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1. Introduction
(M,g) is a closed Riemannian manifold,

∆g = −g ij∇i∇j : C∞(M) −→ C∞(M)

Sp (∆g) = {0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk → +∞}

To which extent are the geometry and topology of a
Riemannian manifold determined by the eigenvalue spectrum
of its Laplacian?
M. Kac [1966]: Can one hear the shape of a drum?
Osgood–Philips–Sarnak [1988]: a Riemannian manifold is said
to be audible, if it is determined by its spectrum uniquely up to
an isometry. H. Weyl [1911]:

λk ∼ cn

(
k

Vol (M)

)2/n

as k →∞ (n = dim M)
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2. Examples of isospectral manifolds

Milnor [1964]: There exist two flat tori in the dimension 16
which are isospectral but not isometric.

Vignaras [1980], Sunada [1985]: Such examples exist in any
dimension even within the class of hyperbolic manifolds (i.e.,
Riemannian manifolds of constant negative sectional
curvature).

Gordon–Wilson [1984]: There exist examples of smooth
families of isospectral but not isometric metrics.

Croke–Sh [1998]: But such examples are impossible within the
class of negatively curved metrics.
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3. Compactness results. Finiteness conjecture

McKean [1974]: Within the class of hyperbolic surfaces (i.e.,
two-dimensional Riemannian manifolds whose Gaussian
curvature equals to −1), every isospectral family is finite if
isometric surfaces are identified.

Osgood–Philips–Sarnak [1988]: Every isospectral set of
metrics on a two-dimensional manifold is precompact in the
C∞-topology if isometric metrics are identified.
A similar compactness theorem for negatively curved
3-manifolds is proved by Brooks–Perry–Petersen [1992].

Conjecture
Every isospectral family of metrics of negative Gaussian
curvature on a compact orientable surface of genius ≥ 2 is
finite if isometric metrics are identified.
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4. Local audibility
In virtue of the above-mentioned compactness theorem, the
conjecture is equivalent to some local uniqueness statement. In
connection with this, we introduce the following

Definition
A Riemannian manifold (M,g) is said to be locally audible if
there exists a neighborhood V of the metric g in the
C∞-topology such that every metric belonging to V and
isospectral to g is isometric to g.
The conjecture is equivalent to the local audibility of
a two-dimensional manifold of negative Gaussian curvature. To
our opinion, the question on the local audibility of some
Riemannian metric is of independent interest regardless to the
conjecture. The main result of the present article is the following

Theorem
A locally symmetric Riemannian manifold of negative sectional
curvature is locally audible.
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5. Solenoidal tensor fields
Investigating the local audibility of a metric g, we have first of all
to eliminate metrics that are isometric and close to g but do not
coincide with g.
Given a Riemannian manifold (M,g), let C∞(S2τ ′M) be the
space of smooth symmetric rank two covariant tensor fields on
M. The divergence δg : C∞(S2τ ′M)→ C∞(τ ′M) is defined in
coordinates by the equality (δg f )i = g jk∇j fik , where ∇ is the
covariant derivative of the metric g. A tensor field f is said to be
solenoidal if δg f = 0. The above-mentioned elimination of
“unnecessary” metrics is implemented with the help of the
following (Croke–Dairbekov–Sh [2000])

Lemma
Let (M,g) be of negative curvature. For every k ≥ 2 and
0 < α < 1, there exists a neighborhood V ⊂ Ck ,α(S2τ ′M) of the
metric g such that, for every metric g′ ∈ V, there exists
a diffeomorphism ϕ of the manifold M onto itself such that the
tensor field ϕ∗g′ is solenoidal in the metric g, i.e., δg(ϕ∗g′) = 0.
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In virtue of the lemma, the definition of local audibility takes the
following equivalent form.

Proposition
A negatively curved manifold (M,g) is locally audible if and only
if the following statement is true. If gk (k = 1,2, . . . ) is a
sequence of metrics on M converging to g in the C∞-topology
and such that every gk is isospectral to g and satisfies δggk = 0
then gk = g starting with some k0.
The latter statement is proved for negatively curved metrics if
the sequence gk → g is replaced with with a smooth
one-parameter family gt (−ε < t < ε, g0 = g).
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6. Eigenvalue spectrum and Length spectrum

Sp (∆g) = {0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk → +∞}

k(t) =
∞∑

k=0

cos(
√
λk t) ∈ S ′(R) is the wave kernel

Chazarain [1974], Duistermaat–Guillemin [1975]:

singsupp k ⊆ (LSp(M,g)) ∪ {0} ∪ (−LSp(M,g)),

and the equality holds for a negatively curved manifold.

LSp(M,g) = {lengths of closed geodesics} is the length spectrum.

