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Adjoint exhausters in extremum conditions
Abbasov M.
abbasov.majid@gmail.com
St. Petersburg State University, Universitetskii prospekt 35, Petergof, 198504,
St. Petersburg, Russia

In the talk, new formulations of extremality conditions in terms of adjoint
exhausters are stated. The results obtained allow one to construct descent
and ascent directions and provide visual geometric interpretation.

HecobcTBeHHble 3K30CTepbl B YCNOBUSX 3KCTPEMYMA

[ycrs f: X — R, e X C R™ — oTrkpbiToe MHOXKECTBO. Byiem roBoputs,
qT0 y byHKIUY f B TOUKE & CYIIECTBYeT HIKHMII sk30cTep F, (), ecom mmeer
MECTO Pa3JIOXKEHUE

f@+m:fmﬂkgghggwm+%@% (1)

a F,(z) — ceMeliiCTBO BBIIYyKJIBIX KOMIAKTOB B R™.
Byznem rosoputh, uro y dyHKIMH f B TOUYKe I CyIIECTBYeT BEpXHMIA
sx3ocTep E* (), eciin IMeeT MeCTO PA3iIorKeHIe

ﬂw+m:f@H}@%@ﬁ%w&HWAmy (2)

a E*(x) — ceMefiCTBO BBIMYKJIBIX KOMIIAKTOB B R™.
Beckoneuno manbie B (1), (2) yIOBIETBOPSIIOT COOTHOIIEHUIO

im 2229 _ o v g ere,

al0 «

6o
im 29 _o v, ere (3)
lall—o ||gll

B paGore [1| 6bun TOTYUEeHBI U3SIIHBIE YCJIOBAS MaKCUMyMa (DyHKIAHI
f B TOuKe T, KOrma MMeeT MecTO pasiokeHue (1) u ycsoBus MUHMMyMA,
KOra uMeeT MecTo paszsoxkenue (2). [osromy HuzKHuUil 9K30cTEp OBLIT HAZBAH
COOCTBEHHBIM JIJTsi 3aJa9d Ha MAKCUMyM, a BEPXHUU — COOCTBEHHBIM JIIJIst
zajaqn Ha MuUHEMEYM. COOTBETCTBEHHO BEpXHUI 3K30cTep ObLT Ha3BaH
HECOOCTBEHHBIM JIJIsT 33191 Ha MAKCHUMYM, a HUXKHUAN — HECOOCTBEHHBIM JIJTsT
3a/1a9 Ha MUHUMUYM.

[Ipobisiema 1OMCKa yCJIOBUiT SKCTpEMyMa B TepMHUHAX HECOOCTBEHHBIX
9K30CTEPOB BlepBble ObLia paccmorpedHa B [2]. B macrosueidi pabore
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Pa3BUBAIOTCS ONMCAHHBIE TAM WJIEH, U NPeJJIaraeTcst uHas (pOpMYINPOBKA
ycnosuii [4, 5.
ITycrs cnpaseauso pasioxenue (1). OGozHawmnM

h(g) = in(w, g).
<g) CglEz?((w) glelg(w g)

Torna

— yeasosue h(g) = 0 pa soboro g € R™| spiisiercss HeOGXOAUMBIM YCJIOBUEM
muHUMYMa QyHKIMK f B TOUKe 2 [3],

— ecsin umeer Mecto (3), To yeaosue h(g) > 0 must mo6oro g € R™, sipaisiercs
JIOCTATOMHBIM YCJIOBUEM CTPOTOTO JIOKAJLHOTO MUHUMyMa (byHKIUH f B
Touke = [3].

Teopema 1. [Ijist Toro, atobsr h(g) = 0 s moboro g € R™, Heobxommmo
U JOCTATOYHO, YTOOBI B 3aMKHYTOM IOJIOXKUTEJLHOM IOJIyIPOCTPAHCTBE,
HOPOXKICHHBIM IIPOU3BOJILHON IMIIEPIIOCKOCTBIO, POXOJIAIIEi Yepe3 HyJlb,
BCErJIa JIEXKAJI0 HEeJUKOM XOTsl Obl OIHO U3 MHOXKECTB cemefictBa F, (), T0O
ecTb 113t moboro g € R™ poskuo cymecrsosath C € E.(x) Takoe, 9T0 Js
moGoro v € C (v, g) > 0.

CanencrBue 1. [dna rtoro, urober h(g) > 0 gua mwoboro g €
R"™, HEOOXOIWMO W JOCTATOYHO, UTOOBI B KaKJIOM U3 JBYX 3aMKHYTBHIX
HOJIYIIPOCTPAHCTB, HOPOKICHHBIX MPOU3BOJBHON I'MIIEPILIIOCKOCTHIO, IIPOXO-
JSIIeit Yepes3 HyJlb, JIEXKAJIO [EeJTUKOM XOTs Obl OJHO M3 MHOXKECTB CeMeHCcTBa
E.(xz) (1o ecrb 4TOOBI Takasi I'MIEPIIOCKOCTh Da3Jiesisiia KaKHe-TO JBa
MHOXKECTBa CeMeficTBa).

Teopewma 2. [T Toro, urobsl h(g) > 0 nist joboro g € R™, Heobxoaumo
U JIOCTATOYHO, YTOOBI B OTKPBITOM IOJIOKUTEJBHOM IIOJIYIIPOCTPAHCTBE,
HOPOXKIECHHBIM IIPOU3BOJILHON TMIIEPIIOCKOCTBIO, MPOXOJIAIIeil Yepe3 HyJlb,
BCErJIa JIEXKAJIO [EeJUKOM XOTsl Obl OHO U3 MHOXKECTB cemefictBa F, (), TO
ecTb st moboro g € R™ nommkmo cymecrsosars C € E, (z) Takoe, 9TO JyIs
moboro v € C (v, g) > 0.

CaencrBue 2. s toro, urobel h(g) > 0 s soboro g €
R"™, HeoOXOAMMO M MJOCTATOYHO, 9TOOBI B KaKJIOM M3 JBYX OTKPBITHIX
[OJIYIPOCTPAHCTE, TIOPOXKJIEHHBIX TPOU3BOJIBHON THIEPIIOCKOCTHIO, TPOXO-
JSIIIeit Yepes3 HyJlb, JIEXKAJIO [EeJTUKOM XOTd Obl OJJHO M3 MHOXKECTB CeMeHCTBa
E.(x) (1o ectb 9T06BI TaKasi M'MIEPINIOCKOCTH CTPOrO Pa3feisiia KaKue-To
JIBA MHOXKECTBa ceMeiicTBa).

Anasiornuno GbOpMyIUPYIOTCs YCJIOBHsT HECTPOroro (CTpororo) JIOKasib-
HOI'O MaKCHMyMa B TEPMHMHAX BEPXHErO 3K30CTepa.

HoﬂyquHbIe pe3y/sbTaThbl Jal0T TEOPETHUYIECCKYIO0 BO3MO2KHOCTHL ITOUCKa
HalpaBJleHuii cirycka (IIo/beMa) U JIOIYCKAKT HAIVISIIHYI [eOMEeTPUIECKYIO
UHTEPIIPETALHIO.
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Pabora Bemosmena npu nogagaep:xkke POOU, npoext Ne12-01-00752.
JINTEPATYPA

Demyanov V. F., “Exhausters and convexificators — new tools in nonsmooth
analysis”, Quasidifferentiability and related topics, Nonconvex Optim. Appl.,
43, Kluwer Acad. Publ., Dordrecht, 85-137,(2000).

Pomuna B. A., “Orpanudennble 3K30CTEpbl W YCJIOBUsS 3IKCTpemyma’,
IIpounecce! yupaBienus u ycroiauBocThb: T pynst 36-if MezK1yHAPOIHOMN Hay IHOM
koudepennmu aciupanTos u crynaentos / Ilox pex. H. B. Cumwmprosa, B. H.
Crapkosa. CII6.: Uzn-Bo C.-Ilerep6. yu-ta, C. 521-524, (2005)

Hembanos B.®., Pybunos A.M. “OcHOBbI Heraakoro aHajau3a U
kBasuuddepennuanbaoe ucaucaenne”’, M.: Hayka, 432 c., (1990)

Abbasov M. E., Demyanov V. F., “Proper and adjoint exhausters in Nonsmooth
analysis: optimality conditions”, Forthcoming.

Abbasov M. E., “Extremality conditions in terms of adjoint exhausters”, Vest-
nik of Saint-Petersburg University, Ser. 10. Applied mathematics, informatics,
control processes. N. 2. 3-8, (2011).

B~ !-convex Sets and Functions
Adilov G., Yesilce I.

gabiladilov@gmail.com, ilknuryesilce@gmail.com

Faculty of Education, Mersin University Yenisehir Campus, Mersin, 33343, Turkey

A subset U of R” , is B™!-convex if for all z,y € U and all A € [0, 1] one

has Az Ay € U. These sets were introduced and studied in [2]. In this paper,
we examine some properties of B~ !-convex sets and also define and analyse
B~ !-convex functions.

And finally, we compare B~!-convexity with B-convexity (were introduced

in [3] and studied in [1], [3], [4], [5])-

1]
2]

3l
(4]

(5]

References

G. Adilov and A. Rubinov, “B-convex Sets and Functions”, Numerical Functional
Analysis and Optimization, 27 (3-4), 237-257 (2006).

G. Adilov and I. Yesilce, “B~'—convex Sets and B~!—measurable Maps”’, Nu-
merical Functional Analysis and Optimization, 33 (2), 1-11 (2012).

W. Briec and C.D. Horvath, “B-convexity”, Optimization, 53, 103-127 (2004).

W. Briec, C.D. Horvath, “Halfspaces and Hahn-Banach like properties in B-
convexity and Max-Plus convexity”, Pacific J. Optim., 4, (2), 293-317 (2008).

W. Briec, C.D. Horvath and A.M. Rubinov, “Separation in B-convexity”, Pacific
J. Optimiz., 1, 13-30 (2005).



Adly S., Cibulka R., Outrata J.V. 15

Quantitative stability of a generalized equation.
Application to non-regular electrical circuits
Adly S., Cibulka R., Outrata J.V.
samir.adly@unilim.fr, cibi@kma.zcu.cz, outrata@utia.cas.cz
XLIM UMR-CNRS 6172, Université de Limoges, France, Institute of Information
Theory and Automation, Academy of Sciences of the Czech Republic

The paper is devoted to the study of several stability properties (such as
Aubin property, calmness and isolated calmness) of a special non-monotone
generalized equation. Given matrices B € R™*™ (C € R™*" and mappings
f:R*" = R" F:R™ = R™ with m < n, consider the problem of finding,
for a vector p € R™, the solution z € R™ to the inclusion

p € f(2) + BF(Cx). (1)

In [1], the authors considered the special case of the above inclusion with the
linear single-valued part f, with B = C”, and F being the Clarke subdiffer-
ential of the so-called Moreau-Panagiotopoulos super potential. To be more
precise, this potential was supposed to be

J(x) = ji(x1)+ja(x2)+- -+ jm(zm) whenever == (x1,..., zm)T e R™,

with j; : R — R being a locally Lipchitz continuous function for each ¢ =
1,...,m.
We will refer to several additional assumptions in the main results. Name-

ly,
(A1) B is injective;
(A2) f is continuously differentiable on R";
(A3) F has closed graph;
(A4) C is surjective; and
(A5) there are F; : R = R, j € {1,...,m} such that F(z) = Hle(a:j)
j:

whenever z = (z1,...,2,)T € R™.

Denote by ® the set-valued mapping from R™ into itself defined by ®(z) =
f(z) + BF(Cz) whenever z € R™. Our aim is to investigate stability proper-
ties such as Aubin continuity, calmness and isolated calmness of the solution
mapping S := ®~!. Especially, the verifiable conditions ensuring these prop-
erties are given in terms of the input data f, F, B and C.

We show that this theory is of great interest for the design of electrical circuits
involving nonsmooth and non-monotone electronic devices like diacs (DIode
Alternating Current) and SCR (Silicon Controlled Rectifiers). Circuits with
other devices like Zener diodes, thyristors, varactors and transistors can be
analyzed in the same way.
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Nonsmooth Analysis and Identification of Structures
Aliawdin P.
Piotr-Aliawdin@yandex.ru
University of Zielona Gyra, Poland Prof. Z. Szafrana 1, 65-516, Zielona Gyra,
Poland

Introduction. Protection of buildings and structures from seismic ac-
tions is very important. One way of protection is equipment of their load-
bearing structures with systems of different elements- absorbing the energy
of external actions [1]. This paper presents a nonsmooth mathematical model
of the limit analysis of systems with destructive brittle and plastic elements
providing such protection. Next, the identification of computational models
is considered on examples of construction vibration and heat transfer in road
pavement structure.

1. A mathematical model of structures with seismic-protected
systems. Some elements such systems can be abruptly shut down (elastic-
brittle ones), and some can be damaged as a result of plastic flow (elastic-
plastic ones).

Let us assume the problem of load-bearing capacity of such structures as
a generalized dynamic shakedown problem [2, 3] taking into account small
system displacements under low cyclic external actions. First we write the
FEM equation of motion for a damped discrete elastic system under loading
F', expressed in matrix notation, as follows:

[M]i+ [Clu+ [K]u = F, (1)

where: [M], [C], [K] are accordingly structural mass, damping and stiffness
matrices; i, @ , u are accordingly nodal acceleration, velocity and displace-
ment vectors; F' is a vector of load as a function of time t.
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The vector F' belongs to the set Qp, described by the vectors of single
loadings F}, j € J; J is a set of single loadings. The set Qr has to include a
natural structures stress state F' = 0 (i.e. 0 € Q) and generally is nonconvex.
For the purpose of simplification it may be approximated by the convex
domain.

The “elastic” solution of equation (1), for the known initial conditions, is
used then as basis for analysis of real inelastic system. Namely the problem
of load-bearing capacity of structures made of perfectly elastic-plastic and
elastic-brittle elements, under variable loads is formulated as follows. Find
the vectors of single loadings F}, j € J, a vector of load F', as well as the
vector of residual forces S” = (57, S,.) such, that

ZT}% F; — max, (2)
jeJ

ep1/0ra(Sp + Spis Kpt) <0, (3)
@or (St + Sty Kr) <0, (4)
S¢ = wpF, (5)

Api Sy + Apr Sy, = 0, (6)
Sy = Opy. (7)

Here T, are the vectors of weight coefficients corresponding to the vectors of
single j-loading Fj, j € J; ¢,/qF are the yield functions, depending on the
set Qp external actions (loadings F;) for elastic-plastic elements; ¢y, are the
strength functions for brittle elements; wr is the matrix of loads influence on
the elastic forces S¢ = (55, 55,); A = (Api, Apr) is a matrix of equilibrium
Eqns (6). The subscripts pl and br relate to the elastic-plastic and elastic-
brittle elements, superscripts e and r — to the elastic and residual forces.

After finding the failure mechanism (active constraints (3), (4) in problem
(1)—(7) one must take into account the dynamic effects of this destruction in
the some iterative procedure [2].

Note that in addition to loads F in this problem it is possible to consider
the dislocations d;, j € J, as similar external actions. By changing the dis-
location d; we can also optimize the state of structures prestressing. In the
particular case of one-pass loading the problem (1)—(7) is simplified, while
|J| = 1, this problem is also applicable for the analysis of the progressive
destruction of structures.

2. The procedure of parameter identification for dynamic sys-
tem. The identification was performed by two criteria, namely the criterion
of least squares and the criterion of minimax [4].
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Criterion of a minimax tuning of FE model for the natural frequencies
dynamic system,
(fiF+ f7)/2

has to minimize under eqns (1), and known initial conditions, where f,,i
are measured values i-th natural frequencies, f; = w;/(2m), i € I; I is a set
of analyzed frequencies;

fei = fei(x) are values i-th natural frequencies, calculated from eqns (1)
and known initial conditions, depending on the vector z;

x is a vector of parameters of system x € R"; n is a number parameters;

;r , i are accordingly high and low values of i-th natural frequencies of

vibration given by the designer.

As far as the identification of system is ill-posed problem, criterion of
optimality (8) is modified,

; (8)

) =1y

pa(z) = p(z) + afz?, 9)

where « is a Tikhonov regulation parameter, a > 0;

lzll = [ > a?.
i€lin

Choice of regulation parameter a on k-step of calculations process, k =
0,1,..., K, was made by the formula

ar = apg®, q>0. (10)
The next parameter a1 is find from the following (K + 1)-th problem:

||'r0£k+1 - xak” - kgl()u}(’ (11)
up to comprehensible accuracy for solving an initial problem (8).

3. Numerical analysis of dynamic and heat transfer identification
problems for the constructions. First we analyze the problem of a con-
struction vibration of 9-storey residential building located near the subway
shallow in Minsk [2]. Two inverse problems are formulated here, to identify
material parameters of structure by smooth (least squares) and nonsmooth
(minimax) optimization.

Secondly the same approach was used for heat transient regime in real
road pavement structure [5] respectively the boundary conditions and heat
material parameters. It was shown that the criterion of least squares does not
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give trust results and only nonsmooth criterion of minimax lead to a trust
result of the identification.
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Solvability of Systems of Linear Interval Equations via the
Codifferential Descent Method
Angelov T.
angelov.t@gmail.com
St. Petersburg State University, Universitetskii prospekt 35, Petergof, 198504,
St. Petersburg, Russia

A system of linear interval equations
Az =Db, (1)

is considered in the works [1, 2, 3]. Here A = (a;;) is an interval (m x n)
matrix and b = (b;) is an interval m-vector. System (1) is understood as a
family of all systems of linear equations Az = b of the same structure with
the matrices A € A and vectors b € b.
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An interval a is defined by its lower a and upper a bounds, so that a =
[a,a] = {z € R|a < z < a}. We will need the following definitions:

mida = 1(a+a) — midpoint of an interval a,

(a — a) — radius of an interval a,

N[

rada =

mignitude of an interval a,
— the closest point to zero
inside an interval a.

(a) { min{[al, [a}, if0¢&a,

0, otherwise,

By the (weak) solution set of a system of linear interval equations (1) is
meant the set

E(A,b) ={x € R"| Az = b for some A € A, b€ b},

constructed of all possible solutions of the systems Az = b with A € A and
beb |23

The following statement holds [1].

Statement. The expression

1<i<m

Uni(z,A,b) = min < radb; — <mid b; — Zaijxj> (2)

j=1

defines the functional Uni : R™ — R, such that the belonging of a vector
2 € R™ to the solution set Z(A,b) of the system of linear interval equations
Az = b is equivalent to the nonnegativity of the functional Uni in z,

x €E(A,b) <= Uni(z,A,b)>0.

Taking into account that the functional (2) is nonsmooth and multi-
extremal, it is more natural to study it by means of tools of codifferential
calculus [4], than by means of the ones discussed in the paper [1].

Optimization of the functional (2) by the codifferential descent method is
suggested. Special software package dealing with such problems is created.

References

[1] S. P. Shary. Solvability of Interval Linear Equations and Data Analysis under
Uncertainty // Automation and Remote Control. Springer. Vol. 73(2) (2012).
P.310-322.

[2] S. P. Shary. Finite-dimensional Interval Analysis. Novosibirsk, (2011). Elec-
tronic book, accessible at http://www.nsc.ru/interval/Library /InteBooks (In
Russian)



Astorino A., Frangioni A., Fuduli A., Gorgone E. 21

[3] A. Neumaier Interval Methods for Systems of Equations. Cambridge: Cam-
bridge University Press, (1990).

[4] V. F. Demyanov, A. M. Rubinov. Foundations of Nonsmooth analysis and
Quasidifferential Calculus, Moscow, Nauka (1990)

A Nonmonotone Proximal Bundle Method with
(Potentially) Continuous Decisions on Stepsize
Astorino A., Frangioni A., Fuduli A., Gorgone E.
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We discuss a numerical algorithm for minimization of a convex nondif-
ferentiable function belonging to the family of bundle methods. Unlike all
of its brethren, the approach does not rely on measuring descent of the ob-
jective function at the so-called “serious steps”, while “null steps” only serve
at improving the descent direction in case of unsuccessful steps. Rather, a
merit function is defined which is optimized at each iteration, leading to a
(potentially) continuous choice of the stepsize between zero (the null step)
and one (the serious step). By avoiding the discrete choice the convergence
analysis is simplified, and we can more easily obtain sharp efficiency estimates
for the method. Simple choices for the step selection actually reproduce the
dichotomic 0/1 behavior of standard proximal bundle methods, but shedding
new light on the rationale behind the process, and ultimately with different
rules. Yet, using nonlinear upper models of the function in the step selection
process can lead to actual fractional steps.
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Smoothing techniques in nonsmooth optimization and
applications
Bagirov A.
a.bagirov@ballarat.edu.au
School of Science, Information Technology and Engineering, University of
Ballarat, University Drive, Mount Helen, Ballarat, Victoria, 3350, Australia

In this talk we discuss various smoothing techniques for solving nons-
mooth optimization problems with known structures. Such techniques involve
the exponential and hyperbolic smoothing functions. The possible extension
of these techniques to general nonsmooth optimization problems is also dis-
cussed. The smoothing techniques are applied for solving quasidifferentiable
optimization problems. The efficiency of algorithms based on smoothing tech-
niques will be demonstrated by applying them to the well known nonsmooth
optimization test problems.

Metric Projection, Weak and Strong Convexity
Balashov M.
balashov73@mail.ru
Moscow Institute of Physics and Technology, Institutskii pereulok 9, Dolgoprudny,
Moscow Region, 141700, Russia

Current investigations were inspired by works [1, 2, 3, 4, 5, 6, 7].

We discuss the relationship between the uniqueness and continuity of the
metric projection on the closed sets in some class of Banach spaces (all over
reals) and the properties of considered sets. Firstly we consider when the next
problem

inf ||z — 1
inf [}z — a 1)
has unique solution for any point x from some neighborhood of the set A,
namely for each z € U(R, A) = {y EE|0<o(y,A) = in}f4 ly —all < R}.
a€

We shall define m(x, A) = {a € A | ||z—a| = o(x, A)}. For closed bounded

set A C E we also define T4(R) = {az € E| sup ||z —al > R}.
acA
Secondly, we consider the similar problem

sup ||z — al|. (2)
a€A

The studied question will be the same: when for each point z, = is sufficiently
far from the set A (namely, z € T4(R)), problem (2) has unique solution?
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Definition 1. ([7]). A subset A C E is called prozimally smooth with
the constant R > 0, if the distance function z — p(x, A) is continuously
differentiable on the set U(R, A).

Definition 2. ([7, 9]). We say that a subset A C E satisfies P-supporting
condition with the constant R > 0, if for any such point « € U(R, A), that
a € n(x, A), we have inequality

0 (a+ R(xa),A) > R.
[ = all

Theorem 1. ([9, Theorem 2.4]). Let E be uniformly convex and uniformly
smooth Banach space; A C E be closed subset, R > 0. The next conditions
are equivalent:

(i). The set A satisfies to the P-supporting condition with the constant R.

(ii). The set A is proximally smooth with the constant R.

(iii). The projection mapping x — w(x, A) is singleton and continuous on
the set U(R, A).

Theorem 1 was proved in [11] for the moduli of convexity and smoothness
of the space E of the power type.

Theorem 1 determines some class of nonconvex sets with the same ap-
proximation properties (in U(R, A)) as convex sets. We shall call such class
weakly convex sets.

A function f : E D U — R is called weakly convex with the modulus
p: [0,diamU) — [0,400), (u(t) increasing, p(0) = 0) on the set U, if it
is continuous on the set U and for any pair of points xg,z; € U, such that
[zo,21] C U, and for any number A € [0, 1], we have f((1 — XN)zg + Azx1) <
(1= ) f(0) + Af(@1) + AL — Np(llzg — a1])-

Theorem 2. For any uniformly convexr and uniformly smooth Banach
space any nonconvexr proxrimally smooth set has weakly conver distance func-
tion in some neighborhood with modulus p of the type t? = O(u(t)), t — +0
and p(t) = o(t), t — 4+0. The converse statement also holds true.

In the case of the Hilbert space we obtain precise relationships between
the size of neighborhood of the set and modulus of weak convexity in the
previous theorem.

We shall say that a closed convex set A from a Banach space E is summand
of the ball of radius R > 0, if there exists another closed convex set B such
that A + B = Bgr(0). As we proved in [12, Theorem 4.2.7] in the Hilbert
space any summand of the ball of radius R > 0 A should be an intersection

of shifts of the ball Br(0), i.e. A= (| Bpr(x). We shall call a set of the type
r€X
A= () Br(x) # @ strongly convez of radius R > 0.
zeX
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Theorem 3. ([8, Theorems 1, 7|) Let a Banach space E be strictly convex
and reflexive, the subset A C E be closed and convex. Then

1) If A is summand of the ball of radius R, then for any x € Ta(R)
problem (2) has unique solution;

2) If dim E < oo and for any x € Ta(R) problem (2) has unique solution,
then the set A is summand of the ball of radius R.

We also shall discuss generalization of Theorem 3 for the case of the
Hilbert and Banach spaces.

Theorem 4. ([10]) Let H be the Hilbert space and A C H be a closed
convex set. Then the properties

1A= N Balw)# 2,

x€

2) for any o > 0 and any points xo,x1 € H\ (AU U (0, A)), a; = m(x;, A),

i =0,1, we have

lap — a1 < lzo — =1,

R+op
are equivalent.
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Dual fuzzy cones
Baskov O.
Saint Petersburg State University, Universitetskiy pr., 35, Saint Petersburg,
198504, Russia

Since the second half of the 20th century the fuzzy set theory has been
extensively developed. It turned out that various practical problems can be
handily formulated and explored with the use of the fuzzy logic. Known
theorems started to get generalized to the fuzzy case. This report is devoted
to a generalization of the concept of dual cones.

In crisp case a dual cone of a given set C' consists of all vectors z whose
scalar product with any vector of C' is nonnegative:

DualC ={y:Vzx € C = xy > 0}.

