METRIC GEOMETRY OF CARNOT-CARATHÉODORY SPACES WITH C¹-SMOOTH VECTOR FIELDS

Sergey Vodopyanov

Sobolev Institute of Mathematics, Novosibirsk. The Fourth Geometry Meeting dedicated to the centenary of A.D.Alexandrov August, 20 – 24, 2012

REFERENCES

1. S. K. Vodopyanov and V. M. Chernikov, "Sobolev Spaces and Hypoelliptic Equations" I. *Siberian Advances in Mathemat*-*ics.* 1996. T. 6, № 3. P. 27–67; II. 1996. T. 6, № 4. P. 64–96.

2. S. K. Vodopyanov and M. B. Karmanova, "Local approximation theorem on Carnot manifolds under minimal smoothness", *Dokl. AN*, 427, No. 6, 731–736 (2009).

3. M. Karmanova and S. Vodopyanov, "Geometry of Carnot– Carathéodory spaces, differentiability and coarea formula", *Analysis and Mathematical Physics*, Birkhäuser, 284–387 (2009).

4. S. G. Basalaev and S. K. Vodopyanov, "Approximate differentiability of mappings of Carnot–Carathéodory spaces", *Eurasian Math. J.*, 3 (2012): arXiv:1206.5197.

5. A. V. Greshnov, "A proof of Gromov Theorem on homogeneous nilpotent approximation for C^1 -smooth vector fields", *Mathematicheskie Trudy*, 15, No. 2 (2012).

Classical definition of Carnot-Carathéodory space.

 $\mathbb M$ is connected smooth manifold, $\dim \mathbb M = N$

 $T\mathbb{M}$ is a tangent bundle;

"horizontal" subbundle is

 $H\mathbb{M} = \operatorname{span}\{X_1, \ldots, X_n\} \subseteq T\mathbb{M} \ (n < N, X_i \in C^{\infty})$

There is a filtration $H\mathbb{M} = H_1 \subsetneq H_2 \subsetneq \ldots \subsetneq H_M = T\mathbb{M}$ such that span $\{H_1, [H_1, H_i]\} = H_{i+1}, \quad \dim H_i = \text{const}.$

 \implies ($\mathbb{M}, H\mathbb{M}, \langle \cdot, \cdot \rangle_{H\mathbb{M}}$) defines a subriemannian geometry

M is a depth of the subriemannian space $\mathbb M$

Classical definition of Carnot-Carathéodory space.

 \mathbbm{M} is connected smooth manifold, $\dim \mathbbm{M} = N$

 $T\mathbb{M}$ is a tangent bundle;

"horizontal" subbundle is

 $H\mathbb{M} = \operatorname{span}\{X_1, \ldots, X_n\} \subseteq T\mathbb{M} \ (n < N, X_i \in C^{\infty})$

There is a filtration $H\mathbb{M} = H_1 \subsetneq H_2 \subsetneq \ldots \subsetneq H_M = T\mathbb{M}$ such that span $\{H_1, [H_1, H_i]\} = H_{i+1}, \quad \dim H_i = \text{const.}$

 \implies ($\mathbb{M}, H\mathbb{M}, \langle \cdot, \cdot \rangle_{H\mathbb{M}}$) defines a subriemannian geometry

M is a depth of the subriemannian space $\mathbb M$

• Субриманова геометрия описывает физические процессы, в которых движение возможно лишь вдоль нескольких выделенных ("допустимых"="горизонтальных") направлений

Examples

1. Heisenberg group \mathbb{H}^n

$$\mathbb{M} = \mathbb{R}^{2n+1} : X_i = \frac{\partial}{\partial x_i} - \frac{x_{n+i}}{2} \frac{\partial}{\partial t}, \ X_{n+i} = \frac{\partial}{\partial x_i} - \frac{x_i}{2} \frac{\partial}{\partial t}, \ X_{2n+1} = \frac{\partial}{\partial t}$$
$$H_1 = \operatorname{span}\{X_1, X_2, \dots, X_{2n}\}, \ H_2 = [H_1, H_1] = \operatorname{span}\{X_{2n+1}\}$$

Examples

1. Heisenberg group \mathbb{H}^n

$$\mathbb{M} = \mathbb{R}^{2n+1} : X_i = \frac{\partial}{\partial x_i} - \frac{x_{n+i}}{2} \frac{\partial}{\partial t}, \ X_{n+i} = \frac{\partial}{\partial x_i} - \frac{x_i}{2} \frac{\partial}{\partial t}, \ X_{2n+1} = \frac{\partial}{\partial t}$$
$$H_1 = \operatorname{span}\{X_1, X_2, \dots, X_{2n}\}, \ H_2 = [H_1, H_1] = \operatorname{span}\{X_{2n+1}\}$$

2. Carnot group is a connected simply connected group Lie G with stratified Lie algebra V:

$$V = V_1 \bigoplus V_2 \bigoplus \ldots \bigoplus V_M; \quad [V_1, V_i] = V_{i+1}, \quad [V_1, V_m] = \{0\}$$

! A Carnot group is a tangent cone to a subriemannian space in a regular point (Mitchell 1985; Gromov, Bellaiche 1996)

Mathematical foundation of thermodynamics

• 1909, Carathéodory in order to prove the existence of entropy derived the following statement:

Let \mathbb{M} be a connected manifold endowed with a corank one distribution. If there exist two points that can not be connected by a horizontal path then the distribution is integrable.

