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A.D.Alexandrov: Back to Euclid!
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Back to right-angled building blocks!
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Construction and classification of hyperbolic 3-manifolds

How to construct closed orientable connected hyperbolic
3-manifolds?

Which properties can be obtained from a construction?
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Weber – Seifert hyperbolic manifold, 1933

The Weber – Seifert hyperbolic
dodecahedral space was constructed
from the 2π/5-dodecahedron in 1933.
This manifolds is the 5-fold cyclic
covering of S3 branched over the
Whitehead link.

The Weber – Seifert spherical dodecahedral space is a Poincare
homology sphere.

A construction of 3-manifolds from fundamental polyhedra is based
of the Poincare polyhedral theorem.
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2π/5-dodecahedron

Consider 2π/5-dodecahedron in a hyperbolic space H3.

To apply Poincare polyhedral theorem one needs to find such a
pairing of faces that edges split in classes with the sum of dihedral
angles 2π in each class.
30 edges with 2π/5 will split (if so) in 6 classes.
In 1933 Weber and Seifert were lucky to find a suitable pairing.
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3-Manifolds form Platonic solids

[Richardson – Rubinstein, 1984], the final list in [Everitt, 2006]

Spherical: ME
1 from 2π/3-tetrahedron;

ME
2 ,M

E
3 from 2π/3-cube;

ME
4 ,M

E
5 ,M

E
6 from 2π/3-octahedron;

ME
7 ,M

E
8 from 2π/3-dodecahedron;

Euclidean: ME
9 , . . . ,M

E
14 from π/2-cube;

Hyperbolic: ME
15, . . . ,M

E
22 from 2π/5-dodecahedron;

ME
23, . . . ,M

E
28 from 2π/3-icosahedron.

[Cavicchioli - Spaggiari – Telloni, 2009, 2010],
[Kozlovskaya - V., 2011], [Cristofori - Kozlovskaya - V., 2012]:
Covering properties of these manifolds and of their generalizations.
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Right-angled dodecahedron

Consider π/2-dodecahedron in a hyperbolic space H3.

There are 30 edges with dihedral angles π/2, so they can not be
split in cycles with sum 2π.

It is impossible to construct hyperbolic 3-manifolds from one
π/2-dodecahedron!
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Right-angled building blocks

In Euclidean geometry right-angled polyhedra are very useful
building blocks (bricks).

Can we use right-angled polyhedra as building blocks in hyperbolic
geometry?
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Existence of right-angled polyhedra in Hn

Compact right-angled polyhedra in Hn.

For a polyhedron P let ak(P) be the number of its k-dimensional
faces and

a`k =
1

ak

∑
dimF=k

a`(F )

be the average number of `-dimensional faces in a k-dimensional
polyhedron.
[Nikulin, 1981]

a`k < Cn−k
n−`

C `
[ n2 ]

+ C `
[ n+1

2 ]

C k
[ n2 ]

+ C k
[ n+1

2 ]

for ` < k 6
[
n
2

]
.
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Existence of right-angled and Coxeter polyhedra in Hn

In particular, for a12, the average number of sides in a
2-dimensional face, we get:

a12 <


4(n − 1)
n − 2 if n even
4n

n − 1 if n odd

But a12 > 5.

Corollary from the Nikulin inequality: There exist no compact
right-angled polyhedra in Hn for n > 4.

[Vinberg, 1985] There exist no compact Coxeter polyhedra in Hn

for n > 29.
Examples are know up to n = 8 only.

A. Vesnin (IM SO RAN) Right-angled hyperbolic polyhedra



Existence of right-angled and Coxeter polyhedra in Hn

In particular, for a12, the average number of sides in a
2-dimensional face, we get:

a12 <


4(n − 1)
n − 2 if n even
4n

n − 1 if n odd

But a12 > 5.

Corollary from the Nikulin inequality: There exist no compact
right-angled polyhedra in Hn for n > 4.

[Vinberg, 1985] There exist no compact Coxeter polyhedra in Hn

for n > 29.
Examples are know up to n = 8 only.