If there exists such vector y € C' that xy < 0, then the vector x does not
belong to the dual cone of C. Based on these considerations, the concept of
the dual cone can be generalized as follows. For vectors x, y such that xy < 0,
where y belongs to C' with some grade o (we write Ao (y) = «), x does not
belong to Dual C' with the degree of certainty equal to . Thus, we define the
membership fuction of the dual cone of C' to be
Apuatc () = inf (1= Ac(y)).
y:xy<0

It has been shown that thus defined fuzzy set DualC' is a fuzzy cone.
Moreover, it is always convex and closed. Some other properties of the crisp
dual cones may be generalized as well. For instance, if two fuzzy sets A and
B satisfy A C B, then Dual A D Dual B. It also true that the dual cone of
the dual cone of a given fuzzy set C' coincides with the minimal closed convex
cone containing C":

DualDual C = clcone C.

Particularly, the dual cone of the dual cone of a finitely generated fuzzy cone
is the cone itself.

The concept of dual fuzzy cone can be used to solve a fuzzy multicriteria
choice problem in a framework of the so-called axiomatic approach of reducing
the Pareto set which is based on a certain kind of numerical data on a fuzzy
preference relation of the Decision Maker [1]. Under ’reasonable’ axioms the
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data is represented as a set of vectors u!, ..., u* with associated degrees of
certainty o', ..., o. The cone of the preference relation then must contain
a fuzzy convex conical hull M = cone {u'/at,... uF/a¥ el /1,. .. e™/1},
where e!, ..., e™ form the basis of the criteria space R™, and x/v denotes
the vector = with associated degree of certainty . The generators of the
dual cone of M allow to construct new criteria, the Pareto set with respect
to which is narrower than the initial Pareto set. For finding the generators
a generalization of a special case of the Motzkin — Burger algoithm [2]| has
been made.

The author thanks the Russian Fund for Basic Research for financial
support (project No. 11-07-00449).

References

[1] V.D. Noghin, “The Edgeworth — Pareto Principle and the Relative Importance
of Criteria in the Case of a Fuzzy Preference Relation”, Computational Mathe-
matics and Mathematical Physics, 43, No. 11, 1604-1612 (2003).

[2] S.N. Chernikov, Linear inequalities, M., Nauka Publ. (1968).

Tolerance-based Algorithm for the Assignment Problem
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The Assignment Problem (AP) is the problem of assigning n workers to
n jobs so that the total cost of this assignment is minimal, each worker is
assigned to only one job and for each job only one worker is assigned to it.
The cost paid to worker ¢ for job j is denoted as ¢(i,7). Though it is well
known that the AP is polynomially solvable, efficient algorithms for solving
it are important. The AP is used as a relaxation for many NP-hard problems
and so it should be solved as fast as possible.

The approaches proposed for the solution of the AP can be classified into
three classes: primal-dual (shortest path) algorithms, pure primal algorithms,
and pure dual algorithms. An experimental evaluation of a best representa-
tive algorithm from each of these classes shows that the best algorithm is
the Hungarian algorithm based on the primal-dual (shortest path) approach
and Konig-Egervary’s theorem [1]. The time complexity of the Hungarian
algorithm is O(n?). In paper [1] eight codes are selected and compared on a
wide set of dense instances containing both randomly generated and bench-
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mark instances. These codes represent the most popular and efficient meth-
ods for solving the AP. Since the Jonker and Volgenant’s code (JV-algorithm
described in [3]) has a good and stable average performance for all tested
instances and it is based on the Hungarian algorithm, we compare the algo-
rithm suggested in this paper against the JV-algorithm.

In this paper we develop a tolerance-based branch-and-bound algorithm
for solving the AP. Our main contributions are represented by the tolerance
based lower bound and branching rule. In spite of the fact that the AP is
polynomially solvable by the Hungarian algorithm, we show that the suggest-
ed branch-and-bound algorithm (which is exponential) can be more efficient
on a number of instances.

A notion of a tolerance comes from sensitivity analysis. In a minimization
problem the upper tolerance of an element is the maximal increase of its value,
such that the current optimal solution of this problem remains optimal. The
lower tolerance of an element is the maximal decrease of its value, such that
the current optimal solution of this problem remains optimal. As it is shown
in [2], the upper tolerance of an element (contained in the optimal solution)
can be calculated as the change in the value of the optimal solution when this
element is forbidden. For elements which are not in the optimal solution the
upper tolerance is equal to infinity. In the same way the lower tolerance of
an element (not contained in the optimal solution) is equal to the change in
the value of the optimal solution when this element is inserted to the optimal
solution.

For solving the AP with branch-and-bound algorithm we consider the
Relaxed Assignment Problem (RAP) for which the constraint requiring that
each job is assigned to exactly one worker is removed. The optimal solution of
the RAP can contain unassigned jobs (without any worker) and overassigned
jobs (with two or more workers). To solve the RAP it is necessary to find
the minimal element in each row of the cost matrix ¢(¢,j). Consider the
cost matrix in the following example (the RAP solution is shown by square
brackets):

5 1] 2 5
8 3 [1 5
3 1] 8 4
B] 4 5 8

This solution is not feasible for the AP because job 2 is overassigned and job 4
is unassigned. The objective function is f = 6 and it is a lower bound for the
AP solution. We describe the suggested tolerance-based branch-and-bound
algorithm on this example. Elements (1,2) and (3,2) can’t be present in the
optimal solution of AP simultaneously, so one of them should be forbidden.
If, for example, we forbid element (1,2) then the increase in the objective
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function of the RAP (or upper tolerance of (1, 2)) will be 2—1 = 1, because the
next minimal value in the first row is 2. Besides, one of the elements in the 4-th
column should be present in the optimal solution of AP. So we should insert
one of them to the optimal solution. If, for example, we insert element (2, 4)
then the increase in the objective function of the RAP (or lower tolerance of
(2,4)) will be 5 — 1 = 4. The tolerance-based approach includes the following
steps. First the upper tolerances u(3, j) of all the unfeasible elements from the
optimal solution ((1,2) and (3, 2) in this case) are computed: u(1,2) =2—1 =
1,u(3,2) = 3—1 = 2. The minimal upper tolerance is u = 1. Then we compute
the lower tolerances [(i, j) of all the unfeasible elements which are not in the
optimal solution ((1,4),(2,4),(3,4) and (4, 4) in this case): {(1,4) =5—1 =4,
1(2,4) =5—-1=4,13,4) =4—-1=3,1(4,4) = 8 —3 = 5. The minimal
lower tolerance is [ = 3. We compute the maximum of these minimal upper
and lower tolerances: max{u, [} = 3, which is called the bottleneck tolerance,
because the solution of the RAP should be increased at least for this value
in order to obtain a feasible solution of the source AP. A new lower bound
for the AP solution is 6 + 3 = 9. The “bottleneck” is provided by element
(3,4) and it is efficient to branch by this element. We consider two branches:
in the first branch element (3,4) is inserted to the optimal solution of the
RAP, in the second branch it is forbidden. So for the first branch we have
the following solution:

5 1 2 5
8 3 [1] 5
31 8 [4
B] 4 5 8

It is a feasible solution for the AP with f = 9. This gives us an upper bound
for the optimal solution of the AP. In the second branch we have forbidden
element (3,4) with the minimal lower tolerance. So the new minimal lower
tolerance is [ = 4 and the tolerance-based lower bound is equal to 6 + 4 =
10. It is greater then the current upper bound of 9, which means that the
second branch is stopped here and f = 9 is the optimal solution of the AP.

The suggested branch-and-bound algorithm is additionally improved by
a heuristic construction of a feasible AP solution on every branch. It works
faster than the Hungarian algorithm for the instances on which the Hungarian
algorithm makes a lot of “covering” steps.
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In this paper a network game theoretical model of emission reduction is
considered. Let I = {1,...,n} be the set of players involved in the game.

The dynamics of the game is governed by the following system of differ-
ential equations:

S0 =Y () + 5~ 0si),

JEK;

Si(to) :SZO, 1= ].,...,TL,

where § is the natural rate of pollution absorption,

e;(t) is the emission of player i at time ¢,

S;(t) is the stock of accumulated pollution of player ¢ by time ¢,

K; is the set of players, which influence the evolution of the stock of
accumulated pollution of player i,

k; is the number of players which evolution of the stock of accumulated
pollution depends on emission of player j, e;.

The game starts at the time instant ¢y from the initial state Sy =
(59,89, ..., S0).

C;(e;) will be the emission reduction cost incurred by player ¢ while lim-
iting its emission to level e;:

Ciles(t)) = %(ei(t) —&)?  0<e® <& >0

D;(S;(t)) denotes its damage cost:
Dl(SZ) = FSi(t), > 0.

The payoff function of the player ¢ is defined as

(oo}

Ki(8?10) = [ €079 (Coles() + Di(s: () at,

to



30 Borwein J.M.

where p is the common social discount rate.

Suppose that each player seeks to minimize a stream of discounted sum
of emission reduction cost and damage cost.

In this paper the feedback Nash equilibrium is computed for the net-
work emission reduction game. The corresponding optimal trajectories for all
players i € I where founded.
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Maximal monotone operator theory has recently turned fifty years old. In
the first part of the talk, I shall try to explain why maximal(ly) monotone
operators are both interesting and important objects while briefly survey the
history of the subject — culminating with a description of the remarkable
progress made during the past decade. In the second part of the talk, I shall
describe in more detail some of the recent striking results on the structure of
monotone operators in non-reflexive space. Part I follows the paper [1] and
the book chapter [2, Ch. 8]. Part II is based upon [3, 4, 5].

References

[1] Jonathan M. Borwein, “Fifty years of maximal monotonic-
ity”,  Optimization  Letters, 4  (2010)  473-490.  Available at
http://carma.newcastle.edu.au/jon/fifty.pdf

[2] JM. Borwein and J. Vanderwerff, Conver Functions: Construc-
tions, Characterizations and Counterexamples, Encyclopedia of Maths
and Applications, 109, Cambridge University Press (2010). See
http://carma.newcastle.edu.au/ConvexFunctions

[3] Heinz H. Bauschke, Jonathan M., Xianfu Wang and Liangjin Yao, “Fitzpatrick-
Phelps type coincides with dense type and negative-infimum type”, Optimization
Letters. E-published, August 2011. DOI 10.1007/s11590-011-0383-2. Available
at http://arxiv.org/abs/1104.0750



Bot R.I., Grad S.-M. 31

[4] Heinz H. Bauschke, Jonathan M. Borwein, Sean Wang and Liangjin Yao, “The
Brezis-Browder theorem in an arbitrary Banach space”. Submitted to J. Func-
tional Analysis, Oct 2011. Available at http://arxiv.org/abs/1110.5706

[5] Heinz H. Bauschke, Jonathan M. Borwein, Sean Wang and Liangjin Yao, “Con-
struction of pathological maximally monotone operators on non-reflexive Ba-
nach spaces”. Submitted to Set Valued and Variational Analysis, August 2011.
Available at http://arxiv.org/abs/1108.1463
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In this talk, which is based on [1], we provide an approach to maximal
monotone bifunctions based on the theory of representative functions. To be-
gin we extend to general Banach spaces the statements due to A.N. ITusem
(see [3]) and, respectively, N. Hadjisavvas and H. Khatibzadeh (see [2]), where
sufficient conditions that guarantee the maximal monotonicity of a bifunc-
tion were proposed. When the space we work with is taken reflexive, the
mentioned results from the literature are rediscovered via easier proofs that
involve representative functions and convex analysis techniques and do not
require renorming arguments as done in the original papers.
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Clasical linear vector optimization duality revisited
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This talk will bring into attention a vector dual problem that successfully
cures the trouble encountered by some classical vector duals to the classical
linear vector optimization problem (see [4, 5]) in finite-dimensional spaces.

This “new-old” vector dual is based on a vector dual introduced by Bot
and Wanka for the case when the image space of the objective function of
the primal problem is partially ordered by the corresponding nonnegative
orthant, extending it for the framework where an arbitrary nontrivial pointed
convex cone partially orders the mentioned space. The vector dual problem
we propose (cf. [1]) has, different to other recent contributions to the field
(see [3]) which are of set-valued nature, a vector objective function.

Weak, strong and converse duality for this “new-old” vector dual problem
are delivered and it is compared with other vector duals considered in the
same framework in the literature (see [1, 2]).

We also show that the efficient solutions of the classical linear vector
optimization problem coincide with its properly efficient solutions (in any
sense) when the image space is partially ordered by a nontrivial pointed
closed convex cone, too, extending the classical result due to Focke and,
respectively, Isermann.
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On strict h-polyhedral separability of two sets
Cherneutsanu E.
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St. Petersburg, Russia

In the report, we analyze a gradient-type method for solving the problem
of strict separation of the convex hull of a set A from a set B by means of
h - hyperplanes. Corresponding examples are provided.

O CTporom h—OTJJ,eJ'IeHI/II/I ABYX MHO>XeCTB

ITycTs B npocTpancrse R™ 3a1aHbI JBa KOHEYHBIX MHOYKECTBA
— m _ Ok
A=A{a;}iZy m B=A{bj}j_;.

3ajady CTPOroro OTEJIEHUs BBLIMYKJIOW ODOJIOYKM MHOMKeCcTBa A OT MHO-
KecTBa B ¢ moMoImpio i THIIEPILIOCKOCTEIH, ONPEIEIsieMbIX yPABHEHUSIMEI

(w*,x) =75, S€E1:h,

rae w® # O npu Beex s, MOXKHO (bOPMATN30BATE CJIemyonmM obpasom [1, 2[:

k
1 : s .
+% E Srg%[—(w,bj>+vs+c]+—>mén. (1)

3aecy G — marpurna pasmepa h X (n+ 1) co crpokamu g° = (w®,7s), s €
1: h; ¢ > 0 — mapamerp. Marpuiy G yKa3aHHBIX pa3MepoB OyeM Ha3bIBATH
nodrodsuieti, ecin y He€ Bce w® OTJIIMIHBI OT HYJEBOI'O BEKTODA.

Ouesuuno, uro F(G) > 0. CupaBeyiuBo ciiejyiolnee yTBepK IeHue:

eunYKAas 060A0uKa MHOHCECMEa A u  Mmmoxcecmso B cmpozo  h-
omodeaumvs mMoz0a U MOALKO Mmoz2da, Ko20a cyulecmsyem modro0AUGA
mampuya G, maxas, wmo F(G,) = 0.

Bagaua (1) cBoAMTCH K KOHEYHOMY YHCILy 3aJad JIMHEHHOrO HpOrpaMm-
muposanus (JIII) (cm. [3]), ommako kommuectBo Takmx 3amad JIII n mx
pasMepbl MOTYT OBITh OYEHb BEJUKH. 1103TOMY MPEJCTaBIAIOT UHTEPEC
JIOKaJIbHBIE MeTOJBI perenus 3aaun (1) (em. [1, 4]). Caenyer umers B By,
YTO B 3TOM CJIydae MPUXOJNTCS MAHUMHU3UPOBATHL (DYHKIINHU, 3aBUCSIIUE OT
marpuibl G.
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B noknane aHammsmpyercs MeTOJ, TPAJUEHTHOrO THUIA JUIS PEIICHHs
sagaun (1) (em. [5]). IIpuBopsarcs nmpumeps! 3-oT/esneHust. BoiscHsIeTCsT POJIb
napamerpa c.

Pabora Bemosirena npu nogaepxke POOU, mpoekt Ne12-01-00752.
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Dynamics and Optimization of Multibody Systems in the
Presence of Dry Friction
Chernousko F.
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pr. Vernadskogo 101-1, Moscow, 119526, Russia

Motions of various multibody mechanical systems over a horizontal plane
in the presence of dry friction forces are considered.

Snake-like systems consist of several rigid rods connected consecutively by
cylindrical joints where actuators are placed. Such systems move as a result
of twisting at the joints caused by torques generated by the actuators.

Another kind of multibody systems considered in the paper are systems
containing movable internal masses. The controlled relative motion of these
masses result in the displacement of the system as a whole.

Of course, such motions are possible only in the presence of external forces.
In this paper, we take into account dry friction forces obeying Coulomb’s law.
The dry friction force F' acting upon mass m moving along a plane is defined
as

F=—fmgo/lo| if 040, |F| < fmg if ©=0.
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Here, v is the velocity of mass, g is the gravity acceleration, and f is the
coefficient of friction. Note that, at the state of rest (o = 0), the friction
force is not determined uniquely. This feature leads to specific peculiarities
in investigating systems with friction.

Principles of motion considered in the paper are of interest for biomechan-
ics [1]. On the other hand, these ideas are widely used in robotics, especially
for mobile mini-robots [2-7].

For the snake-like systems, both quasistatic and dynamic modes of motion
are considered. In quasistatic motions, the dynamic terms in the equations
of motion are omitted, and these slow motions are indeed a sequence of
equilibrium positions. In dynamic motions, full equations of motion are taken
into account.

It is shown that progressive quasistatic motions are impossible for two-
link and three-link systems but can be performed by multilink systems. For
two-link and three-link systems, progressive periodic motions are designed
that consist of alternating slow and fast phases [8,9]. Wave-like quasistatic
progressive motions of multilink systems are describe d in [10].

Progressive periodic motions of systems with internal moving masses are
also proposed. Here, different possible controls of internal masses are consid-
ered: either relative velocities or accelerations of the internal masses can play
the role of controls.

The most important characteristic of a progressive motion is its aver-
age velocity. Hence, it is natural to maximize this velocity with respect to
parameters of the system and controls applied.

A number of such optimization problems are solved. The average speed
of the progressive motions for two-link and three-link systems is maximized
with respect to their geometrical and mechanical parameters (lengths of links,
masses, etc.) as well as to certain control parameters [11,12]. Similar problems
are solved also for systems with internal moving masses [13]. As a result, op-
timal parameters and controls are obtained that correspond to the maximum
possible speed of the system under consideration.

Computer simulation and experimental data are presented that illustrate
and confirm the obtained results. These results are useful for mobile robots
moving in various environment and inside tubes.

The work was supported by the Russian Foundation for Basic Research
(Projects 11-01-00513 and 11-01-12110).
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Convex level-sets integration
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Given a multivalued map F : @ — R™ with £ convex subset of R™, the

common convex integration problem consists in finding a convex function

f

: Q — R such that F' coincides with the Fenchel-subgradient of f. It is
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known that if F' is single-valued and continuously differentiable a necessary
and sufficient condition is the symmetry and positive semi-definiteness of the
matrix F'(z) at any = € . In the multivalued case, a necessary and sufficient
condition is the maximal monotonicity of F. In both cases, f is defined up to
a constant and F(x) belongs to the normal cone at the point z to the level
set {y € Q ¢ f(y) < f(x)}.

More complex is the convex level sets integration problem which consists
to find a function f with convex level sets such that, at any z € Q, F(x)
belongs to the normal cone at the point = to the level set {y € @ : f(y) <
f(@)}. If f is a solution, then ko f, with £ : R — R increasing, is also a
solution. Solutions are defined up to a scalarization.

The single-valued case has been solved by Crouzeix—Rapcsak. If F' is con-
tinuously differentiable and does not vanish on €2, a necessary and sufficient
condition is the symmetry and positive semi-definiteness of the matrix F’(x)
on the orthogonal subspace to F(z) at any = € Q.

This talk intend to give a state of art on the very recent advances in the
multi-valued case. One considers theoretical aspects and numerical construc-
tions.

An important application is the revealed preference problem in consumer
theory.
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Bilevel programming, Lyapunov functions and regions of
attraction
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Bilevel optimization involves a hierarchy of two optimization problems.
Some variables in the upper level problem are constrained to be optimal in the
lower level problem [1]. The origin of the bilevel programming problems can
be traced back to the Stackelberg games introduced in the 1930s, although
its modern formulation arised in the 1970s [2].

We investigate a connection between bilevel optimization and stability of
nonlinear dynamical systems of the form

@(t) = f(x(t)),

where x € R™ and f is locally Lipschitz. We assume that o = 0 is an expo-
nentially stable equilibrium. In this case, an important system characteristic
is the size of its region of attraction, which is a set of initial points x(0) with
the property z(t) — 0 as t — oo.

We can estimate the region of attraction through the sublevel sets of
a Lyapunov function [3]. A Lyapunov function for the equilibrium zq is
a positive definite continuous Lipschitz function V(x,p) of the state space
vector x (parameterized by vector p), which is decreasing along the solution
trajectories of the system:

V($,p) < va 7& 07

where V(z,p) =< V.V(z,p), f(z) > if f and V are smooth functions, or
V(z,p) = DYV (z,p) (the Dini derivative [12]) otherwise. An estimation of
the region of attraction is given by a compact set Q(p,~) defined as follows:

Qp,v) = {z: V(z,p) <7} Qp,») S T(p), T(p) = {z: V(z,p) <0}

In case f and V are polynomial and p is fixed, our estimation can be
computed in polynomial time by means of semidefinite programming (SDP),
if one can represent V as sum of squares (SOS) of polynomials [4]. This
approach relies on a convex relaxation of the problem with fixed p. To obtain
a better estimate, we need to vary p, and then our problem ceased to be
convex. Some heuristic algorithms have been proposed for this case, using
SDP with SOS polynomials as their major part [6].

Note that SOS polynomials represent only a fraction of all positive definite
polynomials that tends to zero as we increase the state space dimension [5],
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although a positive polynomial can always be expressed as a ratio of two
SOS polynomials [4]. Therefore, it is reasonable to consider the problem in
its general form, even for polynomial f,V. Let us denote by P a subset of
all p for which V(z,p) is a positive definite function. Suppose that we have
a size estimation of Q(p,~) denoted by S(p,7), which is a positive definite
continuous Lipschitz function of its parameters. Observe that for a fixed p,
Q(p,7) of maximum size in terms of inclusion is defined by the following
choice of v [7]:
y= min V(z,p), H(z,p)={z:V(zx,p)=0z#0}
x€H (xz,p)

Note that in general case additional constraints should be added, to guarantee
the existence of the minimum [8]. Now, our optimization problem can be
formulated as bilevel one:

S(p,
max 5(p, )

sty = xénh}?m) V(z,p).

Note that one can consider minimization of 1/S(p,~) as the upper level
problem here. To the author’s knowledge, problem of this kind first appeared
in [9]. In [7] one can find a review of earlier attempts to solve it by var-
ious nonlinear optimization techniques. In [10, 11] this problem has been
recognised as a nonsmooth one even for smooth f,V and local improvement
algorithms have been proposed using generalized Clarke gradient [12]. The
required solution of the lower level problem for smooth f,V is achieved in
[13] by a method of global interval optimization.

Connecting the problem with bilevel programming, we arrive at two con-
clusions. First, our problem in its general form is NP-hard, since bilevel pro-
gramming has been proved to be NP-hard even in its simplest form [1, 2.
Second, one can use algorithms developed for bilevel programming (see e.g.
[2, 14, 15]) to estimate the region of attraction, if they can handle noncon-
vexity of the lower level problem.
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We consider the so-called pessimistic version of bilevel programming pro-
grams. Minimization problems of this type are challenging to handle partly
because the corresponding value functions are often merely upper (while not
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lower) semicontinuous. Employing advanced tools of variational analysis and
generalized differentiation, we provide rather general frameworks ensuring
the Lipschitz continuity of the corresponding value functions. Several types
of lower subdifferential necessary optimality conditions are then derived by
using the lower-level value function (LLVF) approach and the Karush-Kuhn-
Tucker (KKT) representation of lower-level optimal solution maps. We also
derive upper subdifferential necessary optimality conditions of a new type,
which can be essentially stronger than the lower ones in some particular set-
tings. Finally, certain links are established between the obtained necessary
optimality conditions for the pessimistic and optimistic versions in bilevel
programming.

References

[1] Dempe, S., Mordukhovich B. S. and Zemkoho A. B., “Sensitivity analysis for
two-level value functions with applications to bilevel programming”, Preprint
2011-07, TU Bergakademie Freiberg, 2011.

[2] Dempe, S., Mordukhovich B. S. and Zemkoho A. B., “Necessary optimality con-
ditions in pessimistic bilevel programming”, Preprint 2012-01, TU Bergakademie
Freiberg, 2011.

Optimality conditions for bilevel programming problems
Dempe S., Zemkoho A.B.
dempe@tu-freiberg.de, zemkoho@student.tu-freiberg.de
TU Bergakademie Freiberg, Department of Mathematics and Computer Science,
Freiberg, D-09596, Germany

Bilevel programming problems are hierarchical optimization problems
where the feasible region is (in part) restricted to the graph of the solution
set mapping of a second parametric optimization problem [1]:

min{F(z,y):xz € X, y € U(z)},

where X CR”, F: R” x R™ — R and ¥(-) is the solution set mapping of a
second parametric optimization problem:

min{f(z,y) : g(z,y) < 0}. (1)

Here, f,g; : R® x R™ — R for all i. To solve them and to derive optimality
conditions for these problems this parametric optimization problem (1) needs
to be replaced with its (necessary) optimality conditions. This results in a
(one-level) nonconvex and nondifferentiable optimization problem:

min{F(z,y) : x € X, f(z,y) <o(z), g(z,y) <0},
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where ¢(+) is the optimal value function of the problem (1) or
min{F(z,y) 1z € X, 0 € 0f(2,y) + Nk (z,y)},
where Ng (z,y) is the normal cone to the feasible set mapping

K(z,y) = { K(z) = {y ég(x,y) <0} if yeelsé((x)

Usual regularity conditions (as nonsmooth MFCQ) are violated at ev-
ery feasible point of the resulting problem. Using new results in Variational
Analysis, necessary optimality conditions for the bilevel programming prob-
lem [2, 3] will be formulated in the talk .
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There exist many tools to analyze nonsmooth functions. For convex and
max-type functions, the notion of subdifferential is used, for quasidifferen-
tiable functions — that of quasidifferential. By means of these tools one is
able to solve, e.g., the following problems: to get an approximation of the
increment of a functional, to formulate conditions for an extremum, to find
steepest descent and ascent directions, to construct numerical methods. For
arbitrary directionally differentiable functions these problems are solved by
employing the notions of upper and lower exhausters and coexhausters, which
are generalizations of such notions of nonsmooth analysis as sub- and su-
perdifferentials, quasidifferentials and codifferentials. Exhausters allow one
to construct homogeneous approximations of the increment of a functional
while coexhausters provide nonhomogeneous approximations. It became pos-
sible to formulate conditions for an extremum in terms of exhausters and
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coexhausters. It turns out that conditions for a minimum are expressed by
an upper exhauster, and conditions for a maximum are formulated via a
lower one. This is why an upper exhauster is called a proper one for the
minimization problem (and adjoint for the maximization problem) while a
lower exhauster is called a proper one for the maximization problem (and
adjoint for the minimization problem). The conditions obtained provide a
simple geometric interpretation and allow one to find steepest descent and
ascent directions. In the present paper, optimization problems are treated by
means of proper exhausters and coexhausters.