Mathematical foundation of thermodynamics

• 1909, Carathéodory in order to prove the existence of entropy derived the following statement:

Let \mathbb{M} be a connected manifold endowed with a corank one distribution. If there exist two points that can not be connected by a horizontal path then the distribution is integrable.

 $D \subset T\mathbb{M}$ is a corank one distribution if \exists a smooth 1-form θ s. t. $D_x = \{v \in T_x\mathbb{M} : \theta(x)\langle v \rangle = 0\}$. An absolutely continuous path γ is called *horizontal* if $\dot{\gamma}(x) \in D_x$.

• Development

• Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary two points of any connected C-C space M can be joined by a ''horizontal'' curve.

• Development

• Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary two points of any connected C-C space M can be joined by a ''horizontal'' curve.

It follows that (\mathbb{M}, d_c) is a metric space with the subriemannian distance

 $d_c(u,v) = \inf\{L(\gamma) \mid \gamma \text{ is horizontal, } \gamma(0) = u, \gamma(1) = v\}$

not comparable to Riemannian one.

• Hörmander, 1967: Hypoelliptic equations

A problem: when a distribution solution f to the equation

$$(X_1^2 + \ldots + X_{n-1}^2 - X_n)f = \varphi \in C^{\infty}$$

is a smooth function?

Here $X_i \in C^{\infty}$.

• Hörmander, 1967: Hypoelliptic equations

A problem: when a distribution solution f to the equation

$$(X_1^2 + \ldots + X_{n-1}^2 - X_n)f = \varphi \in C^{\infty}$$

is a smooth function?

Here $X_i \in C^{\infty}$.

• Particular case: Kolmogorov's equations

$$\frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial y} - \frac{\partial u}{\partial t} = f$$

• physics (diffusion process), economics (arbitrage theory, some stochastic volatility models of European options), etc.

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, ..., X_n\}$ = span $\{X_I(v) \mid |I| \le M\}$ = $T_v \mathbb{M}$ for all $v \in \mathbb{M}$ where

 $X_{I}(v) = \operatorname{span}\{[X_{i_{1}}, [X_{i_{2}}, \dots, [X_{i_{k-1}}, X_{i_{k}}] \dots](v) : X_{i_{j}} \in H_{1}\}$ for $I = (i_{1}, i_{2}, \dots, i_{k}).$

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, ..., X_n\}$ = span $\{X_I(v) \mid |I| \le M\}$ = $T_v \mathbb{M}$ for all $v \in \mathbb{M}$ where

 $X_{I}(v) = \operatorname{span}\{[X_{i_{1}}, [X_{i_{2}}, \dots, [X_{i_{k-1}}, X_{i_{k}}] \dots](v) : X_{i_{j}} \in H_{1}\}$ for $I = (i_{1}, i_{2}, \dots, i_{k}).$

• M is called the depth of the sub-Riemannian space \mathbb{M} .

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, ..., X_n\}$ = span $\{X_I(v) \mid |I| \le M\}$ = $T_v \mathbb{M}$ for all $v \in \mathbb{M}$ where

 $X_{I}(v) = \operatorname{span}\{[X_{i_{1}}, [X_{i_{2}}, \dots, [X_{i_{k-1}}, X_{i_{k}}] \dots](v) : X_{i_{j}} \in H_{1}\}$ for $I = (i_{1}, i_{2}, \dots, i_{k}).$

• M is called the depth of the sub-Riemannian space \mathbb{M} .