A. Vesnin (IM SO RAN) Right-angled hyperbolic polyhedra



Existence of finite-volume right-angled polyhedra

Finite-volume right-angled polyhedra in Hn.

[Dufour, 2010] There exist no finite volume right-angled polyhedra
in Hn for n > 12.
Examples are know up to n = 8 only.

[Prokhorov, 1986] There exist no finite volume Coxeter polyhedra
in Hn for n > 995.
Examples are known up to n = 21 only.
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Right-angled polyhedra in H3

[Andreev, 1970] Bounded acute-angled polyhedron in H3 is
uniquely determined by its combinatorial type and dihedral angles.

[Pogorelov, 1967] A polyhedron can be realized in H3 as a
bounded right-angled polyhedron if and only if
(1) any vertex is incident to 3 edges;
(2) any face has at least 5 sides;
(3) any simple closed circuit on the surface of the polyhedron
which separate some two faces of it (prismatic circuit), intersects
at least 5 edges.
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Right-angled polyhedra in H3

A polyhedron which satisfies (1) and (2), but not (3):

there is a closed circuit which separates two 6-gonal faces, but
intersects 4 edges only.
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An infinite family of right-angled hyperbolic polyhedra

For integer n > 5 consider right-angled (2n + 2)-hedra Rn.
R5 and R6 look as:
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Rn are called Löbelll polyhedra.
[Frank Richard Löbell, 1931] The first example of closed orientable
hyperbolic 3-manifold – constructed from 8 copies of R6.
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Two types of moves

Let R be the set of all compact right-angled polyhedra.

[Inoue, 2008] Two types of moves on R.

Definition of Composition / Decomposition:

Let R1,R2 ∈ R; F1 ⊂ R1 and F2 ⊂ R2 be a pair of k-gonal faces.
Then a composition is R = R1 ∪F1=F2 R2.
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Two types of moves

Edge surgery: combinatorial transformation from R to R − e

n2

n1

n3 n4e

polyhedron R

n2 − 1

n1 − 1

n3 + n4 − 4

polyhedron R − e

If R ∈ R and e is such that faces F1 and F2 have at least 6 sides
each and e is not a part of prismatic 5-circuit, then R − e ∈ R.
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Two types of moves

Theorem [Inoue, 2008].

For any P0 ∈ R there exists a sequence of unions of right-angled
hyperbolic polyhedra P1, . . . ,Pk such that each set Pi is obtained
from Pi−1 by decomposition or edge surgery, and Pk consists of
Löbell polyhedra. Moreover,

vol(P0) > vol(P1) > vol(P2) > . . . > vol(Pk).
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Lobachevsky function

Volumes of hyperbolic 3-polyhedra can by calculated in terms of
the Lobachevsky function

Λ(x) = −
x∫

0

log |2 sin(t)|dt.

0

π

0.5

−0.5

– periodic: Λ(x + π) = Λ(x);
– odd: Λ(−x) = −Λ(x);
– maximum Λmax = Λ(π/6) = 0.507 . . . .
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Lobachevsky function

[Defining identity] For any positive m ∈ Z Lobachevsky function
satisfies the following relation:

Λ(mθ) = m
m−1∑
k=0

Λ

(
θ +

kπ

m

)
.

Geometric meaning of the Lobachevsky function:

α π
2 − απ

2

π
2 α

π
2

∞

∞

Volume of this tetrahedra is equal to 1
2Λ(α).
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Doubly-rectengular tetrahedra

A tetrahedron ABCD is said to be doubly-rectangular if AB is
orthogonal to BCD and CD is orthogonal to ABC .

A

B D

C

α β

γ

Denote it by R(α, β, γ).

