Concentration, Laplacian, and Ricci curvature

Takashi Shioya

Mathematical Institute, Tohoku University

Joint with Kei Funano (RIMS, Kyoto Univ.)

Concentration topology

An mm-space is a complete separable metric space (X, d_X) with a Borel probability measure μ_X .

Gromov's concentration topology

For two mm-spaces X and Y, $d_{conc}(X, Y) :=$ "difference between 1-Lip functions on X and those on Y" $\{X_n\}_{n=1}^{\infty}$ concentrates to X, $X_n \xrightarrow{conc} X$ $\stackrel{def}{\longleftrightarrow} d_{conc}(X_n, X) \to 0$ as $n \to \infty$

• $X_n \xrightarrow{conc} (\{p\}, \delta_p) \iff$ For \forall 1-Lip $f_n : X_n \to \mathbb{R}, \exists c_n \in \mathbb{R}$ s.t.

$$\lim_{n\to\infty}\mu_{X_n}(|f_n-c_n|\geq\varepsilon)=0,\quad\forall\varepsilon>0.$$

"Any 1-Lip function on X_n is close to a constant for large n."

Examples

(1) $S^n \xrightarrow{conc} (\{p\}, \delta_p)$ (P. Lévy) (2) $S^n \times M \xrightarrow{conc} M$

- The concentration topology is weaker than the measured Gromov-Hausdorff topology.
- The concentration topology is useful to study manifolds M_n with dim $M_n \rightarrow \infty$.

Examples

(1) $S^n \stackrel{conc}{\rightarrow} (\{p\}, \delta_p)$ (P. Lévy) (2) $S^n \times M \stackrel{conc}{\rightarrow} M$

- The concentration topology is weaker than the measured Gromov-Hausdorff topology.
- The concentration topology is useful to study manifolds M_n with dim $M_n \rightarrow \infty$.

Main Thm A

Let *X* and *X_n*, *n* = 1, 2, ..., be mm-spaces s.t. *X* is proper. If *X_n* satisfies $CD(K, \infty)$ and if $X_n \xrightarrow{conc} X$, then *X* satisfies $CD(K, \infty)$.

 $CD(K, \infty)$ is a generalization of $Ric \ge K$ and is defined by Lott-Villani-Sturm using optimal mass-transport.

Idea of Proof of Main Thm A

A key point is to establish the correspondence between the L^2 Wasserstein space on X_n and that on X. There are almost 1-Lip maps $f_n : X_n \to X$, n = 1, 2, ...A difficult point is that the fibers may be large. Take two points $x_0, x_1 \in X$ and small $\varepsilon > 0$.

$$\nu_0 := \frac{\mu_{X_n}|_{f_n^{-1}(B_{\varepsilon}(x_0))}}{\mu_{X_n}(f_n^{-1}(B_{\varepsilon}(x_0)))} \quad \text{and} \quad \nu_1 := \frac{\mu_{X_n}|_{f_n^{-1}(B_{\varepsilon}(x_1))}}{\mu_{X_n}(f_n^{-1}(B_{\varepsilon}(x_1)))},$$

To get the correspondence, it suffices to prove

$$W_2(\nu_0,\nu_1) \doteqdot d_X(x_0,x_1).$$

 $W_2(v_0, v_1) \ge d_X(x_0, x_1) - \delta$ is easy. To get the opposite estimate, we use the Kantorovich-Rubinstein duality:

$$W_1(v_0, v_1) = \sup \left\{ \int_{X_n} \varphi \, dv_0 - \int_{X_n} \varphi \, dv_1 \mid \varphi : X_n \to \mathbb{R} \quad 1 - \mathrm{Lip} \right\}.$$

Eigenvalues of Laplacian and concentration

Let *M* and M_n , n = 1, 2, ... be connected and closed Riemannian manifolds.

Known Results.

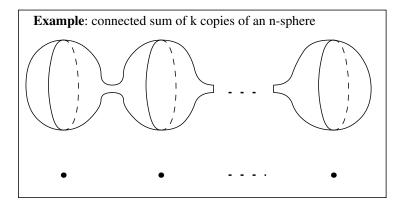
Under $\operatorname{Ric}_{M_n} \geq 0$, we have

$$M_n \stackrel{conc}{\to} \{p\} \Longleftrightarrow \lambda_1(M_n) \to +\infty.$$

What happens if $\lambda_k(M_n) \rightarrow +\infty$ for a number k.

Thm (not precise)

If $\lambda_k(M_n) \to +\infty$ as $n \to \infty$ for a number k, then $M_{n_i} \xrightarrow{conc} \exists X$ with $\#X \le k$. \exists_{subseq} .



Thm together with Main Thm A implies

Cor

If
$$\operatorname{Ric}_{M_n} \geq 0$$
 and if $\lambda_k(M_n) \to +\infty$ for $\exists k$, then $M_n \stackrel{conc}{\to} \{p\}$.