• Stein (1971): The program of studying of geometry of Hörmander vector fields; *description of singularities of fundamental solutions*

Quasilinear equations of subelliptic type

Let a function $\mathcal{A} : \Omega \times \mathbb{R}^n \to \mathbb{R}^n$, $\Omega \subset \mathbb{R}^N$ meet the following conditions:

(A1) the mapping $\Omega \ni x \mapsto \mathcal{A}(x,\xi)$ is measurable for all $\xi \in \mathbb{R}^n$, the mapping $\mathbb{R}^n \ni \xi \mapsto \mathcal{A}(x,\xi)$ is continuous for a. a. $x \in \Omega$;

there are some constants $0 < \alpha \leq \beta < \infty$ such that

```
(A2) \langle \mathcal{A}(x,\xi),\xi\rangle \geq \alpha |\xi|^p;
```

(A3) $|\mathcal{A}(x,\xi)| \leq \beta |\xi|^{p-1};$

$$(\mathcal{A}4) \ \langle \mathcal{A}(x,\xi) - \mathcal{A}(x,\eta), \xi - \eta \rangle > 0;$$

(A5) $\mathcal{A}(x,\lambda\xi) = \lambda |\lambda|^{p-2} \mathcal{A}(x,\xi)$ for all $\lambda \in \mathbb{R} \setminus 0$.

Quasilinear equations of subelliptic type

• $u: \Omega \to \mathbb{R}$ is called an *A*-solution to the equation

$$-\operatorname{div}_h(\mathcal{A}(x, \nabla_0 u)) = 0$$
 in Ω if

$$u \in W_{p,\text{loc}}^1$$
 and
$$\int_{\Omega} \mathcal{A}(x, \nabla_0 u) \nabla_0 \psi \, dx = 0 \quad \text{for all test functions } \psi \in C_0^1(\Omega).$$

Here $\nabla_0 u = (X_1 u, X_2 u, \dots, X_n u)$ where X_1, X_2, \dots, X_n are vector fields meeting Hörmander condition.

Quasilinear equations of subelliptic type

• A function $u : \Omega \to \mathbb{R}$ is called an \mathcal{A} -solution in Ω to the equation

$$-\operatorname{div}_h(\mathcal{A}(x,\nabla_0 u)) = 0$$
 if

$$u \in W^{1}_{p, \text{loc}}(\Omega)$$
 and
$$\int_{\Omega} \mathcal{A}(x, \nabla_{0} u) \nabla_{0} \psi \, dx = 0 \quad \text{for all test functions } \psi \in C^{1}_{0}(\Omega).$$

Here $\nabla_0 u = (X_1 u, X_2 u, \dots, X_n u)$ where X_1, X_2, \dots, X_n are vector fields meeting Hörmander condition.

PROBLEM is to prove regularity properties of the \mathcal{A} -solution to this equation; $|u(x) - u(y)| \leq Md_{cc}^{\lambda}(x, y), \ \lambda \in (0, 1)$. It is known for C^{∞} -vector fields [1996; Chernikov, V.].

 \diamond The linear system of ODE ($x \in \mathbb{M}^N, n < N$)

$$\dot{x} = \sum_{i=1}^{n} a_i(t) X_i(x), \quad X_i \in C^{\infty}.$$

 \diamond The linear system of ODE ($x \in \mathbb{M}^N, n < N$)

$$\dot{x} = \sum_{i=1}^{n} u_i(t) X_i(x), \quad X_i \in C^{\infty}.$$
(1)

• Problem: To find bounded measurable functions $u_i(t)$ such that system (1) has a solution with the initial data x(0) = p, x(1) = q.

 \diamond The linear system of ODE ($x \in \mathbb{M}^N, m < N$)

$$\dot{x} = \sum_{i=1}^{n} u_i(t) X_i(x), \quad X_i \in C^{\infty}.$$

• Problem: To find measurable functions $u_i(t)$ such that system (1) has a solution with the initial data x(0) = p, x(1) = q.

If system (1) has a solution for every $q \in U(p)$ then it is called *locally controllable.*

 \diamond The linear system of ODE ($x \in \mathbb{M}^N, n < N$)

$$\dot{x} = \sum_{i=1}^{n} u_i(t) X_i(x), \quad X_i \in C^{\infty}.$$

• Problem: To find bounded measurable functions $u_i(t)$ such that system (1) has a solution with the initial data x(0) = p, x(1) = q.

If system (1) has a solution for every $q \in U(p)$ then it is called *locally controllable.*

• It is locally controllable if $\text{Lie}\{X_1, X_2, \dots, X_n\} = T\mathbb{M}$, i.e. the "horizontal" distribution $H\mathbb{M} = \{X_1, X_2, \dots, X_n\}$ is bracket-generating.

• 1938–1939 Rashevskiy–Chow theorem;

- 1938–1939 Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball-Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball–Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled *CC*-spaces with respect to a fixed point to a nilpotent tangent cone;

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball–Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled *CC*-spaces with respect to a fixed point to a nilpotent tangent cone;
- 1996 Gromov theorem on convergence of rescaled vector fields to *nilpotentized* vector fields constituting a basis of graded nilpotent group;

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball–Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled CC-spaces with respect to a fixed point to a nilpotent tangent cone;
- 1996 Gromov theorem on convergence of rescaled vector fields to *nilpotentized* vector fields constituting a basis of graded nilpotent group;
- 1996 M. Gromov, A. Bellaïche approximation theorem on local behavior of metrics in the given space and in a local tangent cone.

