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Classical definition of Carnot-Carathéodory space.

M is connected smooth manifold, dimM = N

TM is a tangent bundle;

“horizontal” subbundle is

HM = span{Xq,...,Xp} CTM (n < N, X; € C)

There is a filtration HM = H1 C H> C ... C Hy; = TM such that
span{Hy,[Hy,H;]} = H;yy, dimH; = const.

— (M, HM, (-, ) gp) defines a subriemannian geometry

M is a depth of the subriemannian space M
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Examples

1. Heisenberg group H"

Lpy4-4 —
M=R>"H: X = 50— "5 Xt = gr — Bap Xont1 = &
Hy = span{Xy1,Xo,...,Xon}, Ho = [H1,H1] = span{Xo,+1}

2. Carnot group is a connected simply connected group Lie G
with stratified Lie algebra V:

\VA— Vl@VQ@---@VM; [Vl,vz'] — VL’—I—l? [Vlav’m] — {O}

I A Carnot group is a tangent cone to a subriemannian space in
a regular point (Mitchell 1985; Gromov, Bellaiche 1996)



e Mathematical foundation of thermodynamics

e 1909, Carathéodory in order to prove the existence of entropy
derived the following statement:

Let M be a connected manifold endowed with a corank one dis-
tribution. If there exist two points that can not be connected by
a horizontal path then the distribution is integrable.



e Mathematical foundation of thermodynamics

e 1909, Carathéodory in order to prove the existence of entropy
derived the following statement:

Let M be a connected manifold endowed with a corank one dis-
tribution. If there exist two points that can not be connected by
a horizontal path then the distribution is integrable.

D C TM is a corank one distribution if 4 a smooth 1-form 6 s. t.
¢ =4{v e T,M:0(x)(v) =0}. An absolutely continuous path ~
is called horizontal if 4(x) € Dy.



e Development

e Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary
two points of any connected C-C space M can be joined by a
“horizontal” curve.



e Development

e Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary
two points of any connected C-C space M can be joined by a
“horizontal” curve.

It follows that (M, d.) is a metric space with the subriemannian
distance

de(u,v) = inf{L(v) | v is horizontal, v(0) = u,v(1) = v}

not comparable to Riemannian one.



e HO6rmander, 1967: Hypoelliptic equations

A problem: when a distribution solution f to the equation

(X24+ ...+ X2 {—Xp)f =pecC™®

iIs a smooth function?

Here X; € C°°.



e HO6rmander, 1967: Hypoelliptic equations

A problem: when a distribution solution f to the equation

(X24+ ...+ X2 {—Xp)f =pecC™®

iIs a smooth function?
Here X; € C°°.

e Particular case: Kolmogorov’s equations

2w ou Ou
R S —
Ox? oy Ot

f

e physics (diffusion process), economics (arbitrage theory, some
stochastic volatility models of European options), etc.



Hypoelliptic Equations
e HBrmander (1967): sufficient conditions on fields Xq, ..., Xn:

T here exists M < oo such that

oelLie{X1,Xo,..., Xpn}=span{X;(w) | |I| < M} =TyM for allveM
where

X1(v) = span{[X;,, [Xiy, ..., [ X5, X5, ). J(v) 1 X5, € Hi}
for I = (iq1,i2,...,10%).
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Hypoelliptic Equations
e HBrmander (1967): sufficient conditions on fields Xq, ..., Xn:

T here exists M < oo such that

oelLie{X1,Xo,..., Xpn}=span{X;(w) | |I| < M} =TyM for allveM
where

Xy(v) = span{[X;,, [Xip, ..., [Xsy_,, X5 ] J(v) 0 X5, € Hp}
for I = (iq1,i2,...,10%).

e VM is called the depth of the sub-Riemannian space M.

e Stein (1971): The program of studying of geometry of Hormander

vector fields;
description of singularities of fundamental solutions



Quasilinear equations of subelliptic type

Let a function A4 : Q x R® — R?, Q c RY meet the following
conditions:

(A1) the mapping Q2 5 2z — A(x,£) is measurable for all £ € R"?,
the mapping R" 3 £ — A(z, £) is continuous for a. a. = € Q;

there are some constants 0 < a < 8 < oo such that
(A2) (A(z,§),8) = al¢lP;

(A3) [A(z,8)| < Bl

(A4) (A(z,8) — A(z,n),§ —n) > 0;

(A5) Az, \&) = AAP72A(x, &) for all A e R\ O.