The main concept used in mathematical modeling is that of function.
The analysis of a model consists in the study of properties of functions in-
volved in the description of the model. The efficiency of such an analysis
essentially depends on the possibility of constructing simpler approximations
of these functions which preserve their most important properties. In the
classical ("smooth") Mathematical Analysis, a linear approximation of the
increment of a function is constructed by means of the gradient. In the case
of a directionally differentiable (d.d.) function, one constructs a positively
homogeneous (p.h.) approximation of the increment of the function, and the
directional derivative (d.d.) is such an approximation. This derivative is de-
scribed in terms of exhauster, and optimality conditions have an elegant and
constructive form, allowing one not only to check whether these conditions
are satisfied but also (if the conditions are not valid) to find directions of
steepest descent and ascent.

The study of a point on an extremum is reduced to multiple application
of tools of Convex Analysis [12]. In [5, 8, 9, 10] the notions of upper and lower
exhausters were introduced, they are generalizations of the notions of exhaus-
tive families of upper convex and lower concave approximations (u.c.a.’s and
l.c.a.’s). the notions of upper convex and lower concave approximations were
introduced by B.N.Pshenichnyi [11], and that of exhaustive families of u.c.a.’s
and l.c.a.’s — by A.M.Rubinov [5]. It became possible to describe optimality
conditions in terms of exhausters. It turns out that conditions for a minimum
are expressed by an upper exhauster, and conditions for a maximum are for-
mulated via a lower one [4, 2, 3, 1]. This is why an upper exhauster is called a
proper one for the minimization problem (and adjoint for the maximization
problem) while a lower exhauster is called a proper one for the maximization
problem (and adjoint for the minimization problem).

Since the directional derivative is, in general, not continuous as a function
of point, one encounters computational problems while constructing numer-
ical methods. To overcome such problems, in [10] the notions of upper and
lower coexhausters were suggested. The application of these notions in some
cases allows to get continuous (as functions of point) approximations of the
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increment of the function in a vicinity of the point under study. The ap-
proximations thus obtained are not any more positively homogeneous. As in
the case of exhausters, conditions for a minimum are expressed by an upper
coexhauster, and conditions for a maximum are formulated via a lower one.
Naturally, therefore an upper coexhauster is called a proper one for the min-
imization problem (and adjoint for the maximization problem) while a lower
coexhauster is called a proper one for the maximization problem (and adjoint
for the minimization problem).

The work is supported by the Russian Foundation for Basic Research
(RFFI) under Grant No 12-01-00752.
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optimization based on non-differentiable exact penalty
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In the field of global optimization many efforts have been devoted to
globally solving bound constrained optimization problems {min f(x), [ <
z < u, z,l,u e R", f: R" - IR} without using the derivatives of f. In
this talk we show how bound constrained derivative-free global optimization
methods can be used for globally solving optimization problems where also
general constraints {g(z) < 0,¢g : R" — IRP} are present, without using nei-
ther the derivatives of f nor the derivatives of g. This is of great practical
importance in many real-world problems where only problem functions values
are available. To our aim we resort to an exact penalty approach. In partic-
ular, we make use of a non-differentiable exact penalty function P, (z;¢). We
exploit the property that, under weak assumptions, there exists a threshold
value £ > 0 of the penalty parameter £ such that, for any ¢ € (0,Z], any
unconstrained global minimizer of P, is a global solution of the related con-
strained problem and conversely. On these bases, we describe an algorithm
that, by combining a bound constrained derivative-free global minimization
technique for minimizing P, for given values of the penalty parameter € and
an automatic updating of ¢ that does not uses derivatives of the problem
functions and that occurs only a finite number of times, produces a sequence
{z}} such that any limit point of the sequence is a global solution of the gen-
eral constrained problem. In the algorithm any efficient bound constrained
derivative-free global minimization technique can be used. In particular, we
adopt an improved version of the DIRECT algorithm. In addition, to improve
the performance, the approach is enriched by resorting to local searches, in
a multistart framework. Some numerical experimentation confirms the effec-
tiveness of the approach.
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Theorems on covering, on coincidence, the Newton’'s
iterations, and the paradox of Zenon
Dmitruk A.
vraimax@mail.ru
Russian Academy of Sciences, CEMI, Moscow, 117418, Russia

The aim of the talk is to discuss interrelations between basic theorems
on covering in metric and Banach spaces (in local and nonlocal setting), on
fixed point, on coincidence, on approaching the goal, on stepwise descending,
and to discuss the Newton like method as the basis of their proof and its
prototype in the ancient paradox of Achilles and Tortilla.

Nonsmooth problems of Calculus of Variations with a
codifferentiable integrand
Dolgopolik M.V.
maxim.dolgopolik@gmail.com
St. Petersburg State University, Universitetskii prospekt 35, Petergof, 198504,
St. Petersburg, Russia

Nonsmooth problems of Calculus of Variations with a codifferentiable
integrand are discussed in the report. Necessary optimality conditions are
formulated.

Hernapgkune 3aga4u BapnaynoHHOro UCHUCAEHUS C
koauddepeHunpyemoin noabiHTerpanbHo hyHkumei

I[Iycts @ C R™ — oTKpbITOE OrpaHudeHHOe MHOXKecTBO. (O003HAYUM
gepes C(Q) smumeitnoe mpocTpancTBO, cocToAIIee U3 Beex Takux ¢ € C'H(Q),
JJIE KOTOPBIX (QYHKIUU @, g,—i, i € {1,...,n}, orpaHUYeHb U PABHOMEPHO
HelnpepbIBHBL Ha ) (TOr/a CyIecTBYeT eJMHCTBEHHOE IIPOJIOJIZKEeHNE (DYHKIUI
© W BCeX eé IPOM3BOJAHBIX Ha 3aMblkanume MHOxkecTBa (). ITpocrpamcrso
C1(Q) snsieTcs 6aHAXOBBIM MPOCTPAHCTBOM OTHOCHTEILHO HOPMBI

b

[Tycts C}(Q) — sro MHOMecTBO Beex dbynkimit w3 C1(), obpamaromuxcs B
0 =ma rpanure MHOXKECTBA 2.
Pacevorpum dyuxmmonat

¢
721618 85Un( )

0
el = max {sup (o)l sup | 22 (2) .
€N T

u):/gf(z,u(a:),Vu(x))dx,
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onpeenéunbIil Ha mpoctpanctse C1(Q). 3nech bynkmus f: QX Rx R — R,
f = f(z,u,§), HenpepbIBHA 1O COBOKYIHOCTH ApryMeHTOB. 3adbukcupyem
npoussosibHoe Uy € C1(Q) 1 paceMmoTpuM 33180y MUHUMHE3AINN DYHKITHOHAIA
7 ua 3aMKHYTOM BBITyKJIOoM MHOKecTBe A = {v = u +ug | u € C}H(Q)}.
Ipu sToM MBI IpeanoaraeM, 910 GyHKIusa f — Heryajakas (HeoOXomuMble
YCJIOBUSI 9KCTPEMYMA, B KJIACCUIECKOM CJIy9ae MOAPOOHO ONTUCAHBI, HAIIPUMED,
B [1]).

IIpenmosoxum, yro mia mobbix © € ), w € R u & € R® dynkiua f
ko depeHIupyeMa Mo mepeMeHHbIM ¢ U  PU (PUKCUPOBAHHOM & B TOUKE
(z,u,§), Te. aua mobex (z,u,§) €  x R x R" cymecTsyor BbITyK/TbIe
KOMIIAKTHBIE MHOXKeCTBA d,, ¢ f (2,1, §), duc f(2,u,§) C R"*? rakne, uro mus
Jo6oro npupainennst apryMmeaToB Ay u A€, COOTBETCTBYIOIEE MIPUPAIIEHNE
bYHKIIUM TpeICTaBUMO B BUJIE

f($7u+Au7§+A§)_f(xvua§) [ ]Ierlli Xf( )(CL+<’U1,AU>+<1}2,A§>)+
a,v1,v2]€d,, .
+ min (b + <w17 AU> <w27 A§>) + O(Auv Ag)a

[b,w1,w2]€dy,¢ f(2,u,8)

rie o(laAu,aAf)/a — 0 upu « | 0. Buecy (-,-) obo3HAUAET CKAJSIPHOE
npoussenenne B RY. TIpu 9TOM OpPEIIOI0KIM, 9TO MHOTO3HATHOE OTOOpazKe-
mue (z,u,§) — [d, ¢ f(z,u,8), dy.¢ f(z,u,£)] HenpepbisHO B MeTpuke Xayc-
mopda. (Komndbdepermupyemsie dbyHknm moapobHo n3yveHst B [2]).

I[Ipu HEOOJIBIIMX JIOIOJHUTEJBHBIX OIPAHUYEHUsX Ha QYHKOUI [ u
o6macTh {2 MOXKHO MOJIyYATH CIIEJYIONIee HeOOXOAMMOE YCIOBHE SKCTPEMYMA:

IMycrs u* € A — Touka JIOKAJBLHOrO MUHUMyMa (yHKIUOoHa a I Ha
muO)kecTBe A. Torma juist moboro m3mepmmoro cedenus [b(-),wi(+), wa()]
MHOTOZHAYHOrO oTobpaxkenust r — dy¢f(x,u*(x), Vu*(z)) takoro, uro
Jo b(x) dz = 0, cymecrByer usmepunmoe cevenne [a(-), v1(-), v2(-)] MHOrO3HAN-
HOTO OTO6pa>KeHI/IH = d, ¢ f(x,u*(x), Vu*(z)) Takoe, aro [, a(x)dr =0
u

/Q((vl(x) +aw (), h(2)) + (va(x) + wo(x), Vh(z)))dr =0 Yh e CF(Q).

B ciyuae n = 1, Q = (a,b), HEobxomumoe yCJIOBHE IKCTPEMYyMa
YIPOITAETCs U TPUHUMAET BU/T:
[ycrs u* € A — moura JokajgbHOTO MUHHMyMa (dyHKInonama Z Ha

muoxectse A. Torma puist soGoro mamepumoro cedenust [b(-), wi(-), wa(:)]
MHOTO3HAYHOTO oTobpaxkenus © — dy¢f(x,u*(x), Vu*(z)) takoro, uro
b(x) = 0 jgys mourn Becex x € (a,b), CyIIECTBYIOT H3MEPUMOE CEUYEHHE
[a(:),v1(+), v2(-)] MHOTO3HAUHOTO OTOOpaxenns r — d, f(x,u*(x), Vu*(z))
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u ¢ € R rakne, aro a(x) = 0 s mourn Beex z € (a,b) n

b
/ (v1(y) + wi(y)) dy + va(z) + we(z) = ¢ st w.B. = € (a,b).

JlJtst pas/jiMdHBIX KOHKPETHBIX (DYHKIWA f yCJIOBUsI SKCTPEMyMa MOLYT
6biTh Mojudunuposanbl. Hanpumep, nyers n =1, Q = (a,b) n

f(x7u,f) = r?éalei(mvua 5) + Erlei?gj(xvua 5)7

rne I = {1,...n}, J = {1,...,m}, dyskmun f;,g;: (a,b) x R xR — R
HEIPEPBIBHBI U HEIPEPBIBHO JuddepeHnupyeMpl Mo IepeMeHHbIM 4 U1 £ Ha
Bceil cBoeit obsracTu ompesiesieHust. B JJaHHOM cilydae yCJIOBHUSI 9KCTPEMyMa
AMEIOT CJIEJTYIOIIIIT BUI;:

[ycrs w* € A — mouka JokajgpHOTO MUHHMyMa dyHKIuonamsa Z Ha
muozkecrBe A. Torma jyist mo6eix u3mepumbix dyskiwmit 3;: (a,b) — [0,1],
j € J, rakux, uro f1 + ... + By = 1 u g groboro j € J cupaBemjimBo
PaBEHCTBO

Bi(@)lg; (z, w™ (), Vu () —min g; (2, u" (z), V' (2))] = 0 ana m.5. 2 € (a,b),

CyIIeCTBYIOT u3MepuMble dyHKIMA «;: (a,b) — [0,1], ¢ € I, u ¢ € R Taxue,
910 i + ...+ @ = 1, Jutst 00010 ¢ € I BBITIOJIHSIETCS PABEHCTBA

ozz(z)[r?eaf filz,u*(x), Vu* (x)) — fi(z,uv* (x), Vu* (z))] = 0 st 8. x € (a,b)

n

iel

b . .
> ( | G ).Vt ) dy -+ ai<x>%§<x,u*<x>,w*<x>>) .

b . .
5y ( m-(y)aaij<y,u*<y>,w<y>>dy+ﬁj<x>%gﬂ<w,u*<m>,vw<x>>) —c

jeJ

Jutst 1LB. € (a, b).
Pabora Beimostaena npu dunancosoit moauepkke PODU, rpant Ne 12-01-
00752.
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Variational analysis with smooth substructure
Drusvyatskiy D.
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Nonsmoothness arises naturally in many applications, but not pathologi-
cally so. On the contrary, nonsmooth problems often possess rich underlying
structure waiting to be exploited. Semi-algebraic functions — those functions
arising from polynomial inequalities — nicely examplify such structure.

In the first part of my talk, I will discuss a new theorem showing that the
(general /limiting) subdifferential graph of a semi-algebraic function f defined
on R™ has uniform local dimension n at each of its points, a property that
may fail even for locally Lipschitz functions. As a direct application, this
theorem yields a simple representation formula for the Clarke subdifferential
of directionally Lipschitzian semi-algebraic functions, thereby simplifying and
unifying some foundational results of Nonsmooth Analysis.

In the second part of the talk, I will discuss a structure that is perhaps
more familiar to optimization specialists — an active manifold. This notion has
recently been axiomatized by the theory of partly smooth sets. Existence of
such a manifold is exactly what is needed for a local reduction of a nonsmooth
problem to a smooth one. It is reassuring to know that such manifolds exist
“generically” for semi-algebraic optimization problems.
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On Systematization of the Problems for Estimations of
Convex Compact Sets by the Balls
Dudov S.I.
DudovSI@info.sgu.ru
Saratov State University, Astrakhanskaya, 83, Saratov, 410012, Russia

Let D be a fixed convex compact set in R? and n(z) be a norm on RP.
We use following notation: Q@ = RP\ D,

R(z, D) = —
(z,D) ryneagn(x Y),
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D) = mi -
plx, D) = minn(z —y),

P(xz,D) = p(z, D) — p(x,Q).

Many estimating and approximating problems for convex compact set D by
the balls have the form ([1], [2])

f(z) = F(R(z, D), P(z,D)) — melg (1)
The solutions of some problems (1) can be obtained by solving the following

problem:

pl,7) = h(D, Bn(, ) = min, )

where Bn(z,r) = {y e RP : n(z —y) < r},

h(A,B) = inf —b inf -b)r.
(A, B) max{ilelg l:an(a ), iélg alrelAn(a )}

Notation: C'y = Arg migf(:c), Cy(r) = Arg Hl%RI}) o(x,r).
TEe EAS

Theorem. Let S = RP or S = D, the function F(t1,t2) be nondecreasing
according to each variable and be increasing according to at least one of them.
If x* € C} then there exists r > 0 such that x* € C(r).

We find the ranges of r for which the solutions of problem (2) give the
solutions of the problems of:

— outer and inner estimating of the set D by a ball (F(t1,t2) = ¢; and
F(t1,t2) = ta, S = RP),

— uniform estimating of the set D by balls in the Hausdorff metric
(F(t1,t2) = t1 + ta, S = RP),

— estimating the boundary of the set D by spherical layer of the least
width and volume (F(t1,t2) = t1 +t2 and F(t1,t2) =) +t5, S = D),

— asphericity of the set D (F(t1,t2) = —t1/t2, S = D).

This research was supported by programme “Leading Scientific Schools”
(No. 4383.2010.1) and RFBR (No. 10-01-00270).
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Gene selection and cluster validation analysis of a
microarray data set from SCID-mice liver infected with a
new strain of MHV
Dzalilov Z., Zarei M., Bagirov A., Islam M., Kannourakis G.
z.dzalilov@ballarat.edu.au
School of Science, Information Technology and Engineering, University of
Ballarat, University Drive, Mount Helen, Ballarat, Victoria, 3350, Australia,
Ballarat Cancer Research Centre, Ballarat, Australia

Many clustering algorithms have been developed for analysis of gene ex-
pression data, but there exist only a few approaches for assessing the per-
formance of these algorithms. The reduction of dimensionality of large scale
data sets for tractable analysis is another scientific challenge. Here we analyse
a data set of gene expression of Severe Combined Immune Deficient (SCID)
mouse liver. This data set contains 28853 gene probes with five features: two
of these features are related to normal groups of genes and three to MHV-MI
infected diseased groups. To select the most significant genes or features in
the dataset, we first apply a gene selection algorithm, and then assess the
outcome by two clustering algorithms: the global k-means algorithm and the
hierarchical clustering algorithm. Based on predefined information, an exter-
nal validation method helps us to understand the meaning of stable clusters
in our dataset.

Nonsmooth Analysis as a Tool for Matrix Correction of
Improper Linear Programming Problems (in Russian)
Erohin V.I.
erohin_v_i@mail.ru
CII6GI'TH(TY), Mockosckuit mp. 26, Cauxr-Ilerep6ypr, 190013, Poccus

Hernapkunii aHanus kak MHCTPYMEHT MaTPUYHOIA
KOppeKunn HecobCTBEHHbIX 3a4a4 NIMHEAHOro
NpoOrpaMmMunpoBaHns

Bagauu smueitnoro nporpamvupoBanus (JIII), me umMmeromume pemeHus
(HecoGCTBEHHDBIE), BIIEPBBIE CTAJIM IIPEJIMETOM CUCTEMATUIECKOTrO UCCJIeI0Ba-
uus B 80-e rogpr XX Beka B Tpymax akamemuka 11.1. Epemuna, ero yuennkos
u xoster [1]-[6], paboraBmmx B WHCTUTyTE MATEMATHKH W MEXAHUKN
YpO PAH. Tlozxke nosiBuimch paborsl npodeccopa B.A. Topenmka (BIT
um. A.A. Joponauupina PAH) u ero yuenukos [7]-[15].

[Ipobsembr Mampuwrot KOppeKImn HecobcTBeHHbIX 3aa4 JII1 momyckator
pa3HOOOPAa3HbIe IIOCTAHOBKHU, IJIABHBIM 00'bEINHSAIONIAM IPU3HAKOM KOTOPBIX
sABJIsieTCsl TpeboBaHue n3MeHeHust (KOppeKImn) Koo OUIMeHTOB KaK IpaBoii,
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TaK U JIEBOI YacTell COOTBETCTBYIOIIUX yYPABHEHUI 1 HEPABEHCTB, 33 JAa0IINX
JIOIIyCTUMYIO 00JacTh uccaeayemoit 3agaqu JIII. MuacTpymMenTamMu perneHust
YKa3aHHBIX IIPOOJIEM CJIYKAT 33/a9l MAaTeMaTHIeCKOro IMPOrPaMMUPOBAHUST
CIIEIUAJIBHOTO BHIA, CPEeIN KOTOPBIX BCTPEYAIOTCS ¥ 3aJa49d HerJIaJIKOi
ontnMu3anuu. TakuMm oOpas3oMm, Ha mpuMmepe HecoOcTBeHHBIX 3agad JIIT
ele pa3 MOXKHO yOeIuTbCs B aKTYAJIBHOCTH IIPOOJEM HEIVIAIKOTO aHAJIM3a
U TPOCJIEIUTh WX B3aNMOCBA3b C TEOPETHMYECKUMHM U IPAKTHYECKUMU
mpobsremamu JIII.
Paccemorpum, nanmpumep, 3agady JIII B kanonuweckoit opme:

L(A,bc): Az =0, >0, ¢ — max (1)
7 COOTBETCTBYIOINIYIO JBoiicTBenny1o 3ama4dy JIII B ocnoBHoit bopme
L*(Abyc): u'A>c", b u — min, (2)

rne A € R™*" b e R™ ce R™
IIycTs
X (Ab) £ {r eR"|Ax = b,z > 0}

u U(A,c) & {ueR™[uTA>c"} — nonycrumele MHOXKecTBa 3aat
L(Abyc) u L* (A b,c), xorst O6bI OIHO U3 KOTODPBIX SBJIAETCS ILYCTBIM, YTO
nenaer 3agaqn (1), (2) mecobersennbvMu [1].

B janHHO cuTyanuu ymecTHa, B YACTHOCTH, 3a/a9a MUHUMAALHOT
MAMPUYHOT KOPPEKIINH, 3allUCAHHAs B BUJIE

{ ||| > min, "
Bagaun L (A+H,b,c), L*(A+H,b,c) — cobcrBenHble,
rye ||| — HekoTopasi MaTpUYIHAST HOPMA.

Bagaua (3) goryckaeT MHOrOYUCIEHHbIE MOAUMUKAIMA B BAJIE CIIEIUATb-
HOll crpykrypel Marpun, A u H (manpumep, 67104HON, TENJIMIEBOH, C
[IPOMU3BOJILHBIM MHOXKECTBOM HEKOPPEKTHDPYEMbIX 3JIEMEHTOB), JIOHOTHUTEI b
HBIX OIDaHWYEHWH, HaK/ajabiBaeMbix Ha Mmarpuny A + H wm up. [10]-[13],
[15]. IIpm sTOM MCHOMIb30BAHNE MOTUIIPATBHBIX HOPM, Taknx Kak [[All, =

m n
n}gx|aij\ i [|All,, = z; j; |a;;|, mo3Boser cBecT: 3amaty (3) K 3amate
nu Habopy 3amad JIII, neras mpobiieMmy MaTpUTIHON KOPPEKIUH ITPOOIeMOit
Herya kol onruMusarnuu [12], [13].

JlpyruM IIpEMepOM sIBJIseTcs IpobJeMa MATPUYHON KOPPEKIUH Hecoo-
crBernoit 3amadu JIII ¢ 6/109HON CTPYKTYpPOit U COBMECTHOH IOICHCTEMO
Aoz = by, = = 0 [11], [13], xoTopasi okaszwBaercs muddepeHTUPyeMOit
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MHIHHIMaKCHON 3agadeit (T.e. IpobIeMOit  HerJIa 1Ko OHTI/IMI/BaU;HH) npu
HCIIOJIb30BAHUU €BKJINI0BON HOPMBI B MUHUMAKCHOIT IIOCTAHOBKE

max || H;|| = min,
i=1,2,....k (4)
Bagauu L (A+H,b,c), L*(A+H,b,c) — cobcTBeHHbIE,

rie
Ag
A 0 . 0 bo
. . by
A= 0 A2 T . 5 b= . s
0 b
0 0 Ay
0
H, 0 0
H = 0 Hoy
: . . 0
0 . 0 H,
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Non-smooth variational methods for a Dirichlet problem
with one-side growth condition
Faraci F., Iannizzotto A.
ffaraci@dmi.unict.it, iannizzotto@dmi.unict.it
Dipartimento di Matematica e Informatica, Universita di Catania, Viale A. Doria
6, 95125 Catania, Italy

In the present talk we deal with a Dirichlet problem of the following type:

—Au=X(f(z,u r,u)) in
w A ) o

where  C R¥ is a bounded, smooth domain (N > 2), A\ and p are positive
parameters and f,g : © x R — R are Carathéodory functions satisfying
one-side growth conditions of the type:
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(4) sup |f(-,t)], sup |g(-,t)| € L} () for all s > 0;

[tI<s [tI<s
(i1) max{sf(z,s),s9(x,s)} < a(z) + b|s|*” for a.a. z € Q and all s € R

(a € LY(Q)y, b>0),
plus some technical assumptions on f.

We prove the existence of at least two solutions of problem (P), for A
and g lying in convenient intervals. Our tools are an abstract multiplicity
result for local minimizers of a function defined on a topological space due
to B. Ricceri ([3]), and a very general nonsmooth critical point theory for
lower semicontinuous functionals on metric spaces developed by Degiovanni,
Marzocchi and Zani (see [1] and [2]).
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The Directed Subdifferential and applications
Farkhi E.
elza@post.tau.ac.il
School of Math. Sci., Tel-Aviv University, Ramat Aviv, Tel-Aviv, 69978, Israel

This is a joint work with Robert Baier and Vera Roshchina.

The directed subdifferential of quasidifferentiable functions is introduced
as the difference of two convex subdifferentials embedded in the Banach space
of directed sets. Thus we are able to capture efficiently differential proper-
ties of a large variety of functions including amenable and lower /upper-C*
functions.

Preserving the most important properties of the quasidifferential, such
as exact calculus rules, the directed subdifferential lacks major drawbacks of
the quasidifferential: non-uniqueness and growing in size of the two convex
sets representing the quasidifferential after applying calculus rules. Its visu-
alization, which we call Rubinov subdifferential, is a non-empty, generally
non-convex set in R™.

Calculus rules for the directed subdifferentials of sum, product, quotient,
maximum and minimum of quasidifferentiable functions are derived. The re-
lations between the Rubinov subdifferential and the subdifferentials of Clarke,
Dini, Michel-Penot, and Mordukhovich are discussed. Important properties
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implying the Ioffe’s axioms for subdifferentials as well as necessary and suf-
fcient optimality conditions for the directed subdifferential are obtained in
terms of the directed and Rubinov subdifferential.

A bundle method for nonconvex nonsmooth minimization
Fuduli A., Gaudioso M., Nurminski E.A.
antonio.fuduli@unical.it, gaudioso@deis.unical.it, nurmi@dvo.ru
Dipartimento di Matematica - Universita’ della Calabria - Via Pietro Bucci -
Cubo 31B - Rende (CS) - Italia, Institute for Automation and Control Processes -
Far East Branch, Russian Academy of Sciences - Vladivostok - Russia

We present a new bundle method for nonsmooth nonconvex minimiza-
tion, where, at each iteration, the search direction is computed by solving a
quadratic subproblem, based on the construction of a local lower approxima-
tion of the objective function of the cutting plane type. The main feature of
the method is the way the negative linearization errors are treated.