APPLICATIONS of **SUBRIEMANNIAN GEOMETRY**

- Thermodynamics
- Non-holonomic mechanics
- Geometric Control Theory
- Subelliptic equation
- Geometric measure theory
- Quasiconformal analysis
- Analysis on metric spaces
- Contact geometry
- Complex variable
- Economics
- Transport problem
- Quantum control
- Neurobiology
- Tomography
- Robotecnics

• \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;
- in $T\mathbb{M}$ there exists a filtration by subbundles

 $H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$

Carnot–Carathéodory space (C^1 -smooth vector fields)

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;
- in TM there exists a filtration by subbundles

 $H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$

• $\forall v \in \mathbb{M} \exists U(v)$ and vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i \mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}, \dim H_i \mathbb{M}(v) = \dim H_i;$

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;
- in TM there exists a filtration by subbundles

 $H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$

• $\forall v \in \mathbb{M} \exists U(v)$ with vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i \mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}, \dim H_i \mathbb{M}(v) = \dim H_i;$

•
$$[H_i, H_j] \subset H_{i+j}, \ i, j = 1, \dots, M-1$$

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;
- in TM there exists a filtration by subbundles

 $H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$

• $\forall v \in \mathbb{M} \exists U(v)$ with vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i \mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}, \dim H_i \mathbb{M}(v) = \dim H_i;$

•
$$[H_i, H_j] \subset H_{i+j}, \ i, j = 1, \dots, M-1$$

It is equivalent to $[X_i, X_j](v) = \sum_{k: \deg X_k \le \deg X_i + \deg X_j} c_{ijk}(v) X_k(v)$

where deg $X_k = \min\{m : X_k \in H_m\};$

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N
- in TM there exists a filtration by subbundles

$$H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M}$$

• $\forall v \in \mathbb{M} \exists U(v)$ with vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i \mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}, \dim H_i \mathbb{M}(v) = \dim H_i;$

• $[H_i, H_j] \subset H_{i+j}, i, j = 1, ..., M - 1;$

♦ If $H_{j+1} = \text{span}\{H_j, [H_1, H_j], [H_2, H_{j-1}], \dots, [H_k, H_{j+1-k}]\}$ where $k = \lfloor \frac{j+1}{2} \rfloor$, $j = 1, \dots, M-1$, then M is called the Carnot manifold.

Basic Concepts

Exponential mapping: $u \in \mathbb{M}$, $(v_1, \ldots, v_N) \in \mathbb{R}^N$,

$$\begin{cases} \dot{\gamma}(t) = \sum_{i=1}^{N} v_i X_i(\gamma(t)), \quad t \in [0, 1], \\ \gamma(0) = u. \end{cases}$$

Then $\exp\left(\sum_{i=1}^{N} v_i X_i\right)(u) = \gamma(1)$. For each point u, define $\theta_u : U(0) \to \mathbb{M}$ as $\theta_u(v_1, \dots, v_N) = \exp\left(\sum_{i=1}^{N} v_i X_i\right)(u)$.

Basic Concepts

Exponential mapping: $u \in \mathbb{M}$, $(v_1, \ldots, v_N) \in \mathbb{R}^N$,

$$\begin{cases} \dot{\gamma}(t) = \sum_{i=1}^{N} v_i X_i(\gamma(t)), \quad t \in [0, 1], \\ \gamma(0) = u. \end{cases}$$

Then $\exp\left(\sum_{i=1}^{N} v_i X_i\right)(u) = \gamma(1)$. For each point u, define $\theta_u : U(0) \to \mathbb{M}$ as $\theta_u(v_1, \dots, v_N) = \exp\left(\sum_{i=1}^{N} v_i X_i\right)(u)$.

Dilatations
$$\Delta_{\tau}^{u}$$
: if $u \in \mathbb{M}$ is $v = \exp\left(\sum_{i=1}^{N} v_i X_i\right)(u)$ then

$$\Delta_{\tau}^{u}(v) = \exp\left(\sum_{i=1}^{N} v_{i} \tau^{\deg X_{i}} X_{i}\right)(u)$$

The New Approach to regular CC-spaces: a Local Lie Group at $u \in M$ for C^1 -Smooth Case

$$[X_i, X_j](v) = \sum_{k: \deg X_k \le \deg X_i + \deg X_j} \frac{c_{ijk}(v) X_k(v)}{c_{ijk}(v)}$$

Theorem 1 (2009; Karmanova, V.). Coefficients $\{c_{ijk}(u)\}_{\deg X_k = \deg X_i + \deg X_j} = \{\overline{c}_{ijk}\}$ satisfy Jacobi identity:

 $\sum_{k} \overline{c}_{ijk}(u)\overline{c}_{kml}(u) + \sum_{k} \overline{c}_{mik}(u)\overline{c}_{kjl}(u) + \sum_{k} \overline{c}_{jmk}(u)\overline{c}_{kil}(u) = 0$
for all $i, j, m, l = 1, \dots, N$, and

$$\overline{c}_{ijk} = -\overline{c}_{jik}$$
 for all $i, j, k = 1, \dots, N$.