Quasilinear equations of subelliptic type

e u: 2 — Ris called an A-solution to the equation
—divy(A(x,Vou)) =0 in Q if

1
u € Wp,loc and

/A(x,vou)vow dx = 0 for all test functions 1 € C&(Q).
Q

Here Vou = (Xqu, Xou, ..., Xnu) where X1, Xo,..., X, are vector
fields meeting Hormander condition.



Quasilinear equations of subelliptic type

e A function v : €2 — R is called an A-solution in €2 to the
equation

—divy(A(x,Vou)) =0 if

= W&lOC(Q) and

/A(x,vou)vo¢ dx = 0 for all test functions ) € C&(Q).
Q

Here Vou = (Xqu, Xou, ..., Xnu) where X1, Xo,..., X, are vector
fields meeting HOormander condition.

PROBLEM is to prove regularity properties of the A-solution to
this equation; |u(z) — u(y)| < Md2.(z,y), X € (0,1).
It is known for C®°-vector fields [1996; Chernikov, V.].
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e Problem: To find bounded measurable functions wu;(t) such
that system (1) has a solution with the initial data z(0) = p,

x(1) = q.
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e Problem: To find measurable functions u;(t) such that system
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If system (1) has a solution for every ¢ € U(p) then it is called
locally controllable.



Geometric control theory

o The linear system of ODE (z € MY, n < N)

n
xr = Z u; (1) X;(x), X; € C.
1=1

e Problem: To find bounded measurable functions wu;(t) such
that system (1) has a solution with the initial data z(0) = p,

x(1) = q.

If system (1) has a solution for every g € U(p) then it is called
locally controllable.

e It is locally controllable if Lie{X1, Xp,...,Xn} = TM, i.e. the
“horizontal’ distribution HM = { X4, Xo,..., X} is bracket-generating.
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Main classical results (proved for smooh enough vector
fields)

e 1909—-1938—-1939 Carathéodory—Rashevskiy—Chow theorem;

e 1982—-1986 Mitchell-Gershkovich-Nagel-Stein-Wainger:
Ball-Box theorem (a ball in the Carnot-Carathéodory metric
looks like a box);

e 1986—1996 Gromov—Mitchell theorem on convergence of rescaled
CC-spaces with respect to a fixed point to a nilpotent tangent
cone;

e 1996 Gromov theorem on convergence of rescaled vector fields
to nilpotentized vector fields constituting a basis of graded nilpo-
tent group;

e 1996 M. Gromov, A. Bellaiche approximation theorem on local
behavior of metrics in the given space and in a local tangent
cone.



APPLICATIONS of SUBRIEMANNIAN GEOMETRY

Thermodynamics
Non-holonomic mechanics
Geometric Control Theory
Subelliptic equation
Geometric measure theory
Quasiconformal analysis
Analysis on metric spaces
Contact geometry
Complex variable
Economics

Transport problem
Quantum control
Neurobiology
Tomography

Robotecnics
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Carnot—Carathéodory space (Cl-smooth vector fields)

e M is a connected C°°-smooth manifold with dimiop(M) = N
e in T ™M there exists a filtration by subbundles

HM=HMC...CHMC...C HyM=TM

e Vv € M JU(v) with vector fields X1, X5,..., Xy € Cl such that
H;M(v) = span{X1(v),..., Xgim g;(v)}, dim H;M(v) = dim H;;
° [HZ,H]] C HZ-I—j' t,g=1,...,.M — 1,

<>If H]—|—1 — Span{Hj7 [HlaHjL [H27Hj—1]7"°7[HkaHj—Fl—k]} where
k= L~7"'71J, j=1,...,M—1, then M is called the Carnot manifold.



Basic Concepts

Exponential mapping: v € M, (vq,...,vy) € RY,

i

i = XG0, te 0,1,
7(0) =u.

N
Then exp( 3 Uz’Xi) (u) = ~v(1). For each point u, define
i=1

N
Oy : U(0) - M as 0y(vy,...,vn) = exp( 3 ’Uz'Xz'> (u).
i=1



Basic Concepts

Exponential mapping: v € M, (vq,...,vy) € RY,

i

i = XG0, te 0,1,
7(0) =u.