- Even the connectivity of *X* is highly nontrivial!
- Using the corollary we prove

Main Thm B

For $\forall k, \exists C_k > 0$ s.t. if *M* is a closed Riem mfd with $\operatorname{Ric}_M \geq 0$, then

 $\lambda_k(M) \leq C_k \lambda_1(M).$

• C_k is independent of the dimension of M.

Proof of Main Thm B

Main Thm B: $\operatorname{Ric}_M \ge 0 \implies \lambda_k(M) \le C_k \lambda_1(M)$ Suppose Main Thm B is false.

Then, $\exists k, \exists \{M_n\}$ s.t. $\operatorname{Ric}_{M_n} \ge 0 \& \frac{\lambda_k(M_n)}{\lambda_1(M_n)} \to +\infty \text{ as } n \to \infty$. Let M_n' be the scale-change of M_n as $\lambda_1(M_n') = 1$. Since

$$\lambda_k(M_n') = \frac{\lambda_k(M_n')}{\lambda_1(M_n')} = \frac{\lambda_k(M_n)}{\lambda_1(M_n)} \to +\infty,$$

Cor implies that $M'_n \xrightarrow{conc} \{p\}$. By E. Milman's thm, this is a contradiction to $\lambda_1(M'_n) = 1$.

- Cor: $\operatorname{Ric}_{M_n} \geq 0, \lambda_k(M_n) \to +\infty \implies M_n \stackrel{conc}{\to} \{p\}.$
- E. Milman: $M_n \xrightarrow{conc} \{p\}, \operatorname{Ric}_{M_n} \ge 0 \implies \lambda_1(M_n) \to +\infty.$

Thm

Let X_n be finite-dimensional Alexandrov spaces of nonnegative curvature with normalized Hausdorff measure. If $X_n \xrightarrow{conc} X$ for an mm-space X, then X is an Alexandrov space of nonnegative curvature.

- X maybe infinite-dimensional.
- If curv of $X_n \ge -1$, then X is not necessarily a length space.

Thm

Let X_n be finite-dimensional Alexandrov spaces of nonnegative curvature with normalized Hausdorff measure. If $X_n \xrightarrow{conc} X$ for an mm-space X, then X is an Alexandrov space of nonnegative curvature.

- X maybe infinite-dimensional.
- If curv of $X_n \ge -1$, then X is not necessarily a length space.

Thank you very much!

L² Wasserstein distance

 $\begin{array}{l} X: \text{ a complete separable metric space.} \\ P(X): \text{ the set of Borel probability measures on } X. \\ P_0(X):= \{ \ \nu \in P(X) \mid \nu \text{ has compact support } \} \\ \nu_0, \nu_1 \in P(X) \\ \pi: \text{ a transport plan between } \nu_0 \text{ and } \nu_1 \\ \overset{def}{} \end{array}$

 $\stackrel{def}{\Leftrightarrow} \pi \text{ is a Borel measure on } X \times X \text{ s.t.}$

 $\pi(A \times X) = \nu_0(A)$ and $\pi(X \times A) = \nu_1(A)$

for any Borel subset $A \subset X$.

• $\pi(A \times B)$ means the quantity of the transport from A to B.

The *L*²-Wasserstein distance between
$$v_0$$
 and v_1
$$W_2(v_0, v_1) := \left(\inf_{\pi} \int_{X \times X} d_X(x, x')^2 \ d\pi(x, x')\right)^{\frac{1}{2}}.$$

 (X, d_X, μ_X) : a metric measure space, $v \in P(X)$.

The relative entropy of v w.r.t. μ_X

$$\operatorname{Ent}(\nu) := \operatorname{Ent}(\nu|\mu_X) := \int_{\{\rho>0\}} \rho \log \rho \ d\mu_X$$

if $v = \rho \mu_X$. Ent(v) := + ∞ if v is not absolutely continuous w.r.t. μ_X .

Condition $CD(K, \infty)$ for (X, d_X, μ_X)

For ${}^{\forall}v_0, v_1 \in P_0(X), \, {}^{\forall}\varepsilon > 0, \, {}^{\forall}t \in (0, 1), \, {}^{\exists}v_t \in P(X) \text{ s.t.}$

$$W_2(v_t, v_i) \le t^{1-i}(1-t)^i W_2(v_0, v_1) + \varepsilon \quad \text{for } i = 0, 1,$$

Ent $(v_t) \le (1-t) \operatorname{Ent}(v_0) + t \operatorname{Ent}(v_1) - \frac{K}{2}t(1-t)W_2(v_0, v_1)^2 + \varepsilon.$

For a complete Riem mfd, $CD(K, \infty) \iff Ric \ge K$.