Then the collection $\{\bar{c}_{ijk}\}$ defines nilpotent graded Lie algebra.

The New Approach to regular CC-spaces: a Local Lie Group at $u \in M$ for C^1 -Smooth Case

According to the second Lie theorem we take basis vector fields $\{(\widehat{X}_i^u)'\}_{i=1}^N$ in \mathbb{R}^N constituting a Lie algebra in such a way that

$$[(\widehat{X}_i^u)', (\widehat{X}_j^u)'](v) = \sum_{k: \deg X_k = \deg X_i + \deg X_j} \overline{c}_{ijk} (\widehat{X}_k^u)'(v),$$

 $(\widehat{X}_i^u)' = e_i, \ i = 1, \dots, N,$

and exp = Id.

The corresponding Lie group is nilpotent graded Lie group $\mathbb{G}_u\mathbb{M}$

A Local Lie Group $\mathcal{G}^{u}\mathbb{M}$

In a neighborhod $\mathcal{G}_u \subset \mathbb{M}$ of u push-forwarded vector fields $\widehat{X}_i^u = D\theta_u(\widehat{X}_i^u)'$ define a structure of local Lie group in such a way that

 $\theta_u : \mathbb{G}_u \mathbb{M} \to \mathcal{G}_u \mathbb{M}$

is a local isomorphism of Lie groups.

A Local Lie Group $\mathcal{G}^{u}\mathbb{M}$

In a neighborhod $\mathcal{G} \subset \mathbb{M}$ of u push-forwarded vector fields

 $\widehat{X}_i^u = D\theta_u(\widehat{X}_i^u)'$ they a structure of local Lie group

in such a way that

 $\theta_u : \mathbb{G}_u \mathbb{M} \to \mathcal{G}^u \mathbb{M}$

is a local isomorphism of Lie groups.

• vector fields \widehat{X}_i^u are left-invariant

Then $(\mathcal{G}, \widehat{X}_1^u, \dots, \widehat{X}_N^u, \cdot) = \mathcal{G}^u \mathbb{M}$ is a local Lie group

In the case of Carnot manifolds it is called the local Carnot group

Quasimetric

Let
$$v = \exp\left(\sum_{i=1}^{N} v_i \widehat{X}_i^u\right)(w)$$
. Then

$$d_{\infty}^u(v, w) = \max_{i=1,...,N} \{|v_i|^{\frac{1}{\deg X_i}}\}$$
• $d_{\infty}^u(v, w) \ge 0$; $d_{\infty}^u(v, w) = 0 \Leftrightarrow v = w$

•
$$d^u_{\infty}(v,w) = d^u_{\infty}(w,v)$$

• generalized triangle inequality: for a neighborhood $U \Subset M$, there exists a constant c = c(U) such that for any $v, s, w \in U$ we have

$$d^{u}_{\infty}(v,w) \le c(d^{u}_{\infty}(v,s) + d^{u}_{\infty}(s,w))$$

Quasimetric

• d_{∞} is defined similarly (with X_i instead of \widehat{X}_i^u , i = 1, ..., N): if $v = \exp\left(\sum_{i=1}^N v_i X_i\right)(w)$ then

$$d_{\infty}(v,w) = \max_{i=1,\ldots,N} \{|v_i|^{\frac{1}{\deg X_i}}\}.$$

•
$$d_{\infty}(v,w) \ge 0$$
; $d_{\infty}(v,w) = 0 \Leftrightarrow v = w$.

- $d_{\infty}(v,w) = d_{\infty}(w,v).$
- generalized triangle inequality: Do we have locally

 $d_{\infty}(v,w) \leq c(d_{\infty}(v,s) + d_{\infty}(s,w))$ for some constant c?

Gromov type nilpotentization theorem Theorem 2 [2012; Greshnov]. For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x) \widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0, \deg X_j - \deg X_i\}})$ for $x \in Box(g, \varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of M as $\varepsilon \to 0$.

Gromov type nilpotentizaton theorem Theorem 2 [2012; Greshnov]. For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x)\widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0, \deg X_j - \deg X_i\}})$ for $x \in Box(g, \varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of \mathbb{M} as $\varepsilon \to 0$. **Corollary 1 (Gromov Type Theorem)**: We have $X_i^{\varepsilon} \to \widehat{X}_i^g$ as $\varepsilon \to 0, i = 1, ..., N$, at the points of $Box(g, r_g)$ and this convergence is uniform in g belonging to some compact neighborhood.