N
Then exp( 3 Uz’Xi) (u) = ~v(1). For each point u, define
i=1

N
Oy : U(0) - M as 0y(vy,...,vn) = exp( 3 ’Uz'Xz'> (u).
i=1
_ _ N
Dilatations AY: ifueM un v = exp< 3 UiXi> (u) then
i=1

Ag(v) = eXD('JzV: ’UZ'Tdeg XiXZ') (u)

1 =1



The New Approach to regular CC-spaces:
a Local Lie Group at v € M for C1-Smooth Case

[ X5, X5](v) = > ¢k (v) Xp(v).
k:deg X, <deg X,+deg X

Theorem 1 (2009; Karmanova, V.). Coefficients
{cijk(w) }deg X, =deg X;4deg X; = {ciji} satisfy Jacobi identity:

> k(W) egmi(uw) + D ik (w)Tri(u) + > Cimp(u)egi(u) = 0
k k k

for all 2,3, m,l=1,..., N, and
E’L]k:_E]Zk for all 2,5,k =1,...,N.

Then the collection {¢;;;} defines nilpotent graded Lie algebra.



The New Approach to regular CC-spaces:
a Local Lie Group at v € M for C1-Smooth Case

According to the second Lie theorem we take basis vector fields
(XN, in RN constituting a Lie algebra in such a way that

(X, (X 1(v) = > Ciik (X1 (v),
k:deg X, =deg X,;+degd X

(X®) =e;,i=1,...,N,
and exp = Id.

The corresponding Lie group is nilpotent graded Lie group G,M



A Local Lie Group g“"M

In a neighborhod G,, C M of u push-forwarded vector fields

X¥ = D0,(X") define a structure of local Lie group
in such a way that
Ou - GuM — GM

IS a local isomorphism of Lie groups.



A Local Lie Group g“"M

In a neighborhod ¢ C M of u push-forwarded vector fields

X% = D0,(X")" they a structure of local Lie group

in such a way that

0y : GuM — G*M

is a local isomorphism of Lie groups.
e vector fields )?;‘f are left-invariant
Then (G, X%,...,X%,-) =G"M is a local Lie group

e In the case of Carnot manifolds it is called the local Carnot
group



Quasimetric

N —

Let v = exp( 3 viX,;“) (w). Then
i=1

U ﬁ

d : = max [ 9€9 i

oo(v w) i=1. ..,N{|UZ| }

o d¥ (v,w) >0; d (v,w) =0 v=w
o d¥ (v,w) = d% (w,v)

e generalized triangle inequality: for a neighborhood U € M,
there exists a constant ¢ = ¢(U) such that for any v,s,w € U we
have

s (v, w) < e(ds,(v,8) + ds.(s,w))



Quasimetric

e d is defined similarly (with X; instead of X¥, i=1,...,N): if
N

v = exp( S vini) (w) then
1=1

1

doo (v, w) =, max  {v;[ 7%}

o doo(v,w) > 0; deo(v,w) =0 v =w.
o doo(v,w) = doo(w, v).

e generalized triangle inequality: Do we have locally

doo(v,w) < c(doc(v,8) + doo(s,w)) for some constant c¢?



Gromoyv type nilpotentization theorem
Theorem 2 [2012; Greshnov]. For z € Box(g,rg) consider
X5(2) = (A7 )99 X (Ad), i=1,...,N.
Then the following expansion holds:
—~ N —
Xi(z) = X/ () + Zl a;j(2) X7 (z)
j=

where a;;(z) = o(eM@10:de9 X;=deg Xi}y o1 & ¢ Box(g,erg) and o(-)
is uniform in g belonging to some compact set of M as € — O.



Gromov type nilpotentizaton theorem
Theorem 2 [2012; Greshnov]. For z € Box(g,rg) consider

Xf(z) = (A7 )9 X (Alr), i=1,...,N.
Then the following expansion holds:

N
Xi (@) = X (@) + ) ajj(2) X (2)
J=1
where a;;(z) = o(eM@10:d89 X;=deg Xi}y o1 & ¢ Box(g,erg) and o(-)
is uniform in g belonging to some compact set of M as € — 0.
Corollary 1 (Gromov Type Theorem): We have X¢ — X7 as

e—0,i=1,...,N, at the points of Box(g,rq) and this conver-
gence is uniform in g belonging to some compact neighborhood.