The quadratic subproblem is solved by means of appropriate projection
procedures which reduce to finding the minimum norm vector in a set given
by the sum of a polyhedron plus a cone. In addition, inexact solution of the
latter problem is also considered. Some numerical results are presented.

Cutting plane-based methods for convex minimization
Gaudioso M.
gaudioso@deis.unical.it
Dipartimento di Elettronica Informatica e Sistemistica - Universita’ della Calabria
- Via Pietro Bucci - Cubo 41C - Rende (CS) - Italia

Cutting plane is the very basic model for many algorithms (e.g. the entire
bundle family) which have been designed in the last decades to deal with
convex nonsmooth minimization.

We introduce a variant of the cutting plane model which is based on
possible vertical shifting of some affine pieces of the polyhedral model. Our
method stays somehow in between the classic Wolfe’s conjugate subgradient
method and the standard cutting plane.

In the talk we review also some possible extensions of the cutting plane
method to the nonconvex setting.
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Reproducing Kernel Banach Spaces and applications
Georgiev P.G., Sanchez-Gonzdlez L., Pardalos P.
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Center for Applied Optimization, University of Florida, Gainesville, FL 32601,
Complutenza University, Madrid, Spain, Center for Applied Optimization,
University of Florida, Gainesville, FL. 32601, The National Research University -
Higher School of Economics, Laboratory of Algorithms and Technologies for
Networks Analysis, N.Novgorod, Russia

We extend the idea of reproducing kernels to Banach spaces and develop
a theory of Reproducing Kernel Banach Spaces (RKBS), without the re-
quirement for existence of semi-inner product (which requirement is already
explored in another construction of RKBS). Several applications are present-
ed: 1) we show how a special interpolation task with prescribed non-smooth
functions from a RKBS can be performed by an algorithm involving a simple
procedure for solving a linear system. However, such an algorithm needs a
global optimization technique, which we address by reformulating the task
as a mixed integer minimization problem; 2) In the terminology of statistical
learning theory, we apply our construction of RKBS to the basic learning
algorithms, including support vector machines, and generalize the kernel re-
gression problem to a multi-class classification task; 3) The fundamental idea
of embedding the domain set into a functional space (RKBS) and linearizing
in such a way a non-linear problem, can be exploited further for some classes
of global optimization problems and variational principles.

On the scalarization of some variational problems
Giannessi F., Mastroeni G.
fgiannessi3@gmail.com, mastroen@dm.unipi.it
Department of Mathematics,University of Pisa, L.go B. Pontecorvo, 5 56127 -
PISA, Italy.

The image space analysis [2] has shown to be a powerful tool and a uni-
fying scheme for studying both Vector Optimization Problems (VOP) and
Vector Variational Inequalities (VVI). More generally, this approach can be
applied to any kind of problem that can be expressed under the form of the
impossibility of a parametric system.

In the present talk, exploiting separation arguments in the image space,
we aim at developing the analysis of scalarization techniques for a generalized
system, considering in particular the applications to VOP and VVI. We will
show that the analysis in the image space allows one to recover most of
the existing scalarization functions and to extend the applications to more
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general classes of optimization problems as vector equilibrium problems and
set-valued optimization problems.
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Data Correcting Algorithms in Networks Optimization
Goldengorin B.
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Research University Higher School of Economics, Nizhny Novgorod, Russia

Computer scientists have found that certain types of problems, called NP-
hard problems, are intractable. Roughly speaking this means that the time
it takes to solve any typical NP-hard problem seems to grow exponentially
as the amount of input data (instance) increases. On the other hand, for
many NP-hard problems we can provide provable analytic or algorithmic
characterizations of the instances input data that guarantee a polynomial
time solution algorithm for the corresponding instances. These instances are
called polynomially solvable special cases of the combinatorial optimization
problem.

Polynomially solvable special cases of combinatorial optimization prob-
lems have long been studied in the literature [1-6].

This talk is a step in the direction of incorporating polynomially solvable
special cases into approximation and exact algorithms. We propose a Data
Correcting (DC) algorithm — an approximation algorithm that makes use of
polynomially solvable special cases to arrive at high-quality solutions. The
basic insight that leads to this algorithm is the fact that it is often easy
to compute an upper bound on the difference in cost between an optimal
solution of a problem instance and any feasible solution to the instance. The
results obtained with this algorithm are very promising.

The approximation in the DC algorithm is in terms of an accuracy param-
eter, which is an upper bound on the difference between the objective value
of an optimal solution to the instance and that of a solution returned by the
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DC algorithm. Note that this is not expressed as a fraction of the optimal
objective value for this instance. In this respect, the algorithm is different
from common e-optimal algorithms, in which ¢ is defined as a fraction of the
optimal objective function value.

Even though the algorithm is meant mainly for NP-hard combinatorial
optimization problems, it can be used for functions defined on a continuous
domain too. We will, in fact, motivate the DC approach by using a nondiffer-
entiable function defined on a domain that has a finite range. We then show
how this approach can be adapted for NP-hard optimization problems, using
the Asymmetric TSP as an illustration. We conclude this talk by a summary
and future research directions
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Applications of Proximal Analysis to Regularity of a kind of
Marginal Function
Goncharov V.V., Pereira F.F.
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CIMA-UE, Universidade de Evora, rua Romao Ramalho 59, 7000-671, Evora,
Portugal

Continuing research in [3] and [4] on well-posedness of the optimal time
control problem with a constant convex dynamics in a Hilbert space we adapt
one of the regularity conditions obtained there to a slightly more general
problem, where nonaffine additive term appears.

Namely, let H be a real Hilbert space, C C H be an arbitrary nonempty
closed subset, and # : C' — R be a lower semicontinuous function. Given
a closed convex bounded set F' C H having the origin in the interior, we
consider the following Mathematical Programming problem

Minimize pp(x—y)+60(y) on C, (1)
where pp(-) is the Minkowski functional (gauge function) associated to F,
pr(€) :=inf{A >0: \'¢ € F}.

If C = H\ Q, where 2 is an open bounded region in H (for instance, in a
finite dimensional space), and 6(-) satisfies a slope condition w.r.t. F then the
value function 4(-) in (1) can be interpreted as the (unique) viscosity solution
of the Hamilton-Jacobi equation

pro(=Vu(z)) =1 =0;

u(z) =6(x), x €.

Here and in what follows F° means the polar set of F. Furthermore, if 6 :
H — R is of class C' then Tg’o(a:) = d(x) — 6(x) gives the minimal time
necessary to achieve the target set C from the point x € H by trajectories of
the differential inclusion

i€ (F*+ V()"

We are interested, in particular, in (Fréchet) differentiability of the value
function 4(-) out of C'. However, taking into account the interpretation as the
viscosity solution (see above) we observe that it is not possible to have such
differentiability everywhere inside 2 at once. This happens, e.g., already in
the simplest case of the so called eikonal equation (F is a closed unit ball in
H) and 6 = 0 (its solution 4(-) is nothing else than the usual distance from
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point to the set C'). Therefore, we are led to study the regularity of @(-) in a
neighbourhood of the target only.

On the other hand, the differentiability of 4(-) strongly relates with the
existence, uniqueness and regularity of minimizers in the problem (1) (in the
case of compact C' one can see this, for instance, from the representation of
the (Clarke’s) subdifferential of a marginal function through Radon measures
supported on the set of minimizers Wg’e(.’lf) as given in [1, Section 2.8]). So, we
find first rather general conditions guaranteeing that ﬂg’o(x) is a singleton
(Lipschitz) continuous near a point zg € 9dC. These conditions involve a
ballance between the (proximal) subgradients of the restriction 6 |¢ and the
normals to F. Then, under the same (local) hypotheses assuming, in addition,
the smoothness either of 0 |c or of F we prove that the function 4(-) is
(Fréchet) differentiable in (2o + 0B) \ C for some § > 0 (with eventually
Hélder continuous gradient Vi(-)). To achieve this goal we apply the mixed
technique of Convex Analysis with some tools of Proximal Calculus (see |2,
Chapter 1]) such as the fuzzy sum rule and the Fkeland’s variational principle.
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Vector Optimization Problems with Non-solid Positive
Cone: Scalarization and First and Second Order Optimality
Conditions
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Let X and Y be Banach spaces over the real field R. The space Y is
supposed to be ordered by a strict partial order < such that for any y1, y2 € Y
one has y; < ys if and only if yo — y; € P, where P C Y is an asymmetric
convex cone with an empty interior.

The talk deals with a vector optimization problem

(VOP) =< —minimize F'(z) subject to x € Q,
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where F': X — Y is a mapping from X into Y, @ is a subset of X.

A point 2° € Q is called a local <-minimizer for (VOP) if there exists a
neighborhood N (z°) of 2° such that F(z) A4 F(2°) for all x € Q N N (2°).

In the talk we present a unified approach to deriving first and second or-
der local <—minimality conditions, both necessary and sufficient, for feasible
solutions of vector optimization problems with non-solid positive cone. Our
approach includes two stages.

At first we scalarize the vector optimization problem (VOP). To do it
we assume that the vector subspace P — P, which coincides with the linear
hull of P, is topologically complemented in Y and riP # &, where riP is the
relative interior of P. These assumptions allows us to choose a continuous
projection operator m: Y — Y with kerm = P — P and a bounded sublinear
function ¢ : Y — R such that

Py ={yeY|ox(~y) <0, n<(y) =0},

and to prove the following scalarization theorem.

a) If a point 2° € Q is a local <—minimizer of the mapping F : X —Y
over the set Q C X then there exists a neighborhood N (x°) of the point z°
such that

o(F(x)— F(2) > 0Vz € QNN (2°) such that n<(F(x) — F(2°)) = 0. (1)

b) If there exists a neighborhood N'(z°) of a point x° € Q such that

o(F(z) — F(z) >0Vz € QNN (2°), z # 2°,
such that m(F(x) — F(2°)) =0, (2)

then the point 20 is a local <—minimizer of the mapping F : X — Y over the
set Q C X.

Then we analyze (1) and (2) with variational (convex and nonsmooth)
methods and derive both necessary and sufficient <—minimality conditions
for local <—minimizers of (VOP).

Analyzing (1) and (2) we assume that the objective mapping F is dif-
ferentiable in one or another sense, in particular, we admit that F is twice
parabolic directionally differentiable. As local approximations for the feasible
set @ and the set F(x?) we use first- and second-order tangent vectors. In the
case when the objective mapping F' is twice Frechet differentiable and the
feasible set @ is the whole space X the <—minimality conditions are present-
ed in the prime and dual forms. The first order dual necessary <—minimality
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condition has the form of the Lagrange multipliers rule while the second or-
der dual necessary <—minimality condition asserts that the maximum of the
family quadratic forms on the cone of critical vectors is nonnegative. Note
that necessary <—minimality conditions are obtained under the additional
assumption that a local <—minimizer satisfies the regularity condition.

This study was supported by Belarusian Republican Foundation for Basic
Research (Project No. F10R - 025).
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In the talk we deal with positively homogeneous functions defined on a
finite-dimensional vector space R™. Recall, that a function p : R™ — R is said
to be positively homogeneous if p(Az) = Ap(z) for all € R™.

A positively homogeneous function p : R — R is said to be sublinear
(superlinear) if it is convex (concave) or, equivalently, if it is subadditive
(superadditive).

A family @ := {¢} of sublinear functions ¢ : R® — R will be referred to
as a primal upper exhauster of a positively homogeneous function p : R™ — R
if

p(z) = inf ¢(z) for all z € R™.
ped
Due to the Minkowski duality each primal upper exhauster ® := {p} can
be associated in a unique way with the family 0® = {d¢|p € ®}, where
Op == {u € R"|(u, ) < p(x) Vo € R"} is a subdifferential of the sublinear
function ¢ (at 0). The family 09 is called the dual upper exhauster of the
positively homogeneous function p : R™ — R.

Similarly, a family ¥ := {t¢} of superlinear functions ¢ : R” — R is
referred to as a primal lower exhauster of a positively homogeneous function
p:R" = Rif

p(z) = sup ¢¥(z) for all z € R".
YEW
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The family 0¥ = {9y |¢ € ¥}, where 9¢ := {v € R" | (v, z) = ¢(x) Vz €
R™} is a superdifferential of the superlinear function ¢ (at 0) is called the
dual lower exhauster of the positively homogeneous function p : R™ — R.

The notions of upper and lower exhausters were introdoced by Demyanov
and Rubinov [1]. They proved that a positively homogeneous function p :
R™ — R is upper (lower) semicontinuous on R" if and only if it admits an
upper (lower) exhauster. This implies that a positively homogeneous function
p : R — R is continuous on R" if and only if it admits both an upper
exhauster and a lower one.

Other results concerning dual exhausters can be found in [2, 3, 4].
By Pc(R™) we will denote the Banach space of continuous positively

homogeneous functions on R” endowed with the norm ||p||¢ := | IﬁlaX [p()].
z||pn =

Considering primal upper and lower exhausters as subsets of the Banach space
Pc(R™) we can perform various operations on them. In particular, passing
to the topological closure of primal exhausters or the convex hull of ones we
obtain also primal exhausters of the same positively homogeneous function.

In the next theorems we characterize various classes of positively homo-
geneous functions via the properties of their primal exhausters. The first
theorem concerns with functions which satisfy the Lipschitz condition on the
whole space R".

Theorem 1 (cf. [4]). Let p : R® — R be a positively homogeneous func-
tion. Then the following statements are equivalent:

(7) p is Lipschitz continious on R™;

(%) p admits a compact (as a subset of the Banach space (Pc(R™), ||-1lc))
primal upper exhauster;

(#i%) p admits a compact (as a subset of the Banach space (Pc(R™), |||lc))
primal lower exhauster.

The next theorem characterize difference-sublinear functions, that is, the
functions which may be represented as a difference of two sublinear functions.

Theorem 2. Let p: R™ — R be a positively homogeneous function. The
following statements are equivalent:

(7) p is a difference-sublinear function;

(i) p admits a sublinear majorant p : R™ — R such that the family

Dy i= {2 = p(2) = (v, 2) [V € Vp e,

where
Voo = {v € R* | p(&) < p(x) — {v,2) Vo € R},

is a primal upper exhauster of the function p;
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(ii7) p admits a superlinear minorant ¥ : R™ — R such that the family
Uy i=A{z = P(x) + (u, ) |u € Upp},

where
Upy ={u e R"|p(x) =2 ¥(x) + (u,x) Vx € R"}

is a primal lower exhauster of the function p.

Let L(R™) be the vector space of linear functions on R™.

We say that a family T' of positively homogeneous functions is L(R™)-
planar, if the difference of any two functions of I" belongs to L(R™) or, equiv-
alently, if the difference of any two functions of I' is a linear function.

Corollary (cf. [4]). The following statements are equivalent:

(@) p is difference-sublinear;

(i) p admits a L(R™)-planar compact (as a subset of the Banach space
(Pc(®R™), || - llc)) primal upper exhauster;

(#i7) p admits a L(R™)-planar compact (as a subset of the Banach space
(Pc(R™), || - llc)) primal lower exhauster.

In the last theorem we give a characterization of piecewise linear functions.
Recall, that a function p : R® — R is said to be piecewise linear if it is
continuous and there exists a finite covering of the space R™ by convex cones
Ky, K, ..., K} such that the restriction of p on each cone K; coincides with
some linear function.

Theorem 3. A positively homogeneous function p : R™ — R is piecewise
linear if and only if it admits both a finite primal (dual) upper exhauster and
a finite primal (dual) lower exhauster.

The research was supported by the National Program of Basic Researches
of Belarus.
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The problem of separating players into two coalitions with
non-smooth analysis
Grigorieva X.
kseniyal96247@mail.ru
Canxkr-Ilerepbyprekuit ['ocyapcTBeHHBI YHUBEPCUTET, Y HUBEPCUTETCKUI TIp.,
.35, Cankr-Ilerepbypr, [lerponpopern, 198504, Poccust

It is suggested to employ a linear criterion (with respect to given param-
eters) to identify players using a nonsmooth model.

3apayva pasgenieHMs UTPOKOB Ha ABe Koanuuuu c
NOMOLLLbIO Hernagkoro aHasamsa

B npuksagHpix 3ajadax UTCPOBOIO THUIIA BO3HUKAET HEOOXOIWMOCTH B
HUCIIOJIb30BAHUM KOAJIMITMOHHBIX MOeJsei [1—4], CYTb KOTOPBIX 33aKJ/II04YaeTCd
B caemywomeM. Ilycrs mmeercss N UIPOKOB, pas3jle/IeHHbIX Ha | KOAJIHUIUA,
3aJIaHO MHOXKECTBO CTPATErnii Kaxk 10 KoaauIuu 1 (DYHKIMS BBIUTPHIIIA st
KaXKJION KOAJUIMU HA MHOXKECTBE CHUTyaIuii, 0OPa30BAHHBIX BBIOPAHHBIMEI
crpareruamu koasmnwit. IIpum sTOoM mpenmonaraercs, 4TO KOAJUIMOHHOE
pasbuenne 3aan0. OHAKO He B KaXKJI0i 3a/1a¥e OrOBapUBAETCS, 10 KAKOMY
KPUTEPHIO IIPOUCXOIUT pa3jesieHre UIPOKOB Ha KOAJIMIMH. TakuM oOpasoMm,
dopMupoBaHe KOAJIUINOHHOTO DPa3bMEHHus - ITO OTJesIbHAas 3a/ada, O
KOTOPOII HUZKEe U IIOUJIET pedb.

IIycTtp 3amamo MHOXKECTBO CTpaTerwil KarkKIOro WUrpOKa u (DYHKIHSA
BBIMTPHIIIA IS KayKJIOI'0 UI'POKA HA MHOXKECTBE CHTYaIuil, 00pa30BaHHBIX
BBIOPAHHBIMU CTPATErusiMi WI'POKOB. Tpebyercss pas3iie/iuTh WUIPDOKOB Ha
JaBe Hernepecekaroruecst koajuiuu. C 9TOil 1eJbI0 BBOAUTCS KPUTEPHUil
uneHTuUKAINE UIPOKOB M BO3HUKAET 381898 PA3JIeJICHAsT MHOXKECTB [5].

B pabore npeyiaraercss npUMEHUTD JTMHEHHBIN KPUTEPUil HAeHTH(DUKAIIAN
UIPOKOB 110 HabOpy IapaMeTpoB (IHIEPIIOCKOCTb) € HCIOJIB30BAHUEM
HEIVIQAKON MoJieJin [6] Pemas 3amady wuaeHTHdUKAIIT  OTHOCUTEIHHO
Pa3JIMYHBIX [IAPAMETPOB, MOXKHO IOJIYYATh COBOKYIIHOCTH BCEBO3MOXKHBIX
pa3buenuii MmHOXKecTBa, N Ha JIBa MOIMHOXKECTBA. B psifie CIydaeB BaskKHO
ompeeanTs Haubosee undopmarupube (Haubosee CymeCTBEHHbIE) apaMeT-
DBl 1t nIeHTHDUKAIIN.

Paccmorpum, B wacTHOCTH, 33,129y O BBIOOpax, B KOTOpOit N UTPOKOB —
970 U3bUpaTe/n, y4acTBYIOIINE B aJlbTepHATUBHBIX BbiOOpax. Ilesibio sBisieT-
csl IPOTHO3UPOBAaHUE UCX0/1a BEIOOPOB. B KadecTBe mapaMerpoB B 9TOH 3a1a4e
MOI'YT WCIOJb30BATHCS BO3PACT, HAIMOHAJIBHOCTH, CEMEITHOe IOJIOXKEHUE,
YPOBEHb JIOXOJIOB, IIOJUTUYECKHE MPEIIOUTEHNs, HIE0JOTNIecKas Halpa-
BJIEHHOCTb U T. JI. Tpedyercss maeHTUPUITMPOBATL n3dUpaTeseil Kak MOTeH-
[IMAJIBHBIA 3JIEKTOpAaT KaXK/JIO U3 MapTUil, WHBIMU CJIOBAMH, Pa3JIejIUTh
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MHO2KeCTBO H30upaTeieil Ha ABe KOATUINHU. Pernierne 3a/1a491 IpOTeCTHPOBAHO
Ha TpuMepe 6a3bl JaHHBIX 0 rojtocoBannu 1984 roga Konrpecca CHIA [7].

CdopmynupoBaHbl KpuTepuu uaeHTH(MUKAINT, 3a/1a49a CBeIeHa K 3ajade
pa3JiesieHnsi MHOXKECTB C IIOMOIIBIO THIIEPILIOCKOCTH. Perenne, morydeHHoe
C UCIOJIB30BAHUEM METOJMIOB HEIVIAIKOrO IUCKPUMUHAHTHOTO aHAJII3a, [T03BO-
JIsIeT C HEKOTOPOIl TOYHOCTHIO IIPOTHO3UPOBATH MCXOJ[ BHIOOPOB U IOJIYIUThH
COCTaBbl KOAJIUITUI.

Pa6ora Beinosinena npu noggep:xke POOU, npoekt Ne12-01-00752.
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A model of tax auditing of the finite number of taxpayers is considered.
It is supposed that each taxpayer has an income £ and declares his level of
income as ), 1 < &, after every tax period. To simplify the following arguments
it is also supposed that taxpayers have only two levels of income — L and
H, where L < H (as it was done in [2, 8]). Therefore, there exist only one
possibility of tax evasion, that is to declare n = L, when £ = H.

The tax authority can audit taxpayers, declared n = L, with the proba-
bility P{A|n = L}, see ([1], [5]). If the evasion was revealed, the taxpayer
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must pay the level of his evasion and penalty (0 + 7)(§ — 1), where 6 and =
are tax and marginal penalty rates correspondingly.

The tax authority assumed to get some statistical information about tax
evasions from the previous tax periods. The mentioned information is called
a signal s, as it was called in [5]. It is supposed that the probability of tax
auditing in the current period depends on the signals.

Suppose that all considered taxpayers possess one of the three statuses,
they can be Risk-Averse, Risk-Neutral and Risk-Preferred. Hence the total
population of taxpayers is divided into three subgroups: Risk-Averse, Risk-
Neutral and Risk-Preferred. An individual from each subgroup holds one
programmed pure strategy. A population state in this model is described by
shares of individuals with corresponding status.

We consider dynamical model in which individuals from each subgroup
have a possibility to observe a situation (population state) after every tax
period and at a given signal they can change their status. A decision about
status changing depends on the payoffs that guaranteed by the pure strategies
and the population’s state.

Thereby during the long-time period we have a chain of changes of pop-
ulation states that can be described by imitations dynamics.

In our work we consider several modifications of dynamics such as dy-
namics of pairwise comparison, dynamics of imitation of successful agents
and dynamics of pure imitation driven by dissatisfaction [4, 6, 7, 9]. To illus-
trate our model we are planning numerical simulations in each case.
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In this talk we report on recent progress in the numerical treatment of var-
ious nonsmooth boundary value problems in continuum mechanics, including
unilateral contact with Tresca friction, see e.g. [1] and nonmonotone adhe-
sion/delamination problems, see [7]. The contribution is based on the recent
papers [4, 5] of the author and the recent PhD Thesis [6] of N. Ovcharova
written under his guidance.

Firstly in an appropriate vectorial Sobolev function space V on a planar
Lipschitz domain, we deal with nonsmooth variational problems in the form:
Find u € K such that for all v € K,

a(u,v —u) +j(v) = j(u) > (v —u),

where K is the convex closed subset of kinematically admissible displace-
ments,
K={veV|(eV)a<d},

v, denotes the trace map onto the boundary part ', and d > 0 is the initial
gap between the body and the rigid foundation. Moreover, a is the bilinear
form of strain energy and [ the linear form of outer forces; on the boundary
part I'., we have the nonsmooth friction functional

i = [ glhevilds.
Here and in the following, the subscripts ¢, n stand for the tangential, respec-
tively normal component of a vector field at the boundary.
Let Py (N € N) be a shape regular sequence of meshes consisting of affine
quadrilaterals @) € Py with diameter hy o. Moreover, we introduce the set
of edges on the contact boundary,

E.n={E: ECT.isan edge of Py}
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and assume that g is piecewise constant with g = gr on each edge E € &, n.
Further we associate a polynomial degree py o € N to each @) € Py. This
leads to the finite element subspace Vi of continuous piecewise polynomial
ansatz functions. We employ Gauss-Lobatto quadrature whose weights wg are
positive for any quadrature order g. Choosing the Gauss-Lobatto quadrature
points G y on I'; as control points of the unilateral constraint, we define

Ky ={vN€Vn: (YeVN)n <don Gen}-

Clearly, K is a convex closed subset of V. Note however, K is generally
not contained in K for polynomial degree > 2 or for a non-concave obstacle
d thus leading to a nonconforming approximation.

We also approximate the nonlinear nonsmooth functional j using the
Gauss-Lobatto quadrature rule by

dN,E
. . . +1 +1
V) =Jen(re V) den(®) = D gs Y Wi =T w0 Fe(g™E )
EESCYN j=0

where F denotes the affine map on the reference interval [~1,1] to E.
Thus we arrive at the following discretization of the above variational
problem: Find un € Ky such that for all viy € Ky,

a(un, v — un) + jn(vn) —in(un) = (v —un) .

We show convergence of the hp-FEM approximations uny — u (N — c0)
for mechanically definite problems without imposing any regularity assump-
tion. Moreover we treat the coercive case, when the body is fixed along some
part of the boundary. Based on an abstract Céa-Falk estimate and operator
interpolation arguments, we establish an a priori error estimate in the energy
norm under a reasonable regularity assumption.

In the case of linear isotropic material when a fundamental solution to
the Navier-Lamé system is available, potential methods apply. Then using
singular boundary integral operators, equivalent variational inequalities on
the boundary can be introduced leading to a reduction in dimension. For
discretization then boundary element methods can be formulated and their
convergence investigated; for results in a simplified scalar case of a variational
inequality of the second kind we can refer to [4].