A. Vesnin (IM SO RAN) Right-angled hyperbolic polyhedra



Schläfli variation formula

Schläfli variation formula.
Let Pt be a smooth family of compact polyhedra in a complete
connected n-dimensional space of constant curvature k . Then

(n − 1) · k · dvol(Pt) =
∑
F

voln−2(F ) dθ(F ),

where the sum is taken over all faces of co-dimension two.
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The volume formula for doubly-rectangular tetrahedra

Theorem [Kellerhals, Vinberg]

Let R = R(α, β, γ) be doubly-rectangular tetrahedron in H3. Then

vol(R) = 1
4

(
Λ(α + δ)− Λ(α− δ) + Λ

(
π
2 + β − δ

)
+ Λ

(
π
2 − β − δ

)
+ Λ(γ + δ) − Λ(γ − δ) + 2Λ

(
π
2 − δ

))
,

where

0 ≤ δ = arctan

√
cos 2β − sin 2α sin 2γ

cosα cos γ
<
π

2
.
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The volume formula for Löbell polyhedra

Theorem [V., 1998]

For any n > 5 the following formula holds for volumes of Löbell
polyhedra

vol(Rn) =
n

2

(
2Λ(θn) + Λ

(
θn +

π

n

)
+ Λ

(
θn −

π

n

)
+ Λ

(π
2
− 2θn

))
,

where

θn =
π

2
− arccos

(
1

2 cos(π/n)

)
.
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The initial list of right-angled polyhedra

Theorem [Inoue, 2008]

The dodecahedron R5 and the Löbell polyhedron R6 are first and
second smallest volume compact right-angled hyperbolic polyhedra.

Theorem [Shmel’kov – V., 2011]

The initial list of small compact right-angled hyperbolic polyhedra:

1 4.3062 . . . R5 7 8.6124 . . . R5 ∪ R5

2 6.2030 . . . R6 8 8.6765 . . . R633
3 6.9670 . . . R61 9 8.8608 . . . R631
4 7.5632 . . . R7 10 8.9456 . . . R632
5 7.8699 . . . R621 11 9.0190 . . . R8

6 8.0002 . . . R622
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Applying edge surgeries.

The polyhedron R6 and possible faces to apply surgeries:

6

6

The polyhedron R61 (obtained from R6 by a surgery) and possible
faces to apply surgeries:

6

6 6
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Applying edge surgeries.

Polyhedra R621 and R622 obtained from R61 by edge surgeries.

6

6

6

6 6

6
6

6

There are few possibilities to apply edge surgeries to them.
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Applying edge surgeries.

Polyhedra R631, R632 and R633 (= R71)

6

6

6

6

6 6

6

6
6

6

7

6
6

6
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How to compute volumes?

volRn are given by the explicit formula.

In other cases numerical calculations were done by the computer
program developed by K. Shmel’kov.

In symmetric cases results coincide with calculations by the
computer program Orb developed by C. Hodgson.
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The set of volumes of right-angled polyhedra.

Löbell polyhedra:

R5

4.30

R6

6.20

R7

7.56

R8

9.01
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Composition of R5 with R5:

R5

4.30

R6

6.20

R7

7.56

R8

9.01

R5 ∪ R5

8.60
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Edge surgery on R6:

R5

4.30

R6

6.20

R7

7.56

R8

9.01

R5 ∪ R5

8.60

R61

6.96
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Edge surgeries on R61:

R5

4.30

R6

6.20

R7

7.56

R8

9.01

R5 ∪ R5

8.60

R61

6.96

R621

7.86

R622

8.00
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Edge surgery on R621 and R622:

R5

4.30

R6

6.20

R7

7.56

R8

9.01

R5 ∪ R5

8.60

R61

6.96

R621

7.86

R622

8.00

R633

8.67

R631

8.86

R632

8.94
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Volume bounds from combinatorics

Theorem [Atkinson, 2009]

Let P be a compact right-angled hyperbolic polyhedron with N
vertices. Then

(N − 2) · v8
32

6 vol(P) < (N − 10) · 5v3
8
,

where v8 is the maximal octahedron volume, and v3 is the maximal
tetrahedron volume.
There exists a sequence of compact right-angled polyhedra Pi with
Ni vertices such that vol(Pi )/Ni tends to 5v3/8 as i →∞.

The following result demonstrates that 5v3/8 is a double-limit
point for the normalized volume function ω(R) = vol(R)/ vert(R).
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Volume bounds from combinatorics

[Repovš – V., 2011] For each integer k > 1 there is a sequence of
compact right-angled hyperbolic polyhedra Rkn such that

lim
n→∞

vol(Rkn)

vert(Rkn)
=

k

k + 1
· 5v3

8
.

