark: This theorem clearly does not work for all
homeomorphisms, a counterexample is the Antoine Necklace –
a wild Cantor set in R3 which is clearly homogeneously (but not
C1–homogeneously embedded in R3.
In fact, it does not even work for Lipschitz homeomorphisms,
i.e. the maps for which d(f (x), f (y)) < λ d(x , y), for all x , y ∈ X .

Malešič-Repovš Theorem (1999): There exists a Lipschitz
homogeneous wild Cantor set in R3.

Garity-Repovš-Željko Theorem (2005): There exist
uncountably many rigid Lipschitz homogeneous wild Cantor
sets in R3.
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We now discuss the groundbreaking work of Thurston, who
proved the 4-dimensional case of the Busemann Conjecture:

Thurston Theorem (1996): Every Busemann G-space of
dimension n = 4 is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann G-space of
dimension n ≥ 5 is a generalized n-manifold.

Remarks: The fact that every finite-dimensional G-space is an
ANR follows from local contractibility and local compactness.
The fact that every finite-dimensional G-space is a homology
Z-manifold is proved by sheaf-theoretic methods.

Thurston Theorem (1996): Let (X ,d) be a Busemann
G-space, dimX = n <∞. Then for all x ∈ X and sufficiently
small r > 0:

1 Br (x) is a homology n-manifold with boundary
∂Br (x) = Sr (x).

2 Sr (x) is a homology (n − 1)-manifold with empty boundary.
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Definition: A space X is said to be a codimension one
manifold factor if X × R is a topological manifold.

Moore Conjecture: Every resolvable generalized manifold is a
codimension one manifold factor.

Remark: Every Busemann G-space is a manifold if and only if
small metric spheres are codimension one manifold factors.
Equivalently in dimensions n ≥ 5, every Busemann G-space X
is a manifold if and only if X is resolvable and small metric
spheres S in X satisfy the property that S × R has DDP.
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Theorem: Each of the following general position properties of
an ANR X characterizes X × R having DDP:

The disjoint arc-disk property (Daverman)

The disjoint homotopies property (Edwards, Halverson)

The plentiful 2-manifolds property (Halverson)

The method of δ-fractured maps (Halverson)

The 0-stitched disks property (Halverson)

The disjoint concordances property (Daverman and
Halverson)

The disjoint topographies property (Halverson and Repovš)
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Facts:
Bing-Borsuk Conjecture⇒ Busemann Conjecture

Bryant-Ferry-Mio-Weinberger Conjecture⇒ The failure of
Bing-Borsuk Conjecture

Moore Conjecture and Resolution Conjecture⇒
Busemann Conjecture (recall that the Resolution
Conjecture was shown to be wrong for all n ≥ 6)
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Questions:
Do all Busemann G-spaces have DDP (or equivalently, do
all small metric spheres S in X have the property that
S × R has DDP)?

Are all Busemann G-spaces resolvable?

Are all resolvable generalized manifolds codimension one
manifold factors?

Are all homogeneous generalized manifolds resolvable?
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We conclude this talk with some more paintings by Herbert
Busemann.

Untitled (circa 1970)
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Pyramid (1976)
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Squares on Red (1977)
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