Guillemin–Kazhdan [1980]: If two negatively curved manifolds
have coincident eigenvalue spectra, then their length spectra
coincide too.
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Croke–Sh [1998]: If a solenoidal symmetric tensor field f = (fij)
on a negatively curved manifold integrates to zero over every
closed geodesic, then f ≡ 0.

∮

γ

f =
∮

γ

fij(γ(t))γ̇ i(t)γ̇ j(t)dt
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7. A compactness estimate implies the local audibility

Let (M,g) be a Riemannian manifold of negative sectional
curvature and gm (m = 1,2, . . . ) be a sequence of Riemannian
metrics on M converging to g in the C∞-topology. Assume
every gm to be isospectral to the metric g and solenoidal, i.e.,
δggm = 0. In virtue of the proposition, we have to prove that gm
coincides with g starting with some m0. We assume this false
and try to get a contradiction. Passing to a subsequence, we
can assume the tensor field fm = gm − g to be not identically
equal to zero for every n. Let γ be a closed geodesic of the
metric g and γm be the closed geodesic of the metric gm in the
same free homotopy class as γ. Then γm converges uniformly
to γ as n→∞ since there is a unique closed geodesic in a free
homotopy class on a negatively curved manifold.
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Since γm minimizes the energy functional Egm in its homotopy
class, we can write
∮

γ

fm=
∮

γ

(gm−g)=Egm(γ)−Eg(γ)≥Egm(γm) − Eg(γ)=0.

The last equality of the chain holds for a sufficiently large m
since the metrics gm and g have coincident length spectra.
Thus, for every closed geodesic γ of the metric g,

∮

γ

fm ≥ 0 for m > m0(γ).

Swopping the roles of g and gm, we infer also that
∮

γm

fm ≤ 0. for m > m0(γ)

We normalize the tensor field fm by setting Fm = fm/‖fm‖Hk with
an appropriately chosen k . The inequalities hold for Fm as well
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∮

γ

Fm ≥ 0,
∮

γm

Fm ≤ 0 for m ≥ m0(γ).

Assume for a moment the sequence Fm to converge in the
Hk -norm: ‖Fm − F‖Hk → 0 as n→∞. Passing to the limit, we
have ∮

γ

F = 0

for every closed geodesic γ of the metric g. Of course, F is a
solenoidal tensor field. By the previous theorem, F ≡ 0. This
contradicts to the equality ‖F‖Hk = 1.
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The problem is thus reduced to the question: does the
sequence Fm contain a subsequence converging in Hk? Since
the embedding Hk+1 ⊂ Hk is compact, it suffices to prove the
boundedness of the sequence Fm in the Hk+1-norm,

‖Fm‖Hk+1 ≤ C.

This means in terms of the sequence gm that

‖gm − g‖Hk+1 ≤ C‖gm − g‖Hk .

Similar compactness estimates appeared already in spectral
geometry. Such an estimate (for k = 0) serves as a base for
main results of Sh–Uhlmann [2000] and Dairbekov–Sh [2003]
that are devoted to the spectral rigidity of Riemannian manifolds
with the geodesic flow of Anosov type.
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8. Heat invariants
The fundamental solution K (x , y , t) to the heat equation on an
n-dimensional Riemannian manifold (M,g) admits the
asymptotic representation

K (x , x , t) ∼ (4πt)−n/2(a0(x) + a1(x)t + a2(x)t2 + . . . )

as t → +0, where the coefficients are determined by the local
geometry of the manifold in a neighborhood of the point x .
More precisely, every function ak (x) is an invariant polynomial
in the curvature tensor and its covariant derivatives. The
integrals of the coefficients ak (M,g) =

∫
M ak (x)dV (x) are

called heat invariants. They are determined by the spectrum of
the Laplacian:

trL2 e−t∆g =
∞∑

k=0

e−λk t

∼ (4πt)−n/2
(

a0(M,g)+a1(M,g)t+a2(M,g)t2+. . .
)
.
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The first three invariants are as follows:

a0(M,g) = Vol(M,g), a1(M,g) =
1
6

∫

M
S dV ,

a2(M,g) =
1

360

∫

M
(5S2 − 2|Ric|2 + 2|R|2)dV ,

where R,Ric, and S are the curvature tensor, Ricci tensor, and
scalar curvature respectively.
Gilkey [1989]: for k ≥ 2

ak+1(M,g) =
∫

M

(
ck |∇(k−1)S|2+c′k |∇(k−1)Ric|2+Pk (∇,R)

)
dV .

with positive ck and c′k , where Pk (∇,R) is some invariant
polynomial in the variables ∇(l)R (l ≤ k − 2). It is a
homogeneous polynomial of degree 2k + 2 if the degree of
homogeneity of ∇(l)R is assumed to be equal to l + 2. This is a
universal polynomial, i.e., independent of the manifold.
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9. Derivation of the compactness estimate
Let (M,g) be a Riemannian manifold and let f ∈ C∞(S2τ ′M) be
a sufficiently small solenoidal tensor field. Assume the metrics
g and g + f to be isospectral.
First of all, Vol(M,g + f ) = Vol(M,g). This gives

∣∣∣∣

∫

M
tr f dV

∣∣∣∣ ≤ C‖f‖2L2 .