5v3
16

5v3
12

15v3
32

t
5v3
8

Polyhedra Rkn are constructed from Löbell polyhedra Rn.
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Volume bounds from combinatorics

[Repovš – V., 2011] Let P be a compact right-angled hyperbolic
polyhedron, with V vertices and F faces. If P is not a
dodecahedron, then

vol(P) > max{(V − 2) · v8
32
, 6.203 . . .}

and
vol(P) > max{(F − 3) · v8

16
, 6.203 . . .}.

This improves Atkinson’s bound for V 6 56 and F 6 30.
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Right-angled polyhedra and Coxeter groups

Let R be a bounded right-angled polyhedron in H3.
(The simplest example is the right-angled dodecahedron.)

Let G be the group generated by reflections in faces of R.

In the group Z2 ⊕ Z2 ⊕ Z2 we fix three generators α = (1, 0, 0),
β = (0, 1, 0), γ = (0, 0, 1) and the sum δ = α + β + γ = (1, 1, 1).

Elements α, β, γ, δ will be referred as four colors.
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Construction of manifolds from colorings

Let us color faces of R in colors α, β, γ, δ in such a way that any
two adjacent faces are getting different colors.
Such a coloring σ defines an epimorphism

ϕσ : G → Z2 ⊕ Z2 ⊕ Z2.

Denote Gσ = Ker(ϕσ).

[V., 1987]:

For any bounded right-angled polyhedron R and any 4-coloring σ
of its faces the quotient space H3/Gσ is a closed orientable
hyperbolic 3-manifold glued from 8 copies of R.

Remark. This is a constructive way to find a torsion-free subgroup
of a right-angled Coxeter group.
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Almost right-angled polyhedra

Almost right-angled polyhedra Ln(α).

α
α

α

α
α

Here dihedral angle α is not necessary π/2.
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Volume formula

[Buser – Mednykh – V., 2012]

The volume of the hyperbolic polyhedron Ln(α), n > 5, where
0 < α < π, is given by the following formula:

volLn(α) =
n

2

∫ π

α
arccosh [− cosµ cos(2π/n)+

+2 cos(π/n)

√
cos2 µ cos2(π/n) + sin2 µ

]
dµ.
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Why volumes?
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Using volumes to study hyperbolic 3-manifolds:

(1) To distinguish manifolds:

By Mostow rigidity theorem volume of a closed hyperbolic
3-manifold is its topological invariant.

Number of manifolds of given volume is finite, but it can be
arbitrary large.
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Using volumes to study hyperbolic 3-manifolds:

(2) To estimate complexity of manifolds:

Let c(M) be complexity (Matveev complexity) of a hyperbolic
3-manifold M, vol(M) be its volume, and v3 be volume of the

maximal hyperbolic tetrahedra; then
vol(M)

v3
6 c(M).
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Using volumes to study hyperbolic 3-manifolds:

(3) To describe finite index extensions of groups:

Let G be fundamental group of a hyperbolic 3-manifold, and G ∗

be its discrete extension such that [G ∗ : G ] = n.
Then vol(H3/G ∗) = 1

n · vol(H
3/G ).

But volumes of hyperbolic 3-orbifolds are bounded below.

Therefore, discrete extensions can be controlled by volumes.
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Using volumes to study hyperbolic 3-manifolds:

(4) To describe isometries manifolds:

[Reni – V., 2001] Let n > 5, K be hyperbolic 2-bridge knot, and
Mn(K ) be (hyperbolic) n-fold cyclic covering of S3 branched over
K . Denote by voln volume of the smallest orientable hyperbolic
3-orbifold with torsion of order n. If

n >

√
vol (S3 \ K )

4voln
+ 1

then Mn(K ) doesn’t have hidden symmetries.
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Open Problems

Problems:

1. [Gromov, 1981:] Does there exists a pair of hyperbolic
3-manifold such that the ratio of their volumes is irrational?

2. Does there exists a pair of compact right-angled hyperbolic
polyhedra such that the ratio of their volumes is irrational?
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