Secondly we are concerned with nonconvex nonsmooth variational prob-
lems in the form of a hemivariational inequality: Find u in some appropriate
vectorial function space V' defined on a Lipschitz domain §2 such that for all
vev,
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a(u,v—u)+/}3f0(u,v—u) dx >1(v—u).

Here again, a is a bilinear form and [ is a linear form, similar as above,
but now f° stands for the Clarke subgradient of a locally Lipschitz functional
f defined on D, where depending on the application, D is a subdomain of 2
or a part of the boundary of 2. When lacking coerciveness, this problem is
regularized as in [3] in the general framework of pseudomonotone bifunctions.
To obtain convex substitute problems, another regularization is undertaken
using well-known smoothing functions of nonsmooth finite dimensional op-
timization and using smoothing approximations via convolution. Particular
attention is given to locally Lipschitz functions that can be represented as fi-
nite minimax functions. For these regularization methods strong convergence
results are provided with respect to a regularization parameter . Further-
more to arrive at computable subproblems, similar to [2] for convex contact
problems; finite element methods are employed using Newton-Cotes quadra-
ture with piecewise linear and piecewise quadratic approximations. For the
combined regularization-approximation procedures weak and norm conver-
gence results are established with respect to mesh width h and regularization
parameter €.
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A Variational Approach of the Rank Function
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Associated with (square) matrices are some familiar notions like the trace,
the determinant, etc. Their study from the variational point of view, via the
usual differential calculus, is easy and well-known. We consider here another
function of (not necessarily square) matrices, the rank function. The rank
function has been studied for its properties in linear algebra (or matrix cal-
culus), semi-algebraic geometry... Here we consider it from the variational
viewpoint. Actually, besides being integer-valued, the rank function is lower-
semicontinuous, the only valuable topological property it enjoys.

If we are interested in the rank function from the variational viewpoint, it
is because the rank function appears as an objective (or constraint) function
in various modern optimization problems. The archetype of the so-called
rank minimization problems is as follows:

P) Minimize f(A) := rank of A
subject to A € C,

where C is a subset of M,, ,,(R) (the vector space of m by n real matrices).
The constraint set C is usually rather “simple”, the main difficulty lies in
the objective function. A related (or cousin) problem, actually equivalent in
terms of difficulty, stated in R™ this time, consists in minimizing the so-called
counting function = (x1,...,x,) — c(x) := number of nonzero components
x; in x:

Minimize ¢(z)
(Q) { subject to x € S,

where S is a subset of R™. Often ¢(x) is denoted as ||z||,, although it is not
a norm.

Problems (P) and (Q) share some bizarre and/or interesting properties,
from the optimization or variational viewpoint. The first one, well document-
ed and used, concerns the “relaxed” forms of them (determining the closed
convex hull of the objective function, for example). We recall here some of
these results and propose further developments:

- (Relazation) Explicit forms of the (closed) convex hulls of the objective
functions in (P) or (Q), restricted to appropriated balls, are available.

- (Global optimization) Every admissible point in (P) or (Q) is a local
minimizer.

- (Moreau-Yosida approzimations) The MOREAU-Y OSIDA approximates (or
regularized versions) of the objective functions in (P) or (Q), as well as
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the associated proximal mappings, can be explicitly calculated (in spite of
the inherent non-convexites and discontinuities of these bumpy functions).
- (Generalized subdifferentials) The generalized subdifferentials of the rank
function (a lower-semicontinuous finite-valued function) can be deter-
mined. Actually, all the main ones (proximal, FRECHET, viscosity, lim-
iting, CLARKE’s) coincide and their common value is a vector subspace!
We provide their common expression (in various forms) and also its di-
mension.
We conducted these reflections while supervising the Ph D Thesis of HAI
YEN LE (to be completed in 2013).
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We deal with the following Dirichlet problem for a partial differential
inclusion, depending on a parameter A > 0:

(Py) { —Apu € AJj(z,u) inQ

u=0 on 002 °

Here Q C RY (N > 3) is a bounded domain with a C? boundary 99, p > 1
and 0j(x,u) denotes the Clarke generalized subdifferential of a nonsmooth
potential j, which is subject to the following assumptions:

H; j: QxR — Ris a Carathéodory function s.t. j(z,-) is locally Lipschitz

for a.e. x € Q and j(-,0) € L'(Q2). Moreover, we assume:
(1) j(x,-) is even for a.e. x € Q;
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(ii) €] <ar (14 s|?77!) for ae. z € Qand all s € R, £ € 9j(z,s) (a1 >0,
1<q<p);

(ﬁi)lhnsuplg&ji
5400 S

< 0 uniformly for a.e. x € €2

min 9j(z, s) max 0j(z, s)

(iv) ag < liminf < lim sup <asz (0 <as < as).

s—0+ sp—1 530+ sp—1
Our main result is the following (by A2 we denote the second positive eigen-
value of the negative p-Laplacian in W, (£2)):

Theorem 1. If hypotheses H; hold, then for all A > Xo/as + 1 problem
(Py) has at least three nonzero solutions, precisely a minimal positive solution
uy € int(C¢(Q) 1), a mazimal negative solution —uy € —int(CF(Q)+) and a
nodal solution ug € C§(Q) \ {0}.

The proof of Theorem 1 relies on a combination of nonsmooth variational
methods and truncation techniques. In particular, we use the generalized dif-
ferential calculus for locally Lipschitz functionals introduced by Clarke and
the nonsmooth versions of the Mountain Pass Theorem and Deformation
Theorem (see Gasiniski & Papageorgiou [3]). Also, we employ the nonlin-
ear maximum principle (see Vazquez [4]), techniques for finding extremal
solutions for differential inclusions (see Carl, Le & Motreanu [1]) and the
properties of the spectrum of the p-Laplacian (see Cuesta, de Figueiredo &
Gossez [2]).

The study originates from a question posed by B. Ricceri.
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The problem of implementation of statistical methods of classification
is studied. Such problems as one- and two-dimensional ranking of parame-
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ters and (based on this ranking) construction of discriminant functions for
identification of classes of objects are discussed. Some numerical results are
presented.

Peannzayusa cratuctuyecknx meronos knaccudmkauui

B zamagax kimaccudukamm HyKHO 10 HAOJIIOTAeMOMY BEKTOPY IIPU3HAKOB
PEINTh, K KAKOMY U3 BO3MOXKHBIX KJIACCOB OOBEKT C JIAHHBIMU TIPU3HAKAMUI
npuHa IeRuT. [Ipn craTucTaeckoil KaacCcuUKAIUN IPEJIIOIAraeTCs, ITO
HabJII0J]aeMble [IPU3HAKY SIBJIAIOTCS CJIyYailHBIMU U KaXKJIOMY KJIACCY COOT-
BETCTBYET CBOE pacIIpejieJIeHre MPU3HAKOB. 3a/ada CTATUCTHIECKON KJIaCCU-
(PUKAIIH COCTOUT B HAXOXKJICHUH peIaronieil pyHKIUN, TO eCTh B pa3bnennn
mpoctpancTBa X Ha HeEpeceKarolnecs: MOJMHOXKecTBa X; Takue, 9TO
U;’;l X; = X, tme m — KoaudecTBO KjaaccoB. Eciam HaOIIOIaeMbIit BEKTOD
NpU3HAKOB & € X, TO NPUHUMAETCS peIleHre, 9TO OObEKT C JIaHHBIM
BEKTOPOM IIPU3HAKOB U3 KJjacca i. [lpu m = 2 pemaromasi MyHKIUsST UMeeT

BUL
ho )
fa()

O6bryno dyukuuu wiorHocTu f;(x) He U3BECTHBI U 3aMEHLAIOTCS Ha
«BBIDOPOYHBIE», KOTOPHIE CTPOATCH TI0 «00YIAIONIUM HOCIIEI0BATEIBHOCTAM
(em. [1]). Cpenn Hab0a€MBIX IPU3HAKOB €CTh Gosee mHbOpMaTHBHBIE. B
Meroze Pao mpepjaraercs uckarb «HauboJiee MHMOPMATUBHBINY MPU3HAK
B BuJe JuHelHoi KomOuHaruu ucxomubix. [locsie sroro pemaercs 3agada
omHOoMepHOU Kiaccudukanuu. PaccmarpuBaercs obobmenne merona Pao, B
KOTOPOM HIIYTCs JBa Hambosee MHPOPMATUBHBIX MpU3HaKa l1 u ls, 11 L Iy
B BUJ/ie JMHENHBIX KOM6I/IH3.HI/II/I HUCXOHBIX IIPU3HAKOB. ECJII/I 110 KaKI/IM—J'H/I6O
[IPpUYUHAM OJJHOMEPHAsT KJIaCCU(PUKAIIAST OKA3bIBAETCs HEY/I0BJIETBOPUTEIBLHOIM,
TO MCIOJIb3YeTCs AByMepHas Kiaccudukarus (cum. [2]). Oba meTona onpobo-
BaHbl HA PEAIbHBIX Da3aX JAHHBIX.

B jokmajie mpejcraBieHBl Pe3yJbTATHl AHAJIM3a KaK TECTOBBIX 0a3
Janabrx, Takumx kKak Heart, Diabetes, LandRover, Tak u peaybHO# 6a3bI
C JIAHHBIMM [IAIUEHTOB I[CUXUATPUYECKON OOJIbHUIBI UM. CB. HukoJsas
YynoTBopria.

Pabora Beimonrena npu dunancoBoit momgepxkke Poccuiickoro domma
dynnamenTanbubix uccsaenoBanuit (rpant Ne 12-01-00752).

Xlz{xeX| flgg

2

>k},X2:{xeX\
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Regularity in Variational Analysis
Ioffe A.
ioffe@math.technion.ac.il
Technion, Haifa 32000, Israel

Regularity theory in variational analysis is an extension to set-valued
mappings of the classical regularity theory centered around two groups of
results: the implicit function theorem and the Lusternik-Graves theorem on
the one hand and the Sard-Smale theorem and the transversality theorem
of Thom on the other. Not surprisingly, it occupies a central place also in
variational analysis. In the talk I plan to survey the present state of the theory
relating to various aspects of the theory itself and some its applications (e.g.
optimization, fixed point theorems, generic behavior).

Modeling ductile fracture with DVDS
Ionescu I.R., Lupascu O., Oudet E.
ioan.r.ionescu@gmail.com, oana.lupascu@yahoo.com,
edouard.oudet@imag.fr
LSPM , University Paris 13 (Sorbonne-Paris-Cite) 99 Av. J-B. Clement, 93430
Villetaneuse, France, IMAR, Romanian Academy, 21 Calea Grivitei Street,

010702 Bucharest, Romania, LJK, University Joseph Fourier, BP 53 51, rue des

MathEmatiques F-38041 Grenoble Cedex 9, France

Discontinuous velocity domain splitting method (DVDS) is a mesh free
method which focuses on the strain localization and completely neglect the
bulk deformations. It considers the kinematic variational principle on a spe-
cial class of virtual velocity fields to get an upper-bound of the limit load. To
construct this class of virtual velocity fields, the rigid-plastic body is splint-
ed into simple connected sub-domains and on each such sub-domain a rigid
motion is associated. The discontinuous collapse flow velocity field results in
localized deformations only, located at the boundary of the sub-domains. In
the numerical applications of the DVDS method we introduce a numerical
technique based on a level set description of the partition of the rigid-plastic
body and on genetic minimization algorithms. In the case of in-plane de-
formation of pressure insensitive materials, the internal boundaries of the
sub-domains are parts of circles or straight lines, tangent to the collapse ve-
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locity jumps. In this case, DVDS reduces to the block decomposition method,
which was intensively used to get analytical upper bounds of the limit loads.
When applied to the two notched tensile problem of a von Mises material,
DVDS gives excellent results with a low computational cost. Furthermore,
DVDS was applied to model collapse in pressure sensitive plastic materials.
Ilustrative examples for homogenous and heterogeneous Coulomb and Cam-
Clay materials shows that DVDS gives excellent prediction of limit loads and
on the collapse flow.

Simulation of diffraction structure for wave fields in
focusing areas
Ipatov E., Lukin D., Palkin E.
ipatoveb@mail.ru, palkin@rosnou.ru
Moscow Institute of Physics and Technology (State University),
Institutsky per., 9, Dolgoprudny, 141700, Russia, Russian New University,
Radio st., 22, Moscow, 105005, Russia

Focus area, in addition to their classic appearance in optical systems,
observed in the propagation of electromagnetic waves in the atmosphere of
the Earth and planets, the acoustic waves in the ocean and the earth’s crust,
and sanitation of the light signal in glass, visually in the wavelength range of
visible light (sunlight glare, rainbow) etc. In such areas the wave field in an
inhomogeneous medium is described by one or the system of linear partial
differential equations with boundary or initial conditions given in the form
of rapidly oscillating functions.

In this paper we consider the application of the canonical operator method
by V.P. Maslov (COM) [1-4] to solve the differential equation

S 01U (q)

%;oaﬁ(q) (GA00)P % GADG)P* x - (xiADg ) Pr (1)

with coefficients az(q) € CF(R") and the initial or boundary conditions
given on a surface G (q = q “(a) on G where a € R"~! are coordinates
on G) and containing rapidly oscillating functions of the form exp(iASy(q)).
Here A > 1 is a big parameter, q € R" are spatially-temporal coordinates,
B is a multi-index. We solve for (1) the system of differential equations

dq _10H(q,p) dp _ 10H(q,p)

- _-22\ap) 2
dr 2 90p ' dr 2  dq )

with Cauchy data

q|r=0 q a), Pir=0 p « =q°
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m
where H(q,p) = Z cvg(q)pﬁ1 . % p2" is a Hamiltonian of the problem,
18]=0
T is a parameter along the solution, p € R™ are conjugate momentum coor-
dinates.
After finding a solution {q = q(7,a); p = p(7,a)} of the system (2), we fix
o and search points of 7; in which the Jacobian

dq(T, a)

J = det H ar o)

-0

The sets of such points form in R™ surfaces which are called caustics. Next,
we select a new system of coordinates {pr,qz} (k=1,...,0;k = 0+1,...,n)
so that in the neighborhood of (7, «) the Jacobian

J = det H pk’qk

o

By the method of COM the asymptotic solution of (1) in the neighborhood
of the caustic is constructed on the base of the integrals of rapidly oscillating
functions

I(n,A) = /9(t7 n) exp{iAf(t,n)}dt. (3)

Q

Here the amplitude function g(t,n) and the phase function f(t,n) are defined
by means of the solution of (2). The integral (3) is characterized by two types
of parameters: the internal variables in t € R™ over which the integration is
carried out and external vector of additional parameters and space-time co-
ordinates n € R™. Time for computing the integral can be greatly reduced,
given the fact that for large A contribution to the integral is made by sta-
tionary points of the phase function. First, at  is constructed a covering
{wr}, k=1, N, UM wi, = Q. According to the theorem on partitions of unity
for such coverage is always a set of functions ¢, (t) such that

N
k; Sowk(t) =1 prk(t) 20, te;

2. ¢y, is a finite infinitely differentiable function, ie ¢, € C*°(R"™) for any
subset wy and its support supp ., C wg.

The amplitude function g and the phase function f can be represented as

N
sums of functions g,, = @u.g and f,, = @u,f. Indeed, Y g,, = g and
k=1

> fur = f. Next, we determine the existence of stationary points of the
k=1
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phase function f in each wy, f approximated by smoothing splines. According
to the principle of localization [5], the main contribution when A — oo in
the original integral give only the subsets wj, containing either the stationary
points of the phase function f, or the boundary of €2 or removable singularities
of g. This technique reduces the problem of calculating the integral (3) to the
calculation of the sum of integrals of the form

I = [ . explinf(o)da. (4)

¥
Wi

Since the size of a subdomain wj is small compared to the {2 the integrand is
oscillating slightly above it and to compute (4) we can use formulas of direct
numerical integration. Note that in the case when the region of integration
in (3) is infinite it can be previously limited using the method of integration
along the contour in the complex plane. The described algorithm allows the
calculation time for the integral (3) to be little dependent on the value of A.
Another advantage is absence of necessity in careful study of the integrand.

In the vicinity of caustics there is a significant intensification of the field
compared to the average wave field outside the caustic zone. The spatial
distribution of the field near the caustic contains lot of information about the
characteristics of an inhomogeneous medium. Information about the state
of the ionosphere that is in contact with the neutral atmosphere provide
promising opportunities for diagnostic and real-time monitoring of processes
in the neutral atmosphere and seismic processes in the crust. The sensitivity
of the ionospheric plasma to terrestrial geophysical processes can be used to
establish new physical laws, which would entail the solution of a number of
applications.

The work was supported by the Federal Program “Scientific and Scientific-
Educational Staff of Innovative Russia” for years 2009-2013.
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In this paper we consider the solvability of the identification problems
for the system of basic ocean dynamics equations under the available ob-
servational data (the data assimilation problems). A characteristic feature
of 3D nonlinear hydrodynamic models is the non-uniqueness of solutions in
those spaces where a solution exists. We define a class of weak solutions
satisfying the additional energy inequality. The identification problem re-
duces to finding a set of input parameters and an admissible weak solution
of the model which minimizes the cost functional. Solvability of large-scale
ocean dynamics equations was studied in [1, 2, 3] under the assumption
that the density of water p = p(T,5) is a linear function of the tempera-
ture T and the salinity S. In this paper the density is a nonlinear Lipschitz
continuous function, |p(T1,S1) — p(Ts, S2)| < L\/(Th — T2)2 + (S1 — S2)2,
V11,T5,51,5, € R. Let Q be an open submanifold of a sphere of ra-
dius R with a piecewise smooth boundary. By x,y,r we denote the spher-
ical coordinates, H(z,y) is a positive continuously differentiable function,
z=R-r, G ={(z,y) € 00 < z < H(z,y)}, ¥ is the lateral surface
of the domain G, Qp is the botton boundary of G given by the condition
z = H(z,y), ng = (n,0) and ny are normal vectors to ¥ and Qp respec-
tively, 0 < t1 < 0o, D = Q x (0,¢1); (u,v,w) = (u,w) is a velocity vector,

w = w(u) = div fZH(z’y) udz’, &€ = &(x,y,t) is the elevation of the free ocean
surface. Further the symbol ¢ is used as a generic term for functions u, v, T, S.
The system of ocean dynamics equations is written as [4, 5

d z
M A+ B(w)u+ gVe+ iv/ pd2 = £, (1)
dt po Jo
A aer =g, B ags— s, %y /Hud — Quw.  (2)
dt TL — JT, dt SO = JS, 8t v 0 z = w
where d/dt = 9/t +u-V +w(u)d/dz, B(u)u = (2wsiny + utgy/R)(—v, u),
Ay = —ppN—1,0% /022, g, po, w, iy, Vyp are positive constants, 4, = A, = A,

f, fr, fs are given functions.
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Supplement system (1)-(2) with the initial conditions
u=u’, T=T% 5=5° ¢=¢" t=0 (3)

and the boundary conditions

du 17w oy w(u) _
Ju dp
un=— a—nxn =VI'n=VSn=0on X; ,ungcp,V(pa ‘ng =0 on Qg,

(5)
where 1) means 1" and S, 7 are positive constants, 7,5, @ are given func-
tions.

We denote by (-,-) and || - ||, (-,-)o and || - ||o, (*,)p and || - | p the scalar
product and norm in L?(G), L*(Q) and L?(D) respectively. Let H*(G) =
W¥(G) and HE(G) = {u € H¥(G) x H*(G)|u-n = 0 on X} be Sobolev
spaces of functions and vector functions. Let H~*(G) and Hy*(G) be their
dual spaces,

X = {u € L*(0,t; HY(@)), %‘t‘ € L4/3(0,t1;H0_2(G))} ,
2 1 or 4/3 -2
Y =T e L*0,t;; H (G)),EEL (0,t1; H2(GQ)) },
Z* 2 ag 2 _
= §E€LXD), 2 €L D)p, V=XxYxYxZ

H=(L*(G)* x L*(Q), W =VnL>®0,t;;H), P=L*0,t;H;"(Q));
U={uTS}, E={u,T,5&, [EI* = l[ull®+Ioll” + [T+ [IS]*+gll€l3,
[, 1] = 1p(Vp, Vo1) + v, (0p/ 0z, 0¢1/02) + 74 (9, ¢1)0] =0,
[U,U1] = [u,u1] + [v,v1] + [T, T1] + [S, S1]s Yu = 70 = 0,

F=(f fr,fs), Fo=(1/po,vrTs — Qr,vsSs — Qs).

We introduce the additional energy inequality
L2 ! r o Lizop2
SO + [ vl < S0
0

t z
[ (o L[ pat v )+ (Fo Doloco + 5(Qus € )
0 Po Jo

(6)



82 Ipatova V.

Note that (6) is valid for all smooth solutions to (1)-(5) and the strict equality
holds in this case.

Theorem 1 [4]. For all 2° = {u° 79, 5% ¢ € H, f € P, fr,fs €
L2(0,t1; HY(G)), Qu, Ts, Qr, Ss, Qs belonging to L?(D) and T € (L?(D))?
the problem (1)-(5) has at least one weak solution = € W satisfying the
inequality (6) for almost all t € [0,t1].

It is assumed that the observations of the free ocean surface elevation £ =
&obs(x,y,t) and the observations of surface temperature T'|,—o = Tops (2, y,t)
are available in the domain D; C D. For definiteness sake, £,4s and T,y are
extended by zero onto the set D\ D;. The observation data should be used for
determination of the moisture flow )., the heat flow Q1 and the salinity flow
Qs, whereas all other input parameters of the model are fixed and correspond
to the hypothesis of Theorem 1. It is assumed that ¢ = {Q., Qr,Qs} is
sought for in the space Q = E x (L?(D))?, where E = LP(0,t1; W4 (2)) N
L*(D), 1 < p < 2. By U(q) C W we denote the set of all weak solutions
to problem (1)-(5) corresponding to the given value of ¢ and satisfying the
inequality (6). In the space Q x W we consider the set M of all pairs {¢,E}
such that ¢ € Q, Z € U(q). We define on M a cost functional measuring the
discrepancy between observed values and the simulation results

J(¢,B) = a(|Qu — QI + 11Qr — QF 11D + Qs — Q8l1H) +
+ HX§ - fobs”QD + HXle:0 - TobSH%

where o« = const > 0 is a regularization parameter, x is a characteristic
function of Dy, Q% € E and Q%, Q% € L?(D) are given functions.

The following identification problem is studied: determine the element
{¢,E} € M such that

J(q,E) =inf{J(¢",Z){d, Z'} € M}. (7)

Using the following from (6) a priori estimate, we obtain the theorem.

Theorem 2. For all a > 0 and &ups, Tops € L?(D) the problem (7) has a
solution.

Analogously we study the identification problem of reconstruction of the
unknown initial state =0 = {u®, T°, 5% ¢°} € H.

The work was supported by the Federal Program "Scientific and Scientific-
Educational Staff of Innovative Russia" for years 2009-2013.
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On Well Posed Best Approximation Problems for a
Nonsymmetric Seminorm
Ivanov G.E.
Moscow Institute of Physics and Technology, Institutski str. 9, Dolgoprudny,
Moscow region, 141700, Russia

Let E be a real normed vector space. For a set S C E by intS, S, and 85
we denote the interior, the closure, and the boundary of S, respectively. We
use (p, z) to denote the value of the functional p € E* at the vector = € E.
For R > 0 and ¢ € E we denote by Br(c) the closed ball with center ¢
and radius R. Recall that a set S C FE is called strictly convex if for every
different points x,y € S we have % € intS. A set S C F is called Kadec if
for any sequence {z} C 05 weak convergence x; — xo € 9S implies strong
convergence of {xy}. A subset S of a topological space X is called a meagre

set or a set of first category if S = |J S, where S,, are nowhere dense in
neN
X. The complement of a meager subset is called a residual set. A subset

S of a metric space X is said to be porous in X if there exist ry > 0 and
Y € (0,1] such that for every y € X and r € (0, 7] there exists z € X with
Byr(z) C B,r(y) \ S. A subset S of a metric space X is said to be o-porous

in X if S= {J Sy, where S,, are porous in X. Recall that the Minkowski
neN

sum of sets A, B C E is defined as A+ B = {a—i—b } a€ A, be B}.

We say that subset M of E is a quasiball if M is closed convex and
0 €intM.

Let M be a quasiball. Recall that the Minkowski functional ppr : E — R
of M is defined by

par(z) =inf {t >0z €tM}  Vx€E.

Note that a functional p : £ — R is a Lipschitz continuous nonsymmetric
seminorm iff it is the Minkowski functional of a quasiball.
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For a closed set A C F and a point xg € FE we consider the problem
to approximate o by a point @ € A best in the sense of the nonsymmetric
seminorm:

i —a). 1
min iy (o — a) (1)
Through ops(xg, A) we denote M -distance from the point zg to the set A:
A) = inf —a).
om(zo, A) inf par (o — a)
A sequence {a;} C A is called a minimizing sequence of the problem (1) if

lim pps(zo — ar) = om(xo, A).

k— o0
The problem (1) is said to be well posed if every minimizing sequence of the
problem (1) converges. We use Ths(A) to denote the set of all g € E such
that the problem (1) is well posed.

Stechkin [5], Lau [3], Konjagin [2], Borwein and Fitzpatrick [1], and others
considered the problem (1) for M = 8,(0). It was proved that if the unit ball
M is strictly convex and Kadec, a set A is closed, then Ths(A) is a residual
subset of E. Instead of the unit ball Li [4] considered a bounded quasiball
and obtained a similar result for this more general case. In this paper we
refuse from the assumption that the quasiball M is bounded and investigate
some asymptotic properties (appearance far from the origin) of M which are
necessary and /or sufficient for Si*(A)\ Ths(A) to be a meagre or a o-porous
subset of the intermidiate region

S (A) = {xo e E‘ 0 < onr(wo, 4) < sup QM(%A)} :
S

Consider the barrier cone b(M) and the cone by (M):

b(M) = {pe E*| sup (p, x) < +oo},
rzeM

by (M) = {p € E*| 3z € X : (p, wo) 525@,@}-

We say that a set M C FE is equidistable if there exist A > 1, § > 0, and
d € E such that

Vw € Bs(0) Ve > 0Tz € M: (1+e)z—w ¢ int((M+%5(0)) U(/\M—d)).