Gromov type nilpotentizaton theorem Theorem 2 [2012; Greshnov]. For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x)\widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0, \deg X_j - \deg X_i\}})$ for $x \in Box(g, \varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of M as $\varepsilon \to 0$.

Corollary 1 (Gromov Type Theorem): We have $X_i^{\varepsilon} \to \widehat{X}_i^g$ as $\varepsilon \to 0$, i = 1, ..., N, at the points of $Box(g, r_g)$ and this convergence is uniform in g belonging to some compact neighborhood.

Corollary 2 [2009; Karmanova, V.]. Generalized triangle inequality holds locally for some constant c: $d_{\infty}(v, w) \leq c(d_{\infty}(v, s) + d_{\infty}(s, w))$.

MAIN RESULT: Comparison of Local Geometries

Let $\mathcal{U} \subset \mathbb{M}$ where $\mathbb{M} \in C^1$:

- $\theta_v(B(0,r_v)) \supset \mathcal{U}$ for all $v \in \mathcal{U}$,
- $\mathcal{G}^u \mathbb{M} \supset \mathcal{U}$ for all $u \in \mathcal{U}$,
- $\theta_v^u(B(0, r_{u,v})) \supset \mathcal{U}$ for all $u, v \in \mathcal{U}$.

Theorem 3 (2009; Karmanova, V.). Let $u, u', v \in U \in M$. Assume that $d_{\infty}(u, u') = O(\varepsilon)$ and $d_{\infty}(u, v) = O(\varepsilon)$, and consider points

$$w_{\varepsilon} = \exp\left(\sum_{i=1}^{N} w_i \varepsilon^{\deg X_i} \widehat{X}_i^u\right)(v) \text{ and } w_{\varepsilon}' = \exp\left(\sum_{i=1}^{N} w_i \varepsilon^{\deg X_i} \widehat{X}_i^{u'}\right)(v).$$

Then

$$\max\{d_{\infty}^{u}(w_{\varepsilon}, w_{\varepsilon}'), d_{\infty}^{u'}(w_{\varepsilon}, w_{\varepsilon}')\} = o(\varepsilon)$$

where $o(\varepsilon)$ is uniform in $u, u', v \in \mathcal{U}$.

4) Local Approximation Theorem for d_{∞} -quasimetric (2009; Karmanova, V.):

Let $v, w \in Box(g, \varepsilon) \subset M$. Then

 $|d_{\infty}(v,w) - d_{\infty}^{u}(v,w)| = o(\varepsilon).$

Assumption: Suppose that \mathbb{M} is a Carnot manifold.

5) Rashevsky–Chow type Theorem (2012; Basalaev, V.): Any two points $u, v \in \mathbb{M}$ can be connected by a horizontal curve γ (i. e., $\dot{\gamma}(t) \in H_{\gamma(t)}\mathbb{M}$ for almost all $t \in [0, 1]$).

The intrinsic metric on Carnot–Carathéodory space

$$d_{c}(u,v) = \inf_{\substack{\gamma \text{ is horizontal} \\ \gamma(0) = u, \gamma(1) = v}} \{L(\gamma)\}$$

Assumption: Suppose that $\mathbb M$ is a Carnot manifold.

5) Rashevsky–Chow type Theorem (2012; ; Basalaev, V.): Any two points $u, v \in \mathbb{M}$ can be connected by a horizontal curve γ (i. e., $\dot{\gamma}(t) \in H_{\gamma(t)}\mathbb{M}$ for almost all $t \in [0, 1]$).

The intrinsic metric on Carnot–Carathéodory space

$$d_{cc}(u,v) = \inf_{\substack{\gamma \text{ is horizontal} \\ \gamma(0)=u, \gamma(1)=v}} \{L(\gamma)\}$$

6) Local Approximation Theorem for d_{cc} -metric (2009; Karmanova, V.): For $v, w \in B_{cc}(u, \varepsilon)$, we have

 $|d_{cc}(v,w) - d^u_{cc}(v,w)| = o(\varepsilon).$

Corollaries (Ball-Box Theorem)

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type Ball–Box Theorem (2012). For $\mathcal{U} \in \mathbb{M}$, there exist constants $c(\mathcal{U}) \leq C(\mathcal{U})$ such that

 $c(\mathcal{U})d_{\infty}(x,y) \leq d_{cc}(x,y) \leq C(\mathcal{U})d_{\infty}(x,y),$

where $x, y \in \mathcal{U}$, and $d_{cc}(x, y)$ is a Carnot–Carathéodory metric.

