Concentration, Laplacian, and Ricci curvature

Takashi Shioya

Mathematical Institute, Tohoku University

Joint with Kei Funano (RIMS, Kyoto Univ.)

Concentration topology

An mm-space is a complete separable metric space (X, d_X) with a Borel probability measure μ_X .

Gromov's concentration topology

For two mm-spaces X and Y,

 $d_{conc}(X, Y) :=$ "difference between

1-Lip functions on *X* and those on *Y*"

$$\{X_n\}_{n=1}^{\infty}$$
 concentrates to $X, X_n \stackrel{conc}{\to} X$

 $\stackrel{def}{\Longleftrightarrow} d_{conc}(X_n, X) \to 0 \text{ as } n \to \infty$

• $X_n \stackrel{conc}{\to} (\{p\}, \delta_p) \iff \text{For } \forall \text{ 1-Lip } f_n : X_n \to \mathbb{R}, \exists c_n \in \mathbb{R} \text{ s.t.}$

$$\lim_{n\to\infty}\mu_{X_n}(|f_n-c_n|\geq\varepsilon)=0,\quad\forall\varepsilon>0.$$

"Any 1-Lip function on X_n is close to a constant for large n."

Examples

(1)
$$S^n \stackrel{conc}{\rightarrow} (\{p\}, \delta_p)$$
 (P. Lévy) (2) $S^n \times M \stackrel{conc}{\rightarrow} M$

- The concentration topology is weaker than the measured Gromov-Hausdorff topology.
- The concentration topology is useful to study manifolds M_n with $\dim M_n \to \infty$.

Examples

(1)
$$S^n \stackrel{conc}{\rightarrow} (\{p\}, \delta_p)$$
 (P. Lévy) (2) $S^n \times M \stackrel{conc}{\rightarrow} M$

- The concentration topology is weaker than the measured Gromov-Hausdorff topology.
- The concentration topology is useful to study manifolds M_n with $\dim M_n \to \infty$.

Main Thm A

Let X and X_n , n = 1, 2, ..., be mm-spaces s.t. X is proper.

If X_n satisfies $CD(K, \infty)$ and if $X_n \overset{conc}{\to} X$, then X satisfies $CD(K, \infty)$.

 $CD(K, \infty)$ is a generalization of $Ric \ge K$ and is defined by Lott-Villani-Sturm using optimal mass-transport.

Idea of Proof of Main Thm A

A key point is to establish the correspondence between the L^2 Wasserstein space on X_n and that on X.

There are almost 1-Lip maps $f_n: X_n \to X$, $n = 1, 2, \ldots$

A difficult point is that the fibers may be large.

Take two points $x_0, x_1 \in X$ and small $\varepsilon > 0$.

$$\nu_0 := \frac{\mu_{X_n}|_{f_n^{-1}(B_{\varepsilon}(x_0))}}{\mu_{X_n}(f_n^{-1}(B_{\varepsilon}(x_0)))} \quad \text{and} \quad \nu_1 := \frac{\mu_{X_n}|_{f_n^{-1}(B_{\varepsilon}(x_1))}}{\mu_{X_n}(f_n^{-1}(B_{\varepsilon}(x_1)))},$$

To get the correspondence, it suffices to prove

$$W_2(\nu_0,\nu_1) \doteqdot d_X(x_0,x_1).$$

 $W_2(\nu_0,\nu_1) \ge d_X(x_0,x_1) - \delta$ is easy. To get the opposite estimate, we use the Kantorovich-Rubinstein duality:

$$W_1(\nu_0,\nu_1) = \sup \left\{ \int_{X_n} \varphi \, d\nu_0 - \int_{X_n} \varphi \, d\nu_1 \mid \varphi : X_n \to \mathbb{R} \quad 1 - \text{Lip} \right\}.$$

Eigenvalues of Laplacian and concentration

Let M and M_n , n = 1, 2, ... be connected and closed Riemannian manifolds.

Known Results.

- If $\lambda_1(M_n) \to +\infty$, then $M_n \stackrel{conc}{\to} \{p\}$ (Gromov-V. Milman).
- If $M_n \stackrel{conc}{\to} \{p\}$ and if $\mathrm{Ric}_{M_n} \ge 0$, then $\lambda_1(M_n) \to +\infty$ (E. Milman).

Under $\operatorname{Ric}_{M_n} \geq 0$, we have

$$M_n \stackrel{conc}{\to} \{p\} \iff \lambda_1(M_n) \to +\infty.$$

What happens if $\lambda_k(M_n) \to +\infty$ for a number k.

Thm (not precise)

If $\lambda_k(M_n) \to +\infty$ as $n \to \infty$ for a number k, then $M_{n_i} \stackrel{conc}{\to} {}^{\exists}X$ with $\#X \le k$.