Theorem 1. For a quasiball M in a Banach space E the following state-
ments are equivalent:
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(i) E is reflexive, M is strictly convex, Kadec and not equidistable, by (M) =
b(M);

(ii) for any closed A C E the inclusion S¥(A) C Tar(A) is valid;

(iii) for any closed A C E the set S (A) T (A) is a residual subset of
Sint(A).

Remark that equidistableness is a rather complicated notion. The fol-
lowing substantially more simple notion provides a sufficient condition for
SWH(A)YN Tar(A) to be a residual subset of S¥(A), which is also necessary
in finite-dimensional spaces. We say that a set M C FE is parabolic if it is
closed convex and for every d € E the set M \ (2M — d) is bounded. The
term “parabolic” is due to the observation that the epigraph of the parabola

y = x2 is parabolic while the epigraph of the hyperbola y = 1, 2 > 0 is not

xT
parabolic. Since parabolicity depends on the appearance of the set far from
the origin, this property is asymptotic.
A set M C E is called boundedly uniformly convez if 65 () > 0 for all

R >0, ¢ >0, where
68 (e) = sup 56(0 5} Bs rty cM
M a2 D)

Vo,y € MNBR(0): |z -yl > E}.

Theorem 2. Let M be a boundedly uniformly convex and parabolic qua-
siball in a reflevive Banach space E, A C E be closed. Then STt (A)\ Tas(A)
is o-porous in STF(A).

The work is partially supported by the Russian Foundation for Basic
Research, grant 10-01-00139-a.
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Nonsmoothness in the Identification and Evolution of
Equilibrium
Jofré A.
ajofre@dim.uchile.cl
Center for Mathematical Modeling, Universty of Chile, Santiago

Processes in continuous time, virtual or real, can be contemplated in which
market prices and the corresponding demands of agents gradually adjust. One
version could be an information process aimed at generating a trajectory
which would converge to equilibrium. Another version could be a dynamical
system, perhaps even of control, in which equilibrium evolves over time in
response to incremental additions to, or subtractions from, the goods held
by the agents. Either way, reality demands that the quantities of some goods
ought to be able to hit zero sometimes and later pull away. That, however,
means nonsmoothness of the dynamics. The good news is that results in this
direction are being obtained and they are surprisingly strong.

Generalized gradient method for control system
stabilization
Kamenetskiy V.
vlakam@ipu.ru
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences,
Profsouznaya 65, Moscow, 117997, Russia

Apart from ensuring the asymptotic stability of equilibrium, we provide
three requirements on the closed-loop system obtained as a solution of the
stabilization problem.

(1) The attraction domain of the closed-loop system must contain the
desired set of the initial conditions Hy.

(2) System trajectories beginning in the set Hy should not leave the given
admissible set A (chosen as the domain of safe system operation and/or to
prevent the overshoot).

(3) System trajectories beginning in the set Hy must have a certain ex-
ponential degree of convergence.

It is understandable that the degree of success in satisfying the aforemen-
tioned requirements depends on the control system characteristics and the
accepted trade-off between the requirements.

Within the framework of direct Lyapunov method, the sets bounded by
the level surfaces of the Lyapunov functions serve as the main tool providing
the aforementioned characteristics to the closed-loop system. The solution
of the stabilization problem is based on a method of improving Lyapunov
functions within a certain parametric class. This method is directed to enlarge
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the corresponding estimation for the attraction domain of the system & =
f(z) and is shortly presented below.

The attraction domain increasing [1]. We assume that the Lyapunov
functions v(«, =) belong to an arbitrary parametric class of smooth functions,
a € RV is a parameter. We denote by S(a, ) the estimations of attraction
domain corresponding to the Lyapunov functions v(a, x), where r is a level
constant, and S(«, r) is the connected component within the set = {z € R™ :
v(a, &) < r} including zero. Because the sets S(«,r) have all properties of
attraction domain, we also call them as attraction domains.

By a given Lyapunov function providing the stability in the small one
can indicate the maximal atraction domain S(«, R(a)) corresponding to this
function (R(«) is the critical value of the level constant). To improve this
domain, we vary Lyapunov function parameters « along the trajectories of
the differential inclusion

a(t) € F(a(t)). (1)
Here F(a) : R™ — P(R™) is the set-valued map (P(R") is the set of all

subsets of R™) such that the set F(a) consists of the vectors w € RV under
conditions

< <8v<a,yj> _ dvla.a) ﬂ(a,@W) ’“’>N <-e@) (@

Ooa Ja Oa

for all z € I(a) = bndS(o, R(e)) {z € R" : ¥(a, z) = (Ov(x)/0x, f(z) )n, =
0} and y; = Aj(a)a; € bndS(o, R(w)),j = 1,J, where a; are the desired
directions of enlarging the domain S(«, R(a)). The coefficients v(o,x) >
0 in (2) are the Lagrange multipliers of the conditional minimum problem
R(a) = v(a,z), and e(a) > 0 is a continuous function. With

ve{ilonn)=0)
varying the vector o = «(t) according to (1) the relations A;(«(t1))a; €
S(a(te), R(a(te))),t1 < ta,j =1, J, are satisfied.

We show that the decreasing of the function v(a, y;) — R(«) with changing
« is sufficient to satisfy the above conditions. The function R(«) is not dif-
ferentiable, and we need the Clarke generalized gradient [2] instead ordinary
one in this case. In our case the Clarke generalized gradient is the convex hull
of the “partial” gradients as it presented in (2).

The admissible set. Let the admissible set A be assigned by the non-
linear inequality (by the phase constraints),

A={r e GCR":g(x) <0}, (3)

where g(z) € C®(G). To allow for the phase constraints like (3) we use,
instead of v(a, x), the function

M(a, z) = max{v(a, z), g(a, z)}. (4)
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The time-optimality. The ordinary derivative of the Lyapunov function
0(a, x) is replaced by vy(a,x) = 0(a, z) + 2 v(e, x) in order to ensure the
rate of convergence.

Thus, the ordinary requirement v(a, z) < 0 with € S(«, R(«))/{0} is
replaced by M (a,z) < 0 with z € S(a, R(a))/{0}, where

M (a, ) = max{vy(a, ), g(o, 2)}. (5)

The affine system stabilization by the constrained feedback [3].
The control system is described in some domain G C R"™ by differential
equations

i = fi(z) + ufa(z), (6)

where z € R" is the vector of phase variables and f;(z) € C?(Q), i = 1,2.
We look for the stabilizing control in the feedback form uw = u(z) : R™ — R,
obeying the restriction | u(z) |< 1. For some v(a,z) its derivative along
the system (6) trajectories has the form v(a, z,u) = (Qv(a, 2)/0x, f1(x))n +
w{Ov(a, ) /0, fa(x))n. Minimizing v(o, z,u) under | v |< 1, we obtain the
discontinuous stabilizing feedback

u(z) = —sign(9v(e, x)/ 0z, f2(x))n,

defined by the parameters «, and the analog to the derivative v(«, z) is the
Lyapunov — Bellman function

L(a,z) = v(a, z,u) = (Ov(a, )/ 0z, fi(z))n— | (Ov(a, ) /0, fa(x))n | . (7)

It remains to modify the function L(«, ) by the way shown above to allow the
phase constraints and the rate of convergence requirements, and to substitute
it instead ©(«, z) into the algorithm (1)-(2).

Parametric stabilization [4] and the tuning of regulator param-
eters [5]. Let the system containing undefined parameters in the right-hand
side be considered

S.C:f(Oél,l’), f(alao):07 OélEUl gRNla (8)

where © € G C R" is the vector of phase coordinates, oy € U; € RM is
the parameter vector, f(ay,z) € C(U; x G), and G C R™ is a certain
domain. By the parametric stabilization we mean determination of the val-
ues of parameters so that the closed-loop system satisfies the aforementioned
requirements. We also consider the interesting for applications system con-
taining the nonlinear saturator

& = fi(z) + sat(c(ar, )) f2(), 9)
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in which the stabilizing parameters oy € U; C R™ are to be determined to
allow the same requirements on the transient performance. Here z € R" is
the phase vector, c(ay,z)) € C?(U; x G — R), and fi(z) € CP (G — R"),
1=1,2.

We rename the vector of Lyapunov function parameters by as and com-
bine the system parameters «; and Lyapunov function parameters as into
one vector « = (g, as) like in (1)-(2). The derivative v(«, ) of Lyapunov
function v(ag,x) along the trajectories of system (8) or (9) depends on a.
We modify the corresponding functions 0(c«, x) like in (5) to allow the phase
constraints and the rate of convergence requirements, and substitute them
instead of v(a,x) into the algorithm (1)-(2). The improvement of stabiliz-
ing parameters « occurs by simultaneous varying this parameters oy and
Lyapunov function parameters as along the solution curves of differential
inclusion (1)-(2).

Some examples of computer realization are considered.
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Exact penalties in a multipoint problem for ordinary
differential equations
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Exact penalty functions are used to reduce a multipoint problem for or-
dinary differential equations (which is a constrained optimization problem)
to an unconstrained one.
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TouHble wTpadHbie PyHKUUM B MHOrOTOYEYHOW 3agauu
AN 00bIKHOBEHHbIX AundhdepeHymnanbHbIX ypaBHEHWIA

Paccmorpum cucremy:
T = f(xa t)v (1)

e © = x(t) — HemsBecTHas YHKIUs, NOJJIEXKAIAs ONPEJETIeHNIo, t €
[0,7]. Boibepem Ha 3roM orpeske k Touek t; (i = 1,2,...,k). Byuem
paccmarpuBarh 3Hadenus byukiuu x(t) u ee mpousBogHbix A0 (n — 1) —
IO HOPSIKA BKTIOUHTEIBHO B YKAZAHHLIX Toukax: = (t;), ' (t;), ...,z D(t;),
1=1,2,...,k. Obpasyem rerepb n ypaBHEHHUE, CBA3BIBAIOIIIE YTU BEJIUIHNHBI:

B(x(ty), ' (t1), ...,z V), .. xlty), ' (t), ..., 2" V() =75, (2)

U [IOCTABUM TaKyo 3aja4y: HaiiTu Ha orpeske [0, T permenue x(t) ypaBHeHus!
(1), KoTOpOE YAOBIETBOPSIO ObI 71 IOCTABJIEHHBIM YCJIOBUAM (2).
Paccmorpum dyukmmonast

I = (®(x(ty),z' (tr), ..., eV (t), ... 2(te), ' (tr), . .., 2D () — n)?

u x(t, x9) — pemenue ypasuennii (1) ¢ zp € R".
Beesem MHOX)KeCTBO

Q:={[z,20]| 2 € C[0,T),: ¢(2z,20) = 0},

3/1eCh

o(z,x0) = [/OT (z(t) — flxo + /Ot z(T)dr, xo,t))zdt] 1/2.

Bamernm, uto ¢(z,x0) = 0 Vz,2¢ € P[0,T]. Eciu z, xg € Q, 10 DyHKIMS

x(t) = xo —|—/0 z(T)dr

yaosjersopser cucreme (1), u HaoGopoT.

Taxum ob6pasom, 3ajada perrenus cucreMbl (1) st HekoToporo xg € R™
9KBHBAJIEHTHA HaxoxkaeHuio z € P[0, T] rakoro, uro ¢(z,zg) = 0.

Teopema. Ecim ¢ aunmunesa vHa C[0,T] X R™ Torga Hafigercs Ao = 0
Takas, 4TO Ui BCEX A > A9 MHOMKECTBO MUHUMYMOB (yHKIMOHAJA [ Ha
muOo)kecTBe () = {[z, xo]|p(z, xo) = 0} coBHamaer ¢ MHOXKECTBOM MHHHMYMOB
dyHKIIAN

Uz, o) = I(z,20) + Ap(z, 20)
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na Bcem muoxkectse C[0,T] x R™.

Takum 006pa30oM MHOTOTOYEYHYIO 3aJady yJIaJOCh CBECTH K 3ajade
onTHMU3AIMK 0€3 OrpaHUICHHUIA.

Pabora Bemosirena npu nogaepxke POOU, mpoekt Ne12-01-00752.
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The paper deals with the statistical analysis of the construction method
of the market graph introduced in [1]. The main goal of the paper is the
investigation of the optimality of the method of construction of the market
graph from the statistical point of view. According to the classical approach
by Wald the optimal statistical procedures is the statistical procedures with
the minimal conditional risk in a fixed class. In our investigation we consider
the class of unbiased statistical procedures. As a statistical model of the
financial market we use the classical model by Markowitz. The market graph
(true market graph) is the matrix with entries 0 and 1, where we put 0 if the
associated correlation is less then given threshold and 1 otherwise. Sample
market graph is the market graph constructed from the sample correlations.
The main question discussed in this paper is the relation between true and
sample market graphs. Let N be the number of the stocks on the financial
market, n - number of observations. Denote by P(t) the price of the stock i
for the day ¢ and define the daily return of the stock ¢ for the period from
(t—1) tot by R(t) =In(P(t)/P(t —1)).

We suppose that the random variables R;(t) are independent for the fixed
i, have all the same distribution as a random variable R; , and vector of
means and covariance matrix are known. This model is most appropriate in
the case where the random vector (R1, Rs, ..., Rx) has a multivariate normal
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distribution. Denote its correlation matrix by ||p; ;||. Let

2<R<> R)(R,(t) - )
SR - Ry

V@ (1) - Ry)?
be the sample correlation between the stocks i and j, and R; = % > R;(t) be
the sample means of R;. Note that sample correlation and sample mean are
the statistical estimation of the correlation and mean. It is known, that for
a multivariate normal vector both statistics are sufficient.

Matrix ||p; ;|| is a basic matrix for the construction of the true market
graph and matrix ||r; ;|| is a basic matrix for the construction of the sample
market graph. Each vertex of the graph corresponds to an stock of the fi-
nancial market. The edge between two vertices i and j is included in the true
market graph if p; ; > po , and it is included in the sample market graph,
if r; ; > ro (where py and r¢ are the thresholds). Two vertices are adjacent
if they are connected by an edge. The construction method of the market
graph introduced in [1] can be considered as a statistical procedure for the
construction of the true market graph from the sample market graph. In the
present paper we study the problem of optimality of the statistical procedure
of the construction of the market graph.

This problem can be formulated as the problem of optimality of a multiple
decision hypothesis testing:

Hy: pi;>po
Hy: p12 < po, pij > po, (i,5) # (1,2)
H3 toP12 < Po, P1,3 < P0, Pij > Po, (Za.]) 7& (172)7 (133)

All together these hypothesis describe all possible true market graphs. We
show that the method from [1] is optimal in the class of unbiased multiple
decision statistical procedures. To prove this result we put the problem in the
framework of Lehman theory of multiple decision statistical procedures [2]
and precise the choice of generating hypothesis. The work is partly supported
by Russian Federation Government Grant No. 11.G34.31.0057.
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The method of quadratic regularization in nonsmooth
global optimization
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In the paper [1] we offer the new method of quadratic regularization for
searching the point of a global minimum in general quadratic problems. We
prove, that this method is effective for finding the point of a global minimum
in nonsmooth optimization.

Let’s consider a problem

min{ fo(x)|fi(z) <0,i=1,...,m,z > 0,2 € E"}, (1)
where all functions fy(x) can be nonsmooth. We use transformation
min{x, 11| fo(z) + s < zpt1, fi(zr) <0,i=1,...,mx >0,z € E"}, (2)
where the parameter s is chosen from a condition
fola™) + s > |27 [(Jx] = 21| 4.+ |2n])-

We use transformation 2 = Az where matrix A of order (n+1 x n+ 1) equal

1 0 0
A — 0 1 0
1 1 1

The problem (2) is transformed to a kind
min{e’z | fo(Iz) +s—eT2<0, fi(Iz) <0,i=1,...,m, z>0}, (3)

where e = (1,...,1) and I — unite matrix of order (n x n). For some classes
of nonsmooth functions there is a constant » > 0 such that all functions

00(x) = folI2) + 5+ €Tz + 7]z, gi(2) = f(l2) +rl2l, i =1,...,m
are convex. Then the problem (3) is equivalent to the problem
min{e’z | g;(2) <d, i=0,...,m, r|z| =d, z >0}

or
min{d | gi(z) <d, i=0,...,m, reT’ 2 =d, z > 0}. (4)
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The feasible set of the problem (4) is convex. Therefore it can be effectively
solved. The point of a global minimum of the problem (1) is the first n
components of the solution of the problem (4).
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There are two players which participate in differential game I'(zp). The
game I'(zo) with dynamics

i =g(z,u1,u), =€ R™ u; €U C compR, (1)
x(tg) = xp.

starts from initial state zy at the time instant ¢y. But here we suppose that the
terminal time of the game is the random variable 7" with known probability
distribution function F'(t), t € [to,00) [7].

Suppose, that for all feasible controls of players, participating the game,
there exists a continuous at least piecewise differentiable and extensible on
[to, 00) solution of a Cauchy problem (1).

So, we have that the expected integral payoff of the player i can be rep-
resented as the following Lebesgue-Stieltjes integral:

oo t
Ii(to,l'o,ul,UQ) = //hi(T7£L'(T),’LL1,Ug)deF(t), 1= 1,2 (2)
to to

The calculation of the expected payoff by formula (2) causes some difficul-
ties. The simple formula for the expected payoff is obtained in the following
form:

Ii(to,xo,ul,w) :/hl(T)(l—F(T))dT, 1= 1,2 (3)

The necessary conditions for this simplification in a general form are
prooved.
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A criterion of maximal robustness is formulated and discussed in the talk.
The question of existence of solutions of maximally robust control problems
is studied, an equivalent statement of the problem is given. An example of
maximally robust nonlinear mechanical system is provided.

MakcumanbHO pobacTHoe ynpaBieHue B yC/1I0BUSAX
HeonpeaesieHHOCTH

QopMmynupyeTcss U 00CYXKAeTCsT KPUTEPHUil MaKCUMAJILHON pOOACTHOCTH
[3—6], paccMaTpuUBAIOTCST BOIIPOCHI CYIIECTBOBAHUSI DEIICHUST 33 ]a91 MAKCU-
MaJIbHO POOACTHOIO YIIPaBJI€HNUs], SKBUBAJIEHTHASI [TOCTAHOBKA 33, 1a9H, IPUBO-
JIUTCS TTPUMEDP MAKCUMAJIBHO pOOACTHON HEJIMHEIHON MEXaHUIeCKON CUCTEMBI.

BBenenme. ll3BecTHble MOAXOABI K YIIPABIEHUIO B YCJIOBUASAX HEOIPEe-
JIEHHOCTH |2] IPEeIIoNaraiT, IT0 MHOYKECTBO BO3MOYKHBIX 3HAYMEHUI TapaMeTpa
HEOIIPEJIeJIEHHOCTH 33/1aH0, OIPAHNYEHO, U TPeOyeTCs IOCTPOUTH YIIPABJIEHNE,
KOTOPOE 00ECIIeInBAET JOCTHUKEHNE Ie/IU YIIPaBJICHUs (BLIIOJTHEHNE YCIOBUIA,
HAKJIQJ(LIBAEMBIX HA TPACKTOPUU CHUCTEMbl B (ha30BOM IIPOCTPAHCTBE)
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JUIst KaXKJ0r0 3HAYEHHsl IapaMerpa M3 MHOXKeCTBA. Takoe ylpaBieHue,
B COBPEMEHHOH TepMUHOJIOIMH, HA3BIBAETCA DPOGACTHLIM yIpaBieHueM. B
JIAHHOM COOOIIIEHNH PACCMATPUBAETCS KPUTEPUii MAKCUMAJIbHON pPOGACTHOCTH
YIPABJICHUSA B YCJIOBUAX HEONPEEIEHHOCTH, KOTOPBII IIPHMEHUM IS JIIOOBIX
MHOZKECTB BO3MOKHBIX 3HAYEHUN I[APAMETPa HEONPEJETCHHOCTH, B TOM
9HCJIe U ISl HEOTPAHUYEHHBIX WJIM PABHBIX BCEMY HPOCTPAHCTBY 3HAYEHMIT
napameTpa, ¥ yCTaHABJIMBAET MAKCUMAJIbHOE (B YTOUHAEMOM HHKE CMBICIIE)
MHOYKECTBO 3HAYeHHI HapaMerpa HEONPEIEJIEHHOCTH, Jisi KayKJIOro U3
KOTOPBIX OJIHUM, HA3bIBAEMBIM MAKCHMAJBHO POOACTHBIM, YHIPABICHUEM
00eCTIeIMBACTCSl TOCTIZKEHNUE TIEJIN yIIPABICHAS . MaKCIMAIbHOE MHOKECTBO
POGACTHOCTH, €CJIM OHO CYINECTBYET, HE 33Ja€TCs U3BHE, OHO CTPOUTCI KaK
XapaKTEePUCTUKA CUCTEMBI, €€ HPEJEIbHBIX BOSMOXKHOCTEH JOCTUraTh LIeJIH
YIPaBJIEHUs IPU 33 IAHHOM THUIIE HEOIIPE IeJIEHHOCTH.

IlocranoBka 3amaum. PaccmarpuBaiorcs: u — ynpasjenue (yIpas-
nsiionias GYHKIMS 33]aHHOTO KJIacca); ¥ — HapaMeTp HEeOIpe/IeJeHHOCTH;
x(t; u,v) — TpaeKTOpUS AMHAMHIECKON CHCTEMBI B (hba30BOM IMPOCTPAHCTBE;
wi(u,v), ¥;(u,v), J(u,v) — bYHKIUOHAIBI, 3aJaHHblE HA TPAEKTOPHSIX;
OrpaHUYCHHs], 3aJAIOIMe MHOMXKECTBO JOIYCTUMBIX map (u,v) A =
{(u,v) | i(u,v) = 0,%;(u,v) < 0}; MHOXKECTBO JOIYCTUMBIX YIPABJICHUI
npu durcuposanrom napamerpe v U, = {u | (u,v) € A}; mHOXKeCTBO
JIOIyCTUMBIX 3HAYEHWH TapaMerpa v npu (DUKCHPOBAHHOM YIDABJICHUH U
Vi = {v | (u,v) € A}; a Takyke — JyI1d 33J1a9 ONTUMAJIBHOIO YIIPABJIECHHS
— ycJioBHe

Jy(u) = min, (1)
uel,

rue J,(u) — ceuenue dyuknmonasa J(u,v) 110 €peMEHHO U, U MHOXKECTBO

AT ={(u,v) | u=arg mi(}qu,(u)}
uclUy,

Bcex map (u,v), UpU KOTOPBIX JOCTUIAETCH LEJb YIPABJICHUS, & MMEHHO:
cobJrofieHre orpanryenuii u yciaosue onruMasiabaoctu (1). Jis orobpakerus
u — V(u), tne V(u) = {v | (u,v) € A"} HasbBaercs MHOKECTBOM
pObACTHOCTU yUPABJIEHUSI U, CTABUTCS 3G044G MAKCUMAABHO POOACTMIHO020
Ynpasaenus: HallTu yupasjeHue u*, Takoe ITo

V(u") 2V(u) Yus (2)

V(u*) — MakcHMaIbHOE MHOXKECTBO POOACTHOCTH.

O cymecTBoBaHuM pemieHus. Y 3a1a4u (2) ectb oueBniHoe GopMaib-
HOe DeIlleHne, KOIJia B KadecTBe MAaKCUMAJbHO DPOBACTHOTO MOXKET OBITh
B34TO yIpaBJleHUE U, 3aBHCHIIee OT ImapaMerpa v, a uMenuo u*(v), roe u*
ecthb penieHre 3ana4n (1) st naHHOrO 3HaYeHHst Hapamerpa v. OdeBuHOE
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pellleHne HeyIOBJIETBOPUTEIHHO 110 JIBYM IPUYAHAM. BO-TIEPBBIX, YIIPABIEHNE
u*(v) IPUHAIIEXKUT APYrOMy KJaccy (byHKIHUi 110 CDABHEHUIO ¢ MCXOHBIM.
Bo-Bropbix, peanmsalysi 3TOr0 ylnpaBJieHus TpeOyeT 3HaAHUs [apaMeTpa v,
YTO TPOTHUBOPEYUT CTATYCY HEONPEJEJEHHOTO IIapaMeTpa M CBOIUT 3aady
YIIPABJIEHUS B YCJIOBUSAX HEOIPEIETEHHOCTH K TTAPAMETPUIECKOMY CEMEHCTBY
3aza4 (1) ¢ MOJIHOIL OIIPE/IeIEHHOCTBIO.

Ecmun ynpasnenuss v — GpyHKIUH BpeMeHM, UX MHOXKECTBa POOACTHOCTHU
Jr6O0 MyCThI, TUOO COCTOSIT KaK MPABUJIO U3 OJHOTO JIEMEHTA, U, & MHOXKECTBO
pemenuii 3azaun (2) mycro. Eciu ynpaBjieHust « CTPOSTCS 110 IPUHIIAILY
obparHoil cBs3u 110 GazoBbiM KoopAuHaTaMm u = u(- | X), UX MHOXKEeCTBa
pobacraocT HamHOro "Goraye".

B kadecTBe mpuMepa 3aJa9M MAaKCHUMAJbHO POOACTHOIO YIIPABJIEHUSI
MOYKHO MIPUBECTU U3BECTHYIO MPOOJIEMY CHHTE3a ONTHMAJBHOTO YIIPABIEHUSI
[1] m ee pemieHne Jyist 3aJa9M MAKCUMAJBHOTO OBICTPOIEHCTBHS [IPU
HEOTIPEJICJIEHHOCTH HAYAJIBHOTO BEKTOpA JIBUXKEHHsI B CHCTEME BTOPOTO
nopsiaka. MakcnMaabHO pOGACTHBIM yIPABJIEHUE TAM SIBJISETCS OBEPXHOCTD
Ha1 (pa30BOH MJIOCKOCTHIO C JIMHSMHA MEPEKIIOYeHnit yrpasaenns ¢ +1 va —1
u ¢ —1 Ha +1 B Buze mapabo, a MaKCHUMaJbHOE MHOXKECTBO POBACTHOCTH
ecTh Bes ha30Bas TJIOCKOCTh. BTOpoi#l mpuMep TNPUBOIUTCS B HACTOSIIEM
COOOIIEHUN.