Gromov type nilpotentizaton theorem
Theorem 2 [2012; Greshnov]. For z € Box(g,rg) consider

Xf(z) = (A7 )9 X (Alr), i=1,...,N.
Then the following expansion holds:

N
Xi (@) = X (@) + ) ajj(2) X (2)
J=1
where a;;(z) = o(eM@10:d89 X;=deg Xi}y o1 & ¢ Box(g,erg) and o(-)
is uniform in g belonging to some compact set of M as ¢ — O.
Corollary 1 (Gromov Type Theorem): We have X5 — 5(\7? as

e—0,i=1,...,N, at the points of Box(g,rq) and this conver-
gence is uniform in g belonging to some compact neighborhood.

Corollary 2 [2009; Karmanova, V.]. Generalized triangle in-
equality holds locally for some constant ¢: doo (v, w) < ¢(doo(v, s)+

doo (s, w)).



MAIN RESULT: Comparison of Local Geometries

Let Y C M where M € C?:

e 0,(B(0,ry)) DU for all v e U,

e GYM DU for all u e ld,

e 04(B(0,714p)) DU for all u,v e U.

Theorem 3 (2009; Karmanova, V.). Let u,v',v € U € M.
Assume that deo(u,u) = O(e) and doo(u,v) = O(g), and consider
points

N N
We = exp(Z wigdeg XzXJ‘) (’U) and ’wé — exp( Z wisdeg XZX,;/U’,> (v)
1=1 1=1

T hen
max{d% (we, wl), d% (we, wl)} = o(e)

where o(e) is uniform in u,u/,v € U.



Corollaries

4) Local Approximation Theorem for d..-quasimetric
(2009; Karmanova, V.):

Let v,w € Box(g,e) C M. Then

|doo (v, w) — di (v, w)| = o(e).



Corollaries
Assumption: Suppose that M is a Carnot manifold.

5) Rashevsky—Chow type Theorem (2012; Basalaev, V.):
Any two points u,v € M can be connected by a horizontal curve
v (i. e, ¥(t) € HypnM for almost all t € [0, 1]).

The intrinsic metric on Carnot—Carathéodory space

de(u,v) = inf {L()}

~ is horizontal
7(0)=u,y(1)=v



Corollaries
Assumption: Suppose that M is a Carnot manifold.

5) Rashevsky—Chow type Theorem (2012; ; Basalaev, V.):
Any two points u,v € M can be connected by a horizontal curve
v (i. e., ¥(t) € H,(nyM for almost all t € [0, 1]).

The intrinsic metric on Carnot—Carathéodory space

dec(u,v) = inf {L(7)}

~ is horizontal
7(0)=u,y(1)=v

6) Local Approximation Theorem for d..-metric
(2009; Karmanova, V.): For v,w € Bec(u,e), we have

|dCC(U7 w) o dlCLC(va w)| — 0(5)'



Corollaries (Ball-Box Theorem)

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type

Ball-Box Theorem (2012). For U € M, there exist constants
c(U) < C(U) such that

C(u)dm(ﬂ%y) < dCC(way) < C(U)doo{%y)7
where x,y € U, and dc.(x,y) is a Carnot—Carathéodory metric.



Corollaries

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type
Ball-Box Theorem (2011). For U € M, there exist constants
c(U) < C(U) such that

c(U)doo(,y) < dec(z,y) < CU)doo(z,y),
where z,y € U, and dee(z,y) is a Carnot—Carathéodory metric.

Proof: [2011, V.]

dee(u, w)(1 —0(1)) < dec(u, w) < dee(u, w)(1 +0(1));

dio(u, w)(1 —0(1)) < doo(u, w) < dE,(u,w)(1 4+ o(1));

d (u,w) ~ d% (u,w).



Application to Quasilinear equations of subelliptic type

THEOREM [1996 : Chernikov,V.]. Let X1, Xo,..., X, are Cl-

vector fields in ©Q ¢ RY extended to a collection of Cl-vector
fields constituting a structure of a Carnot manifold.

Then any A-solution u : 2 — R to the equation

—divy(A(z,Vou)) =0
is Holder continuous: |u(z) — u(y)| < MdX.(z,y), X € (0,1).



Application to Geometric control theory

o The linear system of ODE (z € MY, n < N)

n
=Y wt)X;(z), X;eCl
1=1

e Problem: To find measurable functions u;(¢) such that system
(1) has a solution with the initial data (0) = p, z(1) = gq.

If system (1) has a solution for every g € U(p) then it is called
locally controllable.

e (1) locally controllable if “horizontal” vector fields {X1,..., Xn}
can be extended to the system of vector fields constituting a
structure of a Carnot manifold.