Next, we equate the values of the heat invariant

ak+1(M,g + f )− ak+1(M,g) = 0.

We expand the left-hand side of the equation into Tailor series
in f and obtain

‖f‖2Hk+1 =

∫

M
Qk (∇,R, f )dV ,

where Qk (∇,R, f ) is a power series in ∇(l)f (l ≤ k) with
coefficients depending on ∇(l)R.
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Let us distinguish linear terms of Qk (∇,R, f )

Qk (∇,R, f ) = Q′k (∇,R, f ) + Lk (∇,R, f ).

Since Q′k (∇,R, f ) does not contain linear terms it admits the
estimate ∣∣∣∣

∫

M
Q′k (∇,R, f )dV

∣∣∣∣ ≤ C‖f‖2Hk .

The main difficulty is about estimating the integral
∫

M
Lk (∇,R, f )dV

of linear terms.
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Assume g to be a metric of constant sectional curvature K0.
Since Rijkl = K0(gikgjl − gilgjk ), the linear form

Lk (∇,R, f ) = Lk (∇, f )

consists of summands that are obtained from derivatives

∇l1...l2m fij (2m ≤ k)

by raising a half of indices with the help of the tensor g ij

followed by the contraction in all indices grouped in pairs. For
m > 0, every such summand has obviously a divergent form
and gives the zero contribution into the integral. For m = 0, we
have the unique summand tr f that has been already estimated
by ‖f‖2L2 . We finally obtain

∣∣∣∣

∫

M
Lk (∇,R, f )dV

∣∣∣∣ ≤ C‖f‖2L2 .

Combining our inequalities, we obtain the compactness
estimate

‖f‖2Hk+1 ≤ C‖f‖2Hk .
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Lemma
Let (M,g) be a Riemannian manifold of constant sectional
curvature. For every k ≥ 2, there exists a Ck+1-neighborhood
V of the metric g such that the compactness estimate

‖g′ − g‖Hk+1 ≤ C‖g′ − g‖Hk

holds for every g′ ∈ V satisfying the conditions δgg′ = 0,
Vol(M,g) = Vol(M,g′) and ak+1(M,g) = ak+1(M,g′).

Theorem
A Riemannian manifold of constant negative sectional
curvature is locally audible.
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10. Why our approach does not work in the case of
nonconstant negative curvature?

Given a Riemannian manifold (M,g) and tensor field
f ∈ C∞(S2τ ′M), the first variation of the spectral invariant ak in
the direction f is defined by

ȧk (M,g; f ) = dak (M,g + tf )/dt |t=0.

If the metric g has constant sectional curvature then
ȧk (M,g; f ) = 0 for every f satisfying
2ȧ0(M,g; f ) =

∫
M tr f dV = 0. This is a crucial fact for our

approach. Indeed, in this case the difference

ak (M,g + f )− ak (M,g)

can be represented as a power series in f which does not
contain linear terms. Leading terms of the series are quadratic
in f that allows us to derive the compactness estimate. The
presence of linear in f terms stands as a stumbling block for our
approach.
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We see only one opportunity to fight with linear terms of the
series: the use of a linear combination of several invariants.
Indeed, if a linear combination

a(M,g) = c0a0(M,g) + · · ·+ ckak (M,g) (ck 6= 0)

with appropriately chosen constant coefficients turned out to
have the zero first variation then we would be able to use the
difference a(M,g + f )− a(M,g). Unfortunately, a general
metric g seems to have no linear combination satisfying
ȧ(M,g; f ) = 0 for every f . But if the curvature tensor of the
metric g satisfies some natural differential equation then such
linear combinations probably may be found. In such a way, an
opportunity arises for proving the local audibility of metrics
belonging to some natural classes that are wider than the class
of hyperbolic metrics.
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The simplest of such equations is ∇R = 0 (locally symmetric
metrics). In this case

ȧk (M,g; f ) =
∫

M

Lk (f )dV ,

where Lk (k = 0,1, . . . ) are linear functionals on C∞(S2τ ′M)
with "constant" coefficients. These functionals live in a
finite-dimensional space and they cannot be linearly
independent.

Theorem
A locally symmetric Riemannian manifold of negative sectional
curvature is locally audible.
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