OKBUBaAJIEHTHAS [MOCTAHOBKA 3aga4u. [ljis orobpazkenus v — U(v),
rae U(v) = {u| (u,v) € AT} — MHOXKeCTBO ynpaBieHuil, TOCTHTAIOIIHX TIeJIH
yIIPABJIEHU Jjisi (DUKCUPOBAHHOTO TIapaMeTpa v, T.€. JIJIsl CJIyUasi OTCYTCTBUSI
HEOTIPEJIEJIEHHOCTHU, CTABUTCS 340040 MAKCUMAADHO POOACTNIHOZ0 YNPAGACHUSA:

HalTH! YIIpaBJieHHE u+, TaKOe€ 49TO

ut e (\U@). (3)

B npexnosioxkennn BBIIyKJIocTH MHoxkecrBa AT crnpasemymsa cremyromas
Teopema.

Teopema. 3adavu (2), (3) sxsusasenmmo.

IIpumep 3amauM MakCHMaJILHO pobacTHOro ynpasJiienusi [5]. Pac-
CMATPHUBAELTCA 38498 ONTUMAIBHOTO YIIPABJIEHUS, COCTOAIIAS B IEPEMETCHUH
MaTepUaJbHON TOYKHU BJIOJb OTPE3Ka NPAMOI OIPAaHUYECHHON II0 BEJIMYUHE
CUJIOW M3 COCTOSIHUSI TOKOs B COCTOSIHME TIOKOsI 3a 3aJIaHHOE BpeMsi C
MUHUMAJIBHBIM MAKCUMYMOM abCOTIOTHON BeJimauibl ckopoctu. Heonpetenen-
HOI #BJIFETCS BeJUYMHA OTPe3Ka. [l0CTPOEHBI MAKCUMAJLHO POGACTHOE
yIIpaBJIeHre KaK (PyHKIUS (Pa30BBIX KOOPJANHAT U MAKCUMAJIBHOE MHOXKECTBO
pobactrocTu. ['oBopst Gosiee cTporo, B 3a1a4e ‘HTl<Ill max | (t;w) |, pemaemoit

Ul

npu ycaosusix & = w, t € [0,7], xz(0) = x9, #(0) = 0, =(T) =
#(T) = 0, BBemeHa  HEOUPEIEJEHHOCTH  HAYAJIBHOIO MOJIOKEHUS
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Zo ¥ IIOCTPOEHO yupasienue u*(z,Z) Kak IIOBEPXHOCTb HaJ (hazoBoil
IIJIOCKOCTBIO €O 3HaveHusAMH +1, 0, —1 1 ¢ JIUHUAMU IIepeKJIIOYEHNI B BU/IE
cooTBeTCTBYOMUX Tapabosr. MHoKecTBO pobacTHOCTH ynpaBieHus u*(x, )
— orpesok [—0.25 T2, 0.25 T?] — coyiepKUT MHOKeCTBa POGACTHOCTH JII0GOTO
JIpyroro yupasjenus Buia u(t, z, &), T. . HOCTPOCHHOE yIIPABJICHHUE ABJISETCS
MaKCUMAJbHO POOACTHBIM YIIPABICHUEM.

3akirouenue. [Ipemioxken kpurepnit BbIOOpa yIpaBIe€HUs B YCIOBHUIX
HEOIPEIeJIEHHOCTH, COCTOAIIMI B TOM, 9TO KasKJIOMY YIIPABJIEHUIO 38 aHHOIO
KJIACCA COTIOCTABJISIIOTCS BCE 3HAYEHUS TIAPAMeTPa HEOIIPEIeJIEHHOCTH, TaKHe,
YTO JOCTUTAETCs 1EeJIh YIPABICHUS, U 9TO MHOYKECTBO MAKCUMU3UPYETCS, B
3aJIAHHOM CMBICJIE, HA MHOYKECTBE BCEX yIpaBJieHUi Kiacca. VccaenoBaanch
BOIIPOCHI CYIIECTBOBAHUS PEIIEHUs] JIAHHON 3a/1a1u JIJIsl PA3JIMNIHBIX KJIACCOB
YUPABJIIOMUX (PYHKIAIA.

B cityuae HeOrpaHUUEHHOCTH 3HAYEHUH napaMerpa (BeKTOpa niin QyHKIMN )
HEOIPEJIEJIEHHOCTH, 8 TAKKE B CJIyUae, KOTJA U3BECTHO TOJHKO IPOCTPAHCTBO
BO3MOXKHBIX 3HAYEHU TapaMeTpa HeOPeIeIeHHOCTH, TPUMEHEHUE KPUTEPUsT
MaKCUMAJIbHOM POHACTHOCTH MO3BOJISIET YCTAHOBUATH MIPEIEJIbHBIEC BOSMOXKHOCTH
YIPaBJIEHIUS KaK ODIIYI0 XapaKTEePUCTUKY U3YIaeMO JMHAMIIECKOI CHCTEMBI.

[IpenoKeHHbIi TOAX0/ K paboTe ¢ HEOMPEIEeJeHHOCTHIO MOXKET CJIEJIATh
BO3MOXKHBIM 00Jieeé KOHCTPYKTUBHYIO IOCTAHOBKY MPOOJIEMbI CHHTE3a, OITH-
MaJILHOIO ylpaBieHus [5].
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Starting with the pioneering work by Dubovitskii and Milyutin [1], it has
become natural when dealing with optimization and other related problems to
reformulate optimality or some other property under investigation as a kind
of extremal behaviour of a certain collection of sets. Considering collections
of sets is a rather general scheme of investigating extremal problems. For
instance, any set of extremality conditions leads to some optimality conditions
for the original problem.

The concept of a finite extremal collection of sets was introduced and
investigated in [2, 9, 10].

DEFINITION 1 ([2, 11]). A collection of sets {Qi}icr, 1 < |I| < o0, in
a normed linear space X, is called locally extremal at T € (;c; Qs if there
exists a p > 0 such that for any € > 0 there are a; € X, i € I, such that

max||aif| <& and (i - a)[B,(z) = 2. (1)

el

A dual necessary extremality condition in terms of Fréchet e-normal el-
ements was established in [2, 10] (formulated without proof in [9]) for a
collection of closed sets in the setting of a Banach space admitting an equiv-
alent norm Fréchet differentiable away from zero. It was extended in [12] to
general Asplund spaces and is now known as the Extremal principle.

THEOREM 1 ([2, 9, 11, 12]). If a collection of closed sets {Q;}icr, 1 <
[I] < oo, in an Asplund space, is locally extremal at T € (,c; S, then for
any € > 0 there exist x; € Q; N Be(&) and x} € N& (x;) (i € I) such that

> il <ed llaill, (2)

i€l iel

where Ngi (x;) is the Fréchet normal cone to Q; at x;.

This result can be considered as a generalization of the convex separa-
tion theorem to collections of nonconvex sets and is recognized as one of the
cornerstones of the contemporary variational analysis. It can substitute the
latter theorem when proving optimality conditions and subdifferential calcu-
lus formulas. We refer the reader to [11] for other applications and historical
comments.
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Similar to the classical analysis, besides extremality, the concepts of sta-
tionarity and regularity have been introduced and investigated. It was es-
tablished in [3, 4] that the conclusion (2) of the Extremal principle actually
characterizes a much weaker than local extremality (1) property which can
be interpreted as kind of stationary behaviour of the collection of sets.

DEFINITION 2 ([7]). A collection of sets {Qi}icr, 1 < |I| < o0, is ap-
prozimately stationary at T € (\,c; Qi if for any e > 0 there exist p € (0,¢);
w; € QN BA(Z) and a; € X (i € I) such that

max |aill <ep and Q(Qi —w; —a;) ﬂ(PB) =

Replacing in the Extremal principle local extremality with approximate
stationarity produces a stronger statement — the Fxtended extremal principle:
approximate stationarity of a finite collection of closed sets in an Asplund
space is equivalent to its separability (Fréchet normal approzimate stationar-
ity [6, 7]).

THEOREM 2 ([3, 4]). A collection of closed sets {Q;}icr, 1 < |I| < 00, in
an Asplund space, is approximately stationary at T € ();c; i, if and only if
it is Fréchet normally approximately stationary at Z, i.e., for any € > 0 there
exist z; € Q; N B.(z) and x} € N§ (;) (i € 1) such that (2) holds true.

If a collection of sets is not approximately stationary, it is uniformly reg-
ular.

DEFINITION 3 ([5, 6]). A collection of sets {Qi}tier, 1 < |I| < o0, is
uniformly reqular at T € (,o; i if there exists an o > 0 and an € > 0 such
that

el

n(Qz —wji — a;) m(PB) # O
iel
for any p € (0,¢); w; € Q; N B(T) and a; € X (i € I) satisfying |la;|| < ap.
The latter property is the direct analogue for collections of sets of the
metric reqularity of multifunctions. The corresponding dual property is called
Fréchet normal uniform regularity ([6, 7]). The next theorem is a corollary
of Theorem 2.
THEOREM 3. A collection of closed sets {Q;}icr, 1 < |I| < oo, in an
Asplund space, is uniformly reqular at & € ();c; Qi, if and only if it is Fréchet
normally uniformly reqular at T, i.e., there exists an o > 0 and an e > 0 such

that
doaizad e

icl i€l

for any x; € Q; N B.(Z) and x}7 € N& (x;) (i €1).
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Given a collection of sets € := {Q;}ier C X, where 1 < |I| < o0, and
a point T € [);c; i, the discussed above extremality, stationarity and regu-
larity properties can be equivalently defined in terms of certain nonnegative
(possibly infinite) constants (see [5, 6, 7]):

0,19)(z) == sup{r > 0| (i —a:)(\B,(2) # 2, Va; € TB}, p € (0,00],

icl
090(@) = mint 2@ Grqi@) = e Gl @dierl©)
00 p pl0; w28z, ieT P
N (z) = lim inf z;
©: %z, 07N (@) GeD) ||ier

Eie[llw:”:l

Extensions of the above definitions and results to infinite collections of
sets can be found in [8].
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Let f: X — R be monotone over locally convex solid Riesz space X. f

is said to be monotone if f(z) = f(|z|) and f(y) < f(x) whenever 0 < y < z.

— and A— subdifferentials 0¥ f(z) and 9" f (x) of the functional f at the

pomt x > 0 are defined by 90V f(z) = {a* —y* : (z,y*) = f(z) + f*(z*), 0 <

y* <2’} ([1]) and 0" f(2) = {z" —y" : (x,y") = f(O)+ [T (2"), 0 <y” <™}

where fT(z*) = —(—f*)(—z*) for the Young conjugate f* of f. We refere to
these subdifferentials as to order (or lattice) subdifferentials. Let

£ (asy) = i = (Fa v ) - @),
1 1)
fMasy) = lim = (f(z ATy) = £(0)),

N0 T
for xz,y € X, be V— and A—directional derivatives, respectively, of f at x
in the direction y. If f € Conv(X) with 2 € dom(f) and f € Cone(X) with
0 € dom(f) then V— and A—directional derivatives are well defined with in f

and sup over ¢ > 0 instead of lim;\ o, respectively.

V— and A— subdifferentials can be expressed in terms of the usual subd-
ifferential 9. If © € dom(f), then 0V f(z) = (0. f(x) — Oy f(x))y N {z}t
for f € Conv(X). If f € Conc(X) and 0 € dom(f) then 9"f(z) =
(1) + 04 f(0))_. Order subdifferentials are convex and weakly* compact
if the above = and 0, respectively, are points of continuity for f.

There hold Moreau-Pshenichnii type theorems. Under suitable continuity
assumptions, if f € Conv(X) and, respectively, f € Conc(X) then

Y (x;y) = max{< y,z* >: 2* € 8" f(x)},
fMx;y) = min{< y,2* >:2* € 0" f(x)}.

(2)
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Next, Moreau-Rockafellar type theorems can be proved. Under suitable as-
sumptions there hold

" (fr + f2)(x) = 0" fr(x) + 0" fa(x),

Nfy + f)(2) = 9y (@) + O (). ®)

where f1 and fy are in Conv(X) and in Conc(X), respectively.
Let us consider the following optimization problem

Pof) = {0 € X Sl v ) =min o v )}
y=0

where f € Conv(X) and = > 0. In a sense we search z + X in nonlinear
way. Notice, [0,2] C Py(f) and f(x V yo) = f(x) for yo € Py(f). Let f be
continuous at x > 0 and let yo € Py(f).
(a) Then yo L 8V f(z) or, equivalently,
(b) For each a*,y* € 04 f(z), such that 2* > y* > 0, and z* — y* L «x,
there holds z* — y* L yo.
The following statements are equivalent.
(8) 1o € Palf).
(b) There exists * € X} such that
(i) x" €04 f(x) N0y f(z Vo)
(i) (yo — x,y*) <0, for all y* such that 0 < y* < z*
Similarly the optimization problem

Q:(f) = {yo € Xy flwAyo) m>inf(56/\y)},
y=0

where f € Conc(X), can be characterized. Notice that 0 € Q. (f).
Mixed order subdifferentials 8V (z), 8"V (z) appear in natural way. This
is a consequence of the fact that there are formulae of the form

Jenty) =10 _ sup inf {<y -yt > Il i —f(O)—f*(x*)}‘

t 2*>0 0% >y* >0 t

where, in proper way, f can be convex or concave, the operation V can be
considered instead of A (then 0 must be replaced by z), and the operations
inf, sup can be in different combinations.
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On Computation Methods for Set-Valued solutions to
Problems of Dynamics and Control
Kurzhanski A.B.
kurzhans@mail.ru, kurzhans@cs.msu.su
Lomonosov Moscow State University

The crucial elements of many solutions to problems of dynamics and con-
trol consist in describing related invariant sets and their dynamics. In practice
this amounts to computation of forward and backward reachability tubes that
turn out to be described by nonsmooth functions with values in nonconvex
sets or in convex sets with non-smooth boundaries. The related theory may
be based on modifications of Hamiltonian techniques to non-differentiable so-
lutions while the computation relies on approximation of set-valued solution
tubes through intersections and unions of parametrized arrays of ellipsoidal
or polyhedral -valued tubes. This leads to a natural application of parallel
computations. Indicated are classes of problems where the described approach
appears effective.

Nonstandard Tools for Nonsmooth Analysis
Kutateladze S.S.

sskut@math.nsc.ru
Sobolev Institute, 4 Koptyug Avenue, Novosibirsk, 630090, Russia

This is an overview of a few possibilities that are open by model theory
in applied mathematics. Most attention is paid to the present state and fron-
tiers of the Leonid Kantorovich ideas in the Cauchy method of majorants,
approximation of operator equations with finite-dimensional analogs, and the
Lagrange multiplier principle in multiobjective decision making.

— Agenda

— The Art of Calculus

— Pure and Applied Mathematics

— Challenges of the 20th Century

— Enter New Mentality

— Enigmas of Economics

— Enter the Reals

— Scalarization

— Order Omnipresent

— Enter Fermat

— Enter Hahn—Banach
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— Enter Kantorovich

— Kantorovich’s Heuristics
— Canonical Operator

— Support Hull

— Hahn—Banach in Disguise
— Enter Boole

— Enter Descent

— The Reals in Disguise

— Norming Sequences

— Domination

— Enter Abstract Norm

— Exeunt Abstract Norm
— Approximation

— Enter Epsilon

— Pareto Optimality

— Approximate Efficiency
— Subdifferential Halo

— Exeunt Epsilon

— Discretization

— Hypoapproximation

— Hyperapproximation

— The Hull of a Space

— The Hull of an Operator
— One Puzzling Definition
— Enter Epsilon and Monad
— Exeunt Epsilon

— State of the Art

— Vistas of the Future
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Some Approaches for Construction Exact Auxiliary
Functions in Optimization Problems
Laptin Yu.P., Bardadym T.A.
laptin_yu_p@mail.ru, TBardadym@gmail.com
V.M.Glushkov Institute of Cybernetics of the NASU, Prospekt Academika
Glushkova, 40, 03650 Kyiv, Ukraine

Two approaches to represent a constrained optimization problem as an
unconstrained one are proposed. They can be treated in a framework of gen-
eral notion of exact auxiliary functions proposed in [1]. The first approach is
connected with exact penalty functions. The second one is considered for the
case when a criterion function is not defined outside a feasible set. It is based
on the idea of conical approximation.

A convex programming problem is considered: to find

ff=min{f(x): zeC}, (1)

where C = {z € R": h(z) <0}, f,h: R" — RU {400} are convex
functions. The set C' C domf is supposed to be a convex compact, a feasible
point 2° € intC is given, so h(2?) < 0.

1. Let f, h be finite for any x. Denote T = max{0, z}. Consider a
penalty function of the form

S(z,s) = f(x) +s-ht(z), s€R, s=0, (2)
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and optimization problem: to find
S*(s) =min{S(z,s) :z € R"}. (3)

Penalty function S(z, s) is exact, if S*(s) = f* for a given penalty coefficient
s, and solutions to the problems (1) and (3) coincide. To find such value
of a penalty coefficient it is usually necessary to solve some auxiliary dual
problems, this may lead either to overestimation of the values used, or to
the need to solve the problem (3) several times to find a satisfactory penalty
coefficient. An approach that allows to find automatically the value of penalty
coefficient in optimization algorithm is proposed in [2]. Let s’ (z,s,p) be a
directional derivative of function S at x € R™ in the direction p under fixed
s, p(@) = (xz -2/ ||z —2°].
Lemma [2]. Ife >0 and for any z ¢ C

’

S (z,s,p(x)) > €, (4)

then S(z,s) is an exact penalty function.

Theorem 1 [2]. Let C be a bounded closed set, then there exists a finite
5 such that condition of the Lemma above is satisfied for any s > §.

Let gr(x), gn(x) be subgradients of functions f and h respectively. Instead
of (4) on can use an inequality

(97(x),p(z)) + 5 (gn(z), p(x)) > €. (5)

Let the value of penalty coefficient s be fixed, and a globally convergent
algorithm A for unconstrained minimization of convex functions is used to
solve (3), z* is a current point generated by the algorithm A at step k.

Theorem 2 [2]. Suppose at each iteration k of the algorithm A the fol-
lowing condition is satisfied: if x* ¢ C, then for this point the inequality (5)
is fulfilled. Then the algorithm A converges to the solution of problem (1).

If inequalities (4) or (5) are violated at some iteration of the algorithm
A, it is proposed to increase a penalty coefficient s to fulfill (5), but not less
than on B, B > 0 is a given parameter. For 5 is finite, the number of such
increments will also be finite. Then by Theorem 2 an algorithm converges to
the solution of (1) .

2. Consider conical approximations to construct an exact auxiliary func-
tion. Let a number E < f(z") be given, and F be an epigraph of function
fonC: F={(AMx)eRxC: A= f(x)}, z=\=zx),

z € R x R™. Let consider a conic hull K(F) of an epigraph F with a vertex
2% = (E,2°%)

KE)={veERxR": v=2%+a(z—2%), a>0, z€ F}. (6)
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The set K(F) is convex (because F' is convex) and can be considered as an
epigraph of some convex function. Denote this function as vg(x) and call it
a conical approximation of function f on C.

It is easy to see that for an arbitrary point x € R", z # z° there exists
at least one point T € C on a ray starting from 2" and passing through z,
that f(Z) = vg(T). Let denote the nearest to 2° point of this kind as pg(z).
Denote

@), O |z — a2 < flus(e) — 20|,
“DE“)‘{VE(@, if |z — 29| > [|up(z) — 20| @

Consider a problem: to find
vy =inf{pp(z), =€ R"}. (8)

Theorem 3 [6]. Let E < f(2), than pr(xz) : R® — R is a convex
function; if E < f*, then o3, = f*.

It is necessary to solve a special one-dimensional search problem to find
a value of function vg(x) in any point x € R™ and to find a point pg(x).
Relations to calculate subgradients of function yg(x) (so also pg(x)) are
reported.

3. Operation of conical extension of function f from C to R", depending
on a parameter E is considered. As a resul we get a function ¢ g(x) coinsiding
with f on C. Conditions when functions ¢g(x) and ¢¥g(x) coinside on R™
are formulated.

The statements similar to theorems about nonsmooth penalty functions
are formulated for conical extensions of functions and special classes of opti-
mization problems.

If the problem (1) is reduced to the problem (8), one can use any uncon-
strained optimization algorithm to solve it. A special procedure to adjust a
parameter E is used in calculations. r-Algorithm [3] was used as a tool for
unconstrained optimization in a software implementation [5]. The developed
programs are compatible with standard software environment AMPL. This
allows to compare these programs with modern solvers (SNOPT, MINOS,
LOQO etc.). Computational experiments were carried out on specially de-
signed ill-conditioned test problems and demonstrated the advantages of this
approach.
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Subdifferential estimate of the directional derivative and
optimality criterion
Lassonde M., Jules F.
marc.lassonde@univ-ag.fr, florence.jules@univ-ag.fr
Université des Antilles et de la Guyane, 97159 Pointe & Pitre, France

We provide an inequality relating the radial directional derivative and
the subdifferential of proper lower semicontinuous functions, which extends
the known formula for convex functions [1, 6]. We show that this property is
equivalent to other subdifferential properties of Banach spaces, such as con-
trolled dense subdifferentiability, optimality criterion, mean value inequality
and separation principles. As an application, we obtain a first-order sufficient
condition for optimality, which extends the known condition for differentiable
functions in finite-dimensional spaces [2] and which amounts to the maximal
monotonicity of the subdifferential for convex lower semicontinuous functions
[5]. Finally, we establish a formula describing the subdifferential of the sum of
a convex lower semicontinuous function with a convex inf-compact function
in terms of the sum of their approximate e-subdifferentials. Such a formula
directly leads to the known formula relating the directional derivative of a
convex lower semicontinuous function to its approximate e-subdifferential [4].
This talk is based on our recent work [3].
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Nonsmooth Analysis on Smooth Manifolds
Ledyaev Y.S.
ledyaevQ@umich.edu
Western Michigan University, Kalamazoo, MI 49008, USA

There are numerous instances of nonsmooth functions which arise natu-
rally in many problems for smooth manifolds. For example, the well-known
Ky Fan equality gives the following nonsmooth representation of the k-th
largest eigenvalue of a symmetric matrix A on the manifold of symmetric
n X n matrices

M(A)= max tr(XTAX)— max tr(XTAX),
XeS(k+1,n) XeS(kn)

where the Stiefel manifold
S(k,n):={X e R . XTX =1}

consists of real orthogonal n x k matrices.

The framework and some tools for studying nonsmooth semicontinuous
functions on smooth manifolds were developed in [6]. In many aspects it
was intended to provide the same wide range of applications as methods of
monographs [1, 3, 4] do for nonsmooth optimization and control problems on
linear spaces.

In this talk we’ll discuss the following applications of the nonsmooth anal-
ysis on smooth manifolds:

Differential geometry. For Riemannian manifolds of nonpositive cur-
vature (Hadamard-Cartan manifolds) we use nonsmooth analysis to prove
a manifold’s variant [7] of classical Helly’s theorem on common point of a
system of convex sets and classical Junge’s theorem on the radius of circum-
scribed ball for a set on manifold.

Chow-Rashevskii Theorem. Classical Chow-Rashevskii’s theorem pro-
vides sufficient conditions for existence of geodesic connecting arbitrary two
points on finite-dimensional sub-Riemannian manifolds. Historically, it is al-
so the first fundamental result for a finite-dimensional non-holonomic affine
control system

q= Zui(t)Xi(Q)7 qgeM (1)
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which proves that the system (1) is globally controllable under the following
condition
Lie(X1,Xo,...)(q) =T4(M) Vqge M (2)

where Lie(X7, X5, ...) denotes a linear span of all vector fields generated by
X1, Xs,... and their iterated Lie brackets, T,(M) denotes the tangent space
at the point q.

A generalized version of Chow-Rashevskii’s theorem for infinite-dimensional
control system (1) and infinite-dimensional manifold M was suggested in
[5]. We discuss nonsmooth analysis tools which can be used to demonstrate
that conditions (2) imply global approximate controllability of the infinite-
dimensional system (1) under more general assumptions than in [5].

Stabilization of control systems on manifolds.

Consider a problem of global stabilization of the control system ¢ =
X(gq,u) on the n-dimensional manifold M. In accordance with Milnor’s
theorem if there exists a continuous stabilizing feedback k(q) (such that
g = f(q,k(q)) is asymptotically stable) then the manifold M is diffeomor-
phic to the linear space R™.

In particular it implies that there is no continuous stabilizing feedback
which provides a global satellite stabilization with the following dynamics

Jw=Jw X w+u,

R=Ruw*,
where w € R?, R € SO(3),
0 —Ws w2
w* = | ws 0 —wi
—W9 w1 0

It can be also shown for this problem that there is no smooth control Lyapunov
function which can be used for finding a stabilizing feedback. Nevertheless it
is possible to show that there exists a nonsmooth control Lyapunov function.

In the case of nonlinear control systems in R™ the appropriate concept of
discontinuous feedback control was suggested in [2] which provides a precise
and convenient model of digital computer-aided feedback control.

We demonstrate that a theory of nonsmooth analysis on smooth manifolds
supplies useful tools for analysis of nonsmooth control Lyapunov functions
and design of discontinuous feedback for control problems on manifolds.
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Active sets and nonsmooth geometry
Lewis A.
adrian.lewis@cornell.edu
School of Operations Research and Information Engineering, Cornell University

The active constraints of a nonlinear program typically define a surface
central to understanding both theory and algorithms. The standard optimal-
ity conditions rely on this surface; they hold generically, and then the surface
consists locally of all solutions to nearby problems. Furthermore, standard
algorithms "identify"the surface: iterates eventually remain there. A blend of
variational and semi-algebraic analysis gives a more intrinsic and geometric
view of these phenomena, attractive for less classical optimization models. A
recent proximal algorithm for composite optimization gives an illustration.

Joint work with J. Bolte, A. Daniilidis, D. Drusvyatskiy, M. Overton and
S. Wright.

Small survey on some recent contributions to
subdifferential calculus
Lopez-Cerdda M.
marco.antonio@ua.es
Alicante University, Ctra. San Vicente de Raspeig s/n, Alicante, 03080, Spain

The main objective of this talk is threefold. First, to provide a general
formula for the optimal set of a relaxed minimization problem in terms of
the approximate minima of the data function. Secondly, to derive explicit
charac- terizations for the (convex) subdiierential mapping of the supremum
function of an arbitrarily indexed family of functions, exclusively in terms of
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the data functions. Finally, to present alternative approaches and applications
to subd- iJerential calculus.

Numerical Methods for Nonsmooth Optimization
Mdkeldé M.M., Karmitsa N., Bagirov A.
makela@utu.fi, napsu@karmitsa.fi, a.bagirov@ballarat.edu.au
University of Turku, Department of Mathematics and Statistics, FI-20014 Turku,
Finland, Centre for Informatics and Applied Optimization, School of Science,
Information Technology and Engineering, University of Ballarat, University Drive,
Mount Helen, PO Box 663, Ballarat, VIC 3353, Australia

We consider unconstrained nonsmooth optimization problems of the form

min f(z) (1)
where the objective function f : R™ — R is supposed to be locally Lipschitz
continuous. Note that no differentiability or convexity assumptions are made.
Nonsmooth optimization problems of type (1) arise in many application areas:
for instance, optimal shape design [4, 9], data mining and machine learning,
economics, mechanics and engineering [5].

Most of methods for solving problems (1) can be divided into two main
groups: subgradient [10] and bundle methods [8]. Both of these method
groups have their own supporters. Usually, when developing new methods, re-
searchers compare them with similar methods. Moreover, it is quite common
that the test set used is rather concise.

Our aim is to compare different subgradient and bundle methods, as well
as some of methods that lie between these two. A broad set of nonsmooth
optimization test problems are used in numerical experiments. Rather than
foreground some method over the others our aim is to get some insight on
which method is suitable for certain types of problems.

Subgradient methods are the simplest methods in nonsmooth optimiza-
tion. The idea behind them is to generalize smooth gradient based methods by
replacing the gradient with an arbitrary subgradient. One of the most efficient
subgradient method is the well-known Shor’s r-algorithm with space dilations
along the difference of two successive subgradients. The idea of method is to
interpolate between the steepest descent and the conjugate gradient methods.
The iteration formula is

Tht1 = T + Apdp,

where the search direction d = — Br&g, By is so called space dilation matrix,
A > 0 is some pretermined step size and § € 9f(x) is a subgradient of f
at Tg.



114 Mikela M.M., Karmitsa N., Bagirov A.

The basic idea of bundle methods is to approximate the whole subd-
ifferential of the objective function. In practice, this is done by gathering
subgradients from the previous iterations into a bundle. In prozimal bundle
method [6] the search direction is calculated by

A 1
dy, = arg min{ fy.(d) + ~urd’ d},
deRn 2

where the objective function is approximated by cutting plane model
Fr(d) = max {f(ax) + £ d} (2)
J€Jk

with @ # J, C {1,...,k}, & € 0f(y;) and y; € R™ for j € Ji. The stabiliz-
ing term %uded guarantees the existence of the solution dj and keeps the
approximation local enough.

The bundle-Newton method 7] is a second order method, where instead of
the piecewise linear cutting plane model (2), we utilize a piecewise quadratic
model of the form

fr(d) = max {flaze) + & d+ %deTdo}

where G is an approximation of the Hessian matrix at y; and o; € [0, 1] is
some damping parameter.

The limited memory bundle method [3] is developed for solving large-
scale nonsmooth problems. The method is a hybrid of the variable metric
bundle methods and the limited memory variable metric methods. The search
direction is calculated using a limited memory approach

dp = — Dy,

where 5 k is some aggregate subgradient and Dy, is the limited memory variable
metric update that, in the smooth case, represents the approximation of the
inverse of the Hessian matrix. The matrix Dy is not formed explicitly but the
search direction is calculated using the limited memory approach.

The discrete gradient method [2] is a derivative free version of bundle
methods approximating subgradients by discrete gradients using function val-
ues only. Similarly to bundle methods the previous values of discrete gradients
are gathered into a bundle. The search direction is calculated as

dj, = arg min||d||?,
deS(a:k)

where S(zy) is the convex hull of all the discrete gradients computed so far.



Mikela M.M., Karmitsa N., Bagirov A. 115

The quasi-secant method [1] can be considered as a hybrid of bundle meth-
ods and the gradient sampling method. The method builds up information
about the approximation of the subdifferential using bundling idea, while
subgradients are computed from the given neighborhood of the current iter-
ation point like in the gradient sampling method. The procedure for finding
search directions is pretty similar to that in discrete gradient method but we
use here the quasi-secant instead of the discrete gradient.
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Nonlinear Chebyshev approximations and nonsmooth
optimization
Malozemov V.N.
Cankr-ITerepbyprckuit I'ocymapcTBeHHBIN YHUBEPCUTET,
VYuuBepcurerckas Hab., 1. 7-9, Cankr-Ilerepbypr, 198504, Poccus

In the lecture, a theory of Nonlinear Chebyshev approximations in its
historical evolution is presented, starting from the famous seminal Cheby-
shev paper where necessary optimality conditions for functions least deviating
from zero were first stated.

HenuHeinbie 4ebbiwéBCKME NpUbBNNIKEHUS 1 Hernaakas
onTuMmnlauus

B mokname Oymer mnpejicTaBieHa TeOpUsl HEJIMHENHBIX YeOBIIIEBCKIX
IpUOIMKEHN B €6 MICTOPUIECKOM PA3BUTHH, HAYNHAS CO 3HAMEHUTOI PabOTHI
II. JI. Yebbumnépa [1|, B KOTOpOil BlEpBbIe OBLIM yKa3aHbl HEOOXOIUMbBIE
YCJIOBUS ONITUMAJIBHOCTH B 33/1a4e 0 DYHKIUAX, HAUMEHee YKJIOHSIIOIINXCS OT
HyJisi. [OBOPsi COBpEMEHHBIM SI3BIKOM, HEOOXOUMBIM YCJIOBHEM OIITUMAJIBHOCTH
SIBJISIETCS HAJIMYINE AADMEePHAHCa, TIOJHOrOo 1in HerosiHoro. Ilonck anbrepranca
COCTaBJISIET OJIHY W3 yBJIEKATEJbHENITNX OCOOEHHOCTEN 3a1a1 PABHOMEDPHOTO
TIPUOJIKEHUSI.

B menuneitHoM ciiyuae MMeEIOTCS J[B€ NPUHINANAAIBHbIE KOHCTPYKIIUAU,
obJIaJatoye moJIHBIM asibrepHancoM: npobu E. M. 3omorapésa u dyHKInn
B. M. Tuxomuposa (coBepllleHHbIE CILIAHBI, HAMMEHee YKJIOHSIIOIUECS OT
Hysisi). B jokmmane Oyger pacckazaHo o6 3rux (DyHKIugx, ux 0000IIeHUsIX U
[IPUJIOKEHUSIX.

3ajiaun 9e0BIIEBCKOTO MPUOJINYKEHUs] OTHOCITCS K KJIACCY 33J1a9 HETJIA/I-
KOl ONTHUMHU3AIMKM, B KOTOPBIX YCJOBHS ONTUMAJBHOCTH 3aIIUCHIBAIOTCS B
dopme Kyna-Takkepa. B paGore [2] ymanock Tak pacHUpuTh IMOHITHE
aJlbTepHAHCA W TaK yTO4HHTH ycjaoBus Kyna-Takkepa, dro s 3a1ad
9e0BIMEBCKOT0 TPUOJIMKEHUST AJIbTePHAHCHBIE YCJIOBUS U ycjaoBus KyHa-
Takkepa cTaju SKBUBAJEHTHBIMUA. DTO MMO3BOJUJIO PA3BUTH OOIMUIT METOJT
HOJIyYeHHs aJbTePHAHCHBIX YCJIOBHI ONTHMAJBHOCTU (KaK [IPH OTCYTCTBUU
OrpaHUYEHUI Ha apaMeTpPhbl, TaK W IPU UX HAJIAINN).

B r1okjaje MBI KOCHEMCsI TaKKe UHCJIEHHBIX METO/OB HEeJUHEHBIX
9eOBIMEBCKUX TPUOTUKEHMUIA.

JINTEPATYPA

[1] Yebbumes II. JI. “Bompockl 0 HAMMEHBIINX BeJIMYMHAX, CBS3aHHBIX C
NpUOIM>KEHHBIM TIpejcTaBienueM dyukiuit’. [losHoe cobpanuwe codYMHEHUIA.
Tom 2. M.-JI.: sn-Bo AH CCCP, 1947. C. 151-235.
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[2] Hdayraser B. A., Manozémos B. H. “Hesnneitusle 3amaun anupokcumarun’. B
c6.: CoBpeMeHHOe COCTOSTHIE TeOpHH uccJiefoBanns oneparuii. M.: Hayka, 1979.
C. 336-363.

On Existence Theorems for Monotone and Nonmonotone
Variational Inequalities
Maugeri A., Raciti F.
maugeri@dmi.unict.it, fraciti@dmi.unict.it
Dipartimento di Matematica e Informatica, Universita di Catania
Viale A. Doria 6-1, 95125, Catania, Italy

We make a comparison among various existence theorems for variational
inequalities in reflexive Banach spaces. We first study the case where the
operator has only some type of continuity ( Brezis-pseudomonotonicity, Fan-
hemicontinuity, hemicontinuity along line segments) and then consider the
case of monotone operators and of Karamardian-pseudomonotone operators.
The role of coercivity is analyzed in both cases and some new results are
presented in the case of linear operators in Hilbert spaces. We also present a
new theorem in the functional setting (L>°, L') together with its application
to the time-dependent Walras’ problem.
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Optimality Conditions via Exact Penalty Functions
Meng K.W., Yang X.Q.
mkwflyQ@126.com, mayangxq@polyu.edu.hk
School of Economics and Management, Southwest Jiaotong University, Chengdu
610031, China, Department of Applied Mathematics, The Hong Kong Polytechnic
University, Kowloon, Hong Kong

In this paper, we study KKT optimality conditions for constrained non-
linear programming problems and strong and Mordukhovich stationarities
for mathematical programs with complementarity constraints using l,, penal-
ty functions with 0 < p < 1. We introduce some optimality indication sets
by using contingent derivatives of penalty function terms. Some characteri-
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zations of optimality indication sets by virtue of the original problem data
are obtained. We show that KKT optimality condition holds at a feasible
point if this point is a local minimizer of some [, penalty function with p be-
longing to the optimality indication set. Our result on constrained nonlinear
programming includes some existing ones in the literature as special cases.

This work is supported by the Research Grants Council of Hong Kong
(PolyU 533408/08E).

A first step in designing a VU-algorithm for nonconvex
minimzation
Mifflin R., Sagastizabal C.
mifflin@math.wsu.edu
Washington State University, Mathematics 3113, Pullman WA, 99164, USA,
CEPEL, Rio de Janeiro, Brasil

This talk is concerned with laying the ground work for a future VU-type
minimization algorithm to run on locally Lipschitz functions for which only
one Clarke generalized gradient is known at a point. This entails develop-
ment of a bundle method sub-algorithm that has provable convergence to
stationary points for semismooth functions and can make adequate estimates
of bases for “V-subspaces” in the presence of nonconvexity. Ordinary bundle
methods generate consecutive “null steps” from a fixed “bundle center” un-
til a “serious step” point is found, which then becomes the next center. A
VU-algorithm is similar except that its serious descent point is “very serious”
(called serious in [1]) which means it defines a good “V-step” and also gen-
erates a good “U step” to add to its very serious point in order to define the
next center.

For an objective function of one variable the desired VU-algoritm exists,
but it does not extend directly to functions of n variables. With regard to
convex functions about 20 years worth of proximal point and VU theory had
to be developed before a rapidly convergent method for the multivariable
case could be defined. For the nonconvex case there are some ideas associated
with the single variable algorithm which can be adapted for developing an n
variable method. One is to use second derivative estimates from differencing
generalized gradients to give better “V-model” approximation functions when
negative curvature is detected. Another is to employ a certain form of a
safeguard to guarantee desired convergence even when the negative curvature
estimates are not good enough for proving stationarity in the limit.

The new bundle algorithm described here aims at keeping as many as
possible properties of an ordinary bundle method for convex minimization.
This leads to basing convergence proofs on first showing that {d,}, a sequence
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of V-model proximal point subproblem objective values, converges to zero.
Associated with this is the desire to preserve the concepts of null and serious
steps in the sense that, under reasonable assumptions, there is convergence of
a bundle algorithm generated sequence to a stationary point for the problem
objective function if there are either

(1) an infinite number of serious step iterations

or

(2) a finite number of serious steps followed by an infinite number of consec-
utive null step iterations.

Here the definition of an affine V-model subfunction can be different from
that in the convex case. However, if the objective is convex and a certain
safeguard parameter is set to zero then a V-model subfunction is exactly
the same as in the convex case. In general, a difficulty that arises, due to
not having the subgradient inequality from convex analysis, is that in or-
der to find a null or serious step point, a sophisticated line search needs to
be performed. This search is along a direction determined by the difference
between a serious point and its corresponding center. Such a search must,
either generate a sequence of stepsizes going to infinity with corresponding
objective values going to minus infinity, or find either a null or serious point
with a finite number of objective evaluations. The latter requirement is where
a semismoothness assumption comes into play. Such an assumption specifies
a certain kind of limiting consistency between directional derivatives and
generalized gradients.

For the null step point definition we have chosen a condition that is pa-
rameterized in such a way as to allow the weakest condition we know of, whose
satisfaction implies that {d,} converges to zero sublinearly under assumption
(2) above. For the serious step point definition there are two conditions to sat-
isfy. One is an Armijo-type objective descent condition, familiar from smooth
or convex minimization, but modified to fit in with the form of the null point
condition. The other condition is one to make serious stepsizes sufficiently
large in order to have desirable convergence results under assumption (1). Its
form is chosen to fit in with the forms of the other conditions in such a way
as to be able to show the existence of the type of line search specified above.
Because of all of the above requirements, the form of this last condition does
not look like a familiar Wolfe-type condition that lower bounds a direction-
al derivative estimate. It is of interest to note that the null point condition
does imply a strong lower bound on such an estimate. Also, nonsatisfaction
of a Wolfe condition is useful for calling for extrapolation when the first line
search stepsize tried satisfies an Armijo condition and, hence, there will be a
sufficiently long serious step.
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The null point definition and the serious point Armijo-type condition
each have two parameters, one of which is common to both conditions. If the
common parameter is relatively large, then it is relatively easy (difficult) to
obtain a null (serious) step. Future research is needed to see if a large enough
valid parameter value exists to generate a sufficiently large number of null
steps before ending an iteration with a very serious descent step. If so, the
V-model would be accurate enough to generate a good U-step to add to the
very serious point and define the next bundle center for a VU-algorithm.

This research is supported by grants NSF DMS 0707205 and AFOSR
FA9550-11-1-01309.
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On Differential Properties of Value Functions
Minchenko L.
Belarussian State University of Informatics and Radioelectronics, Minsk, 220027,
Belarus
Directional derivatives of value functions play an essential role in the
sensitivity analysis of optimization problems, in studying min-max problems,
in quasidifferentiable calculus.
Consider the parametric nonlinear programming problem P(x):

f(z,y) — min,
Yy

ye F(z)={y € R" hi(z,y) <0 iecl, hi(r,y) =0 i€ Ip}
which depends on a parameter z € R™, where I = {1,...,s}, Iy = {s +
1,...,p}or Iy =@.
Let us introduce the optimal value function ¢(z) = inf { f(x,y)|y € F(x)}
and the set of optimal solutions

w(z) ={y € F(z)|f(z,y) = ¢(x)} .
Let z,21,Z2 € R™. The goal of the paper is to study the directional
derivatives
¢ (wo; @) = Iim ™" (p(wo +12) = (0)),

" (x0;T1,T2) = ltlif{)l 2t~ (p(wo + 121 + £°22) — @(w0) — t¢' (z0; 1))

In spite of seminal results [1-3] in this area, the problem above remains
not sufficiently studied for the case of non-singletone set of optimal solutions
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w(x). Our approach is based on the development of the method of the first
order approximations by V.F.Demyanov and A.M.Rubinov [1,2]. Through-
out this paper we denote by Fand w the multivalued mapping « — F(x) and
2 +— w(x) and assume that the functions f,h;i = 1,...,p are twice differen-
tiable, F'(z() # & for some point g, the multivalued mapping F is uniformly
bounded near xy and satisfies the Mangasarian-Fromovitz regularity condi-
tion at all points zg = (zg, yo) such that yg € w(xo).

The solution mapping w is said to be upper pseudolipschitzian (or calm)
at a point zg = (2o, yo) € grw if there exist neighborhoods V(xg) and V (yo)
of the points z, yo and a number ! > 0 such that w(z) NV (yo) C w(zg) +
Iz — zo| B for all z € V(xg).

The assertion below gives one of sufficient conditions of upper pseudolip-
schitzian continuity of the solution mapping w. Note that unlike [1-4] this
assertion don‘t use strong second order sufficient optimality condition based
on second order derivatives of Lagrange function.

Proposition 1. Let in the problem P(z) the functions f(zg,-) and
hi(xo,:) © € I be concave and the functions h;(zo,-) ¢ € Iy be affine.
Then the solution mapping w is upper pseudolipschitzian at all points
20 = (T0,%0) € grw.

Let zp = (.I‘Q,yo) egrkl, z = (j?,?), Z1 = (j:17g1),52 = (iz,gg), I(Zo) =
{Z S I| h7(20) = 0}7 [2(20,21) = {Z S I(Zo) ‘ <Vh¢(20),21> = O},

B(z0, 51, 22) = (Vf(20), 22) + 3 (21, V2 (20), 1),

F(Zo;i‘) = {ﬂ S Rm| <VhZ(ZQ),§> <01i¢e I(Zo), <th(2’0),2> =0, 1€ Io},
].—‘2(20721;{%2) = {ﬂg € Rm‘ <Vhi(20),22> + %(21,V2hi(z0)21> <0: e _1'2(20,51)7
<Vhi(2’0)752> + %(51,v2hi(20)51 | =07 € Io},

)
[ (20;%) = {41 € D(20;2)[(Vf(20), (2,51)) = _min_(Vf(20), (2, 7))}

g€l (20;7)

Theorem 1. Let ¢, | 0, zp = xo + txT1 + thg + o(t%), yr € w(zg) and
Yk — Yo € w(zp) as k — oo. If the solution mapping w is upper pseudolips-
chitzian at zp = (xg, yo), then there exist a sequence yor, € w(zp) and bounded
sequences 71 € I'*(2ox; Z1) and Jar € T'?(20k, Z1x; Z2) such that yor — yo and
beginning with some k& = kg the following expansions hold

Yk = Yok + tkPik + ik + o(t2),

e(xr) — @(w0) = t,(V f(20k), Z1k) + 2@ (20K 21k Z21) + 0(17),

where zor = (20, Yor), Zik = (T1,Y1k), 22k = (T2, Yok)-
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Denote
w(zo,Z1) = {(y, 71)ly € w(x0), T € I'((20,9);71),
¢ (x0;71) = (Vf(20,y), (Z1,51))}-

Corollary 1. Let the set w(zg,Z1) be non-empty and the solution map-
ping w be upper pseudolipschitzian at all points zp = (xg,yo) such that
Yo € w(zg). Then for all directions Z,Z1,Z2 € R"™ there exist the directional
derivatives ¢'(xg; Z) and ¢" (xo; T1,T2) and

¢ (z0;Z) = inf min  (V f(29), 2),

YoEw(wo) YET' (20;T)

7/ _ _ . . _
@' (zo;Z1,%2) = inf  min  2®(z, Z1, Z2).
(y0,91) Ew(w0,T1) Y2€I'?(20,21;72)
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Second-Order Variational Analysis And Stability In
Optimization
Mordukhovich B.S., Rockafellar R.T.
boris@math.wayne.edu, rtrQuw.edu
Wayne State University, Department of Mathematics, Detroit, USA, Department
of Mathematics, University of Washington, Seattle

This talks concerns the second-order generalized differentiation theory of
variational analysis and new applications of this theory to some problems of
constrained optimization in finite-dimensional spaces. The main attention is
paid to the full and partial second-order subdifferentials (or generalized Hes-
sians) of extended-real-valued functions, which are dual-type constructions
generated by coderivatives of first-order subdifferential mappings. We devel-
op an extended second-order subdifferential calculus and analyze the basic
second-order qualification condition ensuring the fulfillment of the princi-
pal second-order chain rule for strongly and fully amenable compositions.
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We also calculate the second-order subdifferentials for some major classes of
piecewise linear-quadratic functions. These results are applied to the study
of tilt and full stability of local minimizers for important classes of problems
in constrained optimization that include, in particular, problems of nonlinear
programming and certain classes of extended nonlinear programs described
in composite terms.

Implicit Function Theorem in the Nonsmooth Analysis
Murzabekova G.Y.
guldenmur07@gmail.com
Kazakh Agrotechnical University, 62, Pobeda Ave, Astana 010011, Kazakhstan

The paper is related to Implicit Functions in Nonsmooth Analysis. Recent-
ly Implicit Functions were treated by means of upper and lower exhausters
as new tools of Nonsmooth analysis.

Let fi(x,y) (¢ € 1:n) be continuous on S = 57 x Sy C R™ x R™, where
S C R™ and Sy C R™ are open sets. Put f = (fy,..., fn). Consider the
system

filz,y) =0 Viel:n.

For the smooth case, if f; are continuously differentiable functions in the
neighborhood of 29 = [z, yo], and determinant of the matrix from f;, (o, yo)
is not equal to zero, then a unique vector function y(z) exists in the neigh-
borhood of xy such that f(z,y(z)) = 0, and this function is continuous and
differentiable in the neighborhood of zy. For the nonsmooth case, different
generalizations of gradient are used. Demyanov (1999) introduced the no-
tion of exhauster (see [1]), which is helpful in solving various problems in
nonsmooth analysis.

Let h : R®™ — R be a continuous and positively homogeneous function of
the first degree, i.e. h(Ag) = Ah(g) VA > 0. Then (see [2]) the function h
can be represented as

h(g) = inf vV geR"
(9) = jnf max(v,g) Vg
or
h(g) = sup min(w,g) VgeR",
CeE, wel

where E* and E, are families of convex compact sets, E* = E*(h) being an
upper exhauster h and E. = E,(h) — a lower one.

In the nonsmooth case it makes sense to introduce a directional implicit
function. Fix a direction g € R™, g # 0 and consider the system

filzo+g,y)=0 Vicl:n.
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We say that an implicit function in the direction ¢ exists if g > 0 and a
vector function y(«) given on [0, ap] exists such that

y(a)xo Yo, f(wo+ag,y(a)) =0, Vacl0,a]

Let functions f;(z)V i € 1 : n be differentiable at zy = [zo,yo] in all
directions and the directional derivatives h;(q) = f!(z0,n) be continuous as
functions of ¢, where n = [g, q], ¢ € R™. Then the expansion

fi(20,m) = fi(20) + ahi(n) + opi(c)

holds, where E — upper exhauster h;,

. — Om( ) 77L+7L
hl(n)—clrelg*gé%x(v ), ” -0 VnpelR

In order to solve the problem of existence and to study properties of an
implicit function in the direction g one should find (see [3]) all solutions of
the following system

=0 Viel: 1
Anip. max[v1g + vzq] i€lin. (1)

Assume f = (f1,..., fn), h = (h1,...,hy). Let go € R™ be the solution of
(1).
Introduce the set of matrices

T
aj

L(g)=qa=] a; €C;, C;eEf, Yiel:ny,

where E7 is an upper exhauster of the function h,. Here T' denotes the trans-
position.
Theorem. If
|det Al > c >0 VA€ L(q),

then, for any € > 0 there exist ap > 0 and ¢(«) € R™ such that

lla(a) — qoll <&, f(zo + ag,yo + agla)) =0, Va e [0, a).

Note. It is possible to prove that such a solution exists also for the function

h(n) = max mlg [v1g 4+ v2q], in this case one should use a lower exhauster F,
€1:2 we

of the function h(n).
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Minimax solution of a singular perturbed control problem
under incomplete information
Myshkov S.K.
skmyshkov@mail.ru
St. Petersburg State University, Universitetskii prospekt 35, Petergof, 198504,
St. Petersburg, Russia

A singularly perturbed control problem under incomplete information
with a minimax criterion function is stated. Problems of existence and con-
struction of a minimax solution are discussed.

MuHumakcHoe pelleHne CUHIyNsipHO-BO3MYLLEHHO
3a4a4yv ynpassieHusi Npu HenosHoi uHdopmaumm

PaCCManI/IBaGTCH cireiyromnlasd 3aJa9a YIIpaBJICHU A

T = Pll(lff)ml + P12(/J)£C2 + Ql(u)u7 :Cl(O) = T10, (]-)
pin = Poy(p)x1 + Poo(p)w2 + Q2(p)u, 22(0) = 220, (2)
z = Hy(p)z, (3)
u= Mz, (4)

(oo}
I = [ @ Ao Blwta B e Clude.— (5)

0

3neck ©1ER™, x9€R™, ni+ns=n, © = col(x1,T3) — BEKTOP KOODIWHAT
cocrosiaust; u€R”™ —ymnpasienue; z€R™ — uaMepenuwe, m<ni; U-MaJbIi

napamerp, 0 < pu < 1; t-Bpema, t>0. B (1)-(5) Bce marpuipl or t He
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3aBUCAT, HO KaK (DYHKIUH OT /4 JIOIYCKAIOT Pa3JI0KeHNEe B P 110 CTEIeHAM
45 HallpuMep,

. e I .
Pij(n) = Pij +Z*,Pi]§a P;;(0) = ilg}) Pij(n) = Pij.

AmHanornuHbIe COOTHOIIEHUST IMEIOT MECTO W JIS OCTAJIbHBIX MaTpur B (1)-
(5). IlpeamonaraeTcsi, 9To BCe ST Psijibl — ABCOTIOTHO CXOSIIIAECS B 00J1aCTH
|¢| < [, e i — mosoxkuresnbHasi KOHCTaHTa. [Ipejosaraercst Tak