Thm together with Main Thm A implies

Cor

If $\operatorname{Ric}_{M_n} \geq 0$ and if $\lambda_k(M_n) \to +\infty$ for $\exists k$, then $M_n \stackrel{conc}{\to} \{p\}$.

• Even the connectivity of X is highly nontrivial!

Using the corollary we prove

Main Thm B

For ${}^{\forall}k$, ${}^{\exists}C_k > 0$ s.t. if M is a closed Riem mfd with $\mathrm{Ric}_M \geq 0$, then

$$\lambda_k(M) \leq C_k \lambda_1(M)$$
.

• C_k is independent of the dimension of M.

Proof of Main Thm B

Main Thm B: $\operatorname{Ric}_M \geq 0 \implies \lambda_k(M) \leq C_k \lambda_1(M)$

Suppose Main Thm B is false.

Then,
$$\exists k, \exists \{M_n\}$$
 s.t. $\operatorname{Ric}_{M_n} \geq 0 \, \& \, \frac{\lambda_k(M_n)}{\lambda_1(M_n)} \to +\infty \text{ as } n \to \infty.$

Let M_n' be the scale-change of M_n as $\lambda_1(M_n') = 1$. Since

$$\lambda_k(M_n') = \frac{\lambda_k(M_n')}{\lambda_1(M_n')} = \frac{\lambda_k(M_n)}{\lambda_1(M_n)} \to +\infty,$$

Cor implies that $M'_n \stackrel{conc}{\to} \{p\}$. By E. Milman's thm, this is a contradiction to $\lambda_1(M_n') = 1$.

- Cor: $\operatorname{Ric}_{M_n} \geq 0$, $\lambda_k(M_n) \to +\infty \implies M_n \stackrel{conc}{\to} \{p\}$.
- E. Milman: $M_n \overset{conc}{\to} \{p\}$, $\mathrm{Ric}_{M_n} \ge 0 \implies \lambda_1(M_n) \to +\infty$.

Concentration of Alexandrov spaces

Thm

Let X_n be finite-dimensional Alexandrov spaces of nonnegative curvature with normalized Hausdorff measure.

If $X_n \stackrel{conc}{\to} X$ for an mm-space X,

then X is an Alexandrov space of nonnegative curvature.

- X maybe infinite-dimensional.
- If curv of $X_n \ge -1$, then X is not necessarily a length space.

Concentration of Alexandrov spaces

Thm

Let X_n be finite-dimensional Alexandrov spaces of nonnegative curvature with normalized Hausdorff measure.

If $X_n \stackrel{conc}{\to} X$ for an mm-space X,

then X is an Alexandrov space of nonnegative curvature.

- X maybe infinite-dimensional.
- If curv of $X_n \ge -1$, then X is not necessarily a length space.

Thank you very much!

L^2 Wasserstein distance

X : a complete separable metric space.

P(X): the set of Borel probability measures on X.

$$P_0(X) := \{ v \in P(X) \mid v \text{ has compact support } \}$$

 $v_0, v_1 \in P(X)$

 π : a transport plan between u_0 and u_1

 $\stackrel{def}{\Leftrightarrow} \pi$ is a Borel measure on $X \times X$ s.t.

$$\pi(A \times X) = \nu_0(A)$$
 and $\pi(X \times A) = \nu_1(A)$

for any Borel subset $A \subset X$.

• $\pi(A \times B)$ means the quantity of the transport from A to B.

The L^2 -Wasserstein distance between v_0 and v_1

$$W_2(\nu_0,\nu_1) := \left(\inf_{\pi} \int_{X \times X} d_X(x,x')^2 \ d\pi(x,x')\right)^{\frac{1}{2}}.$$

 (X, d_X, μ_X) : a metric measure space, $\nu \in P(X)$.

The relative entropy of ν w.r.t. μ_X

$$\operatorname{Ent}(\nu) := \operatorname{Ent}(\nu | \mu_X) := \int_{\{\rho > 0\}} \rho \log \rho \ d\mu_X$$

if $\nu = \rho \mu_X$.

 $\operatorname{Ent}(\nu) := +\infty$ if ν is not absolutely continuous w.r.t. μ_X .

Condition $CD(K, \infty)$ for (X, d_X, μ_X)

For ${}^\forall v_0, v_1 \in P_0(X), \, {}^\forall \varepsilon > 0, \, {}^\forall t \in (\,0,1\,), \, {}^\exists v_t \in P(X) \text{ s.t.}$

$$W_2(\nu_t, \nu_i) \le t^{1-i}(1-t)^i W_2(\nu_0, \nu_1) + \varepsilon$$
 for $i = 0, 1$,

$$\operatorname{Ent}(\nu_t) \le (1-t)\operatorname{Ent}(\nu_0) + t\operatorname{Ent}(\nu_1) - \frac{K}{2}t(1-t)W_2(\nu_0,\nu_1)^2 + \varepsilon.$$

For a complete Riem mfd, $CD(K, \infty) \iff Ric \geq K$.