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type Ball–Box Theorem (2011). For $\mathcal{U} \in \mathbb{M}$, there exist constants $c(\mathcal{U}) \leq C(\mathcal{U})$ such that

 $c(\mathcal{U})d_{\infty}(x,y) \leq d_{cc}(x,y) \leq C(\mathcal{U})d_{\infty}(x,y),$

where $x, y \in \mathcal{U}$, and $d_{cc}(x, y)$ is a Carnot–Carathéodory metric.

Proof: [2011, V.]

$$d_{cc}^{u}(u,w)(1-o(1)) \leq d_{cc}(u,w) \leq d_{cc}^{u}(u,w)(1+o(1));$$

$$d^u_\infty(u,w)(1-o(1)) \le d_\infty(u,w) \le d^u_\infty(u,w)(1+o(1));$$

 $d_{cc}^u(u,w) \sim d_{\infty}^u(u,w).$

Application to Quasilinear equations of subelliptic type

THEOREM [1996 : Chernikov, V.]. Let X_1, X_2, \ldots, X_n are C^1 -vector fields in $\Omega \subset \mathbb{R}^N$ extended to a collection of C^1 -vector fields constituting a structure of a Carnot manifold.

Then any A-solution $u : \Omega \to \mathbb{R}$ to the equation

 $-\operatorname{div}_h(\mathcal{A}(x,\nabla_0 u))=0$

is Hölder continuous: $|u(x) - u(y)| \leq Md_{cc}^{\lambda}(x,y)$, $\lambda \in (0,1)$.

Application to Geometric control theory

♦ The linear system of ODE ($x \in \mathbb{M}^N$, n < N)

$$\dot{x} = \sum_{i=1}^{n} u_i(t) X_i(x), \quad X_i \in C^1.$$

• Problem: To find measurable functions $u_i(t)$ such that system (1) has a solution with the initial data x(0) = p, x(1) = q.

If system (1) has a solution for every $q \in U(p)$ then it is called *locally controllable.*

• (1) locally controllable if "horizontal" vector fields $\{X_1, \ldots, X_n\}$ can be extended to the system of vector fields constituting a structure of a Carnot manifold.

More Applications

• *sub-Riemannian differentiability theory*: Rademacher-type and Stepanov-type Theorems on sub-Riemannian differentiability of mappings of Carnot manifolds (S. Vodopyanov)

• geometric measure theory on sub-Riemannian structures: area formula for intrinsically Lipschitz mappings of Carnot manifolds, coarea formula for C^{M+1} -smooth mappings of Carnot manifolds (M. Karmanova; S. Vodopyanov)

geometry of non-equiregular Carnot–Carathéodory spaces
 (S. Selivanova)

Sub-Riemannian Differentiability [2007; V.]

Definition. A mapping $\varphi : (\mathbb{M}, d_{cc}) \to (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is hc-differentiable at $u \in \mathbb{M}$ if there exists a horizontal homomorphism

$$L_u: (\mathcal{G}^u, d^u_{cc}) \to (\mathcal{G}^{\varphi(u)}, d^{\varphi(u)}_{cc})$$

of local Carnot groups such that

$$\widetilde{d}_{cc}(\varphi(w), L_u(w)) = o(d_{cc}(u, w)), \ E \cap \mathcal{G}^u \ni w \to u.$$

• For mappings of Carnot groups, this notion coincides with the definition of \mathcal{P} -differentiability in the sense of P. Pansu.

• Denote the hc-differential of φ at u by the symbol $\widehat{D}\varphi(u)$

Sub-Riemannian Differentiability [2007; V.]

Rademacher-Type Theorem. Suppose that a mapping φ : $(\mathbb{M}, d_{cc}) \rightarrow (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is Lipschitz. Then φ is hc-differentiable almost everywhere.

Stepanov-Type Theorem. Suppose that a mapping $\varphi : (\mathbb{M}, d_{cc}) \rightarrow (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is such that

$$\lim_{y \to x} \frac{\tilde{d}_{cc}(\varphi(y),\varphi(x))}{d_{cc}(y,x)} < \infty$$

almost everywhere. Then φ is hc-differentiable almost everywhere.

Theorem. Suppose that $\varphi : (\mathbb{M}, d_{cc}) \to (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is C_H^1 -smooth and contact (i. e., $D_H \varphi[H\mathbb{M}] \subset H\widetilde{\mathbb{M}}$). Then φ is continuously hc-differentiable everywhere.

Definition of Approximate Sub-Riemannian Differentiability [2000; V.]

Let $E \subset \mathcal{M}$ be a measurable subset of \mathcal{M} and $\varphi : E \to \widetilde{\mathcal{M}}$ be a measurable mapping.

An approximate differential of a mapping φ at a point g is the horizontal homomorphism $L : \mathcal{G}^g \to \mathcal{G}^{\varphi(g)}$ of the local Carnot groups such that the set

$$\{v \in B_{cc}(g,r) \cap \mathcal{G}^g : \widetilde{d}_{cc}^{\varphi(g)}(\varphi(v), L(v)) > d_{cc}^g(g,v)\varepsilon\}$$

has \mathcal{H}^{ν} -density zero at the point g for any $\varepsilon > 0$.

Whitney Type Theorem [2012; Basalaev, V.]

Theorem. Let \mathcal{M} , $\widetilde{\mathcal{M}}$ be Carnot manifolds, $E \subset \mathcal{M}$ be a measurable subset of \mathcal{M} and $f : E \to \widetilde{\mathcal{M}}$ be a measurable mapping. The following conditions are equivalent:

1) the mapping f is approximately differentiable almost everywhere in E;

2) the mapping f has approximate derivatives along the basic horizontal vector fields almost everywhere in E;

3) there is a sequence of the disjoint sets Q_1, Q_2, \ldots such that $\mathcal{H}^{\nu}(E \setminus \bigcup_{i=1}^{\infty} Q_i) = 0$ and every restriction $f|_{Q_i}$ is a Lipschitz mapping;

4) $f: E \to \widetilde{\mathcal{M}}$ meets the condition ap $\overline{\lim_{x \to g}} \frac{\widetilde{d}_{cc}(f(g), f(x))}{d_{cc}(g, x)} < \infty$.

Sub-Riemannian Area Formula [2011; Karmanova]

• the sub-Riemannian Jacobian

$$\mathcal{J}^{SR}(\varphi, y) = \sqrt{\det(\widehat{D}\varphi(y)^*\widehat{D}\varphi(y))}.$$

Theorem. Let $\varphi : \mathbb{M} \to \widetilde{\mathbb{M}}$ be a Lipschitz mapping of Carnot manifolds with respect to *cc*-metrics. Then, the area formula holds:

$$\int_{\mathbb{M}} f(y) \mathcal{J}^{SR}(\varphi, y) \, d\mathcal{H}^{\nu}(y) = \int_{\widetilde{\mathbb{M}}} \sum_{y \colon y \in \varphi^{-1}(x)} f(y) \, d\mathcal{H}^{\nu}(x),$$

where $f : \mathbb{M} \to \mathbb{E}$ (\mathbb{E} is an arbitrary Banach space) is such that the function $f(y)\sqrt{\det(\widehat{D}\varphi(y)^*\widehat{D}\varphi(y))}$ is integrable. Here Hausdorff measures are constructed with respect to quasimetrics d_2 (in the preimage) and \widetilde{d}_2 (in the image) with the normalizing factor ω_{ν} .

Sub-Riemannian Coarea Formula [2009; Karmanova, V.]

• the sub-Riemannian coarea factor

$$\mathcal{J}_{\widetilde{N}}^{SR}(\varphi, x) = \sqrt{\det(\widehat{D}\varphi(x)\widehat{D}\varphi(x)^*)} \cdot \frac{\omega_N}{\omega_\nu} \frac{\omega_{\widetilde{\nu}}}{\omega_{\widetilde{N}}} \frac{\omega_{\nu-\widetilde{\nu}}}{\prod\limits_{k=1}^M \omega_{n_k-\widetilde{n}_k}}.$$

Theorem. Suppose that $\varphi \in C^{M+1}(\mathbb{M}, \widetilde{\mathbb{M}})$ is a contact mapping of two Carnot manifolds, dim $H_1\mathbb{M} \ge \dim \widetilde{H}_1\widetilde{\mathbb{M}}$, dim $H_i\mathbb{M} - \dim H_{i-1}\mathbb{M} \ge \dim \widetilde{H}_i\widetilde{\mathbb{M}} - \dim \widetilde{H}_{i-1}\widetilde{\mathbb{M}}$, i = 2, ..., M. Then the following coarea formula

$$\int_{\mathbb{M}} \mathcal{J}_{\widetilde{N}}^{SR}(\varphi, x) f(x) \, d\mathcal{H}^{\nu}(x) = \int_{\widetilde{\mathbb{M}}} d\mathcal{H}^{\widetilde{\nu}}(z) \int_{\varphi^{-1}(z)} f(u) \, d\mathcal{H}^{\nu - \widetilde{\nu}}(u)$$

holds, where $f : \mathbb{M} \to \mathbb{E}$ (\mathbb{E} is an arbitrary Banach space) is such that the product $\mathcal{J}_{\widetilde{N}}^{SR}(\varphi, x)f(x) : \mathbb{M} \to \mathbb{E}$ is integrable.

THANK YOU FOR YOUR ATTENTION!