More Applications

e sub-Riemannian differentiability theory: Rademacher-type and
Stepanov-type Theorems on sub-Riemannian differentiability of
mappings of Carnot manifolds (S. Vodopyanov)

e geometric measure theory on sub-Riemannian structures:. area
formula for intrinsically Lipschitz mappings of Carnot manifolds,
coarea formula for CM+1l_smooth mappings of Carnot manifolds
(M. Karmanova; S. VVodopyanov)

e geometry of non-equiregular Carnot—Carathéodory spaces
(S. Selivanova)



Sub-Riemannian Differentiability [2007; V.]

Definition. A mapping ¢ : (M, dee) — (M, dee) is he-differentiable
at v € M if there exists a horizontal homomorphism

Lyt (GY d%) — (%), a5
of local Carnot groups such that

dec(o(w), Ly(w)) = o(dec(u, w)), ENGY > w — u.

e For mappings of Carnot groups, this notion coincides with the
definition of P-differentiability in the sense of P. Pansu.

e Denote the he-differential of » at w by the symbol Dp(u)



Sub-Riemannian Differentiability [2007; V.]

Rademacher-Type Theorem. Suppose that a mapping ¢ :
(M, dee) — (M, dee) is Lipschitz. Then ¢ is he-differentiable almost
everywhere.

Stepanov-Type Theorem. Suppose that a mapping ¢ : (M, dcc) —
(M, dee) is such that

—d,
im ce(p(y), o(x)) < oo
y—x dec(y, )
almost everywhere. Then ¢ is hc-differentiable almost every-

where.

Theorem. Suppose that ¢ : (M,dec) — (M, dec) is Cl-smooth
and contact (i. e., Dgeo[HM] C HM). Then ¢ is continuously
hc-differentiable everywhere.



Definition of Approximate Sub-Riemannian
Differentiability [2000; V.]

Let E C M be a measurable subset of M and ¢ : E — M be a
measurable mapping.

An approximate differential of a mapping ¢ at a point g is the
horizontal homomorphism L : G9 — G¥(9) of the local Carnot

groups such that the set

{v € Bee(g,m) NG9 dE (p(v), L(v)) > d%,(g,v)e}
has H”-density zero at the point g for any € > 0.



Whitney Type Theorem [2012; Basalaev, V.]

Theorem. Let M, M be Carnot manifolds, E C M be a mea-
surable subset of M and f . E — M be a measurable mapping.
T he following conditions are equivalent:

1) the mapping f is approximately differentiable almost every-
where in E;

2) the mapping f has approximate derivatives along the basic
horizontal vector fields almost everywhere in E;

3) there is a sequence of the disjoint sets (Q1,Q»>,... such that
©.@)

’H”(E\ U Qi) = 0 and every restriction f|g. is a Lipschitz map-
i=1

ping,

4) f: E — M meets the condition ap@dw(f(g’g@) < o0.



Sub-Riemannian Area Formula [2011; Karmanova]

e the sub-Riemannian Jacobian

TR, y) = \/det(Dp(y)*Deo(y)).

Theorem. Let ¢ : M — M be a Lipschitz mapping of Carnot
manifolds with respect to cc-metrics. Then, the area formula
holds:

1T e anwr)y = X f) @),
M M YiyEpH(z)
where f : M — E (E is an arbitrary Banach space) is such that the

function f(y)\/det(ﬁgp(y)*ﬁgo(y)) is integrable. Here Hausdorff
measures are constructed with respect to quasimetrics d» (in the
preimage) and d» (in the image) with the normalizing factor w,.




Sub-Riemannian Coarea Formula [2009; Karmanova, V.]

e the sub-Riemannian coarea factor

T (e, x) = \/det(Dp(x) Dp(2)") -

W Wy Wy, 7

~

Wy W
VN

??‘
ﬂ.’:li

Wi —nig,

Theorem. Suppose that ¢ € CM+T1(M,M) is a contact map-
ping of two Carnot manifolds, dim H{M > dim HlM dim H;M —
dim H;_1M > dlmHM dim HZ 1M 1 =2,...,M. Then the fol-
lowing coarea formula

[ T80 @ @) = [ an’(z) [ fw)an T (w)

M M p=1(2)
holds, where f : Ml — E (E is an arbitrary Banach space) is such
that the product j]%R(go,x)f(ac) : M — E is integrable.



THANK YOU FOR YOUR AT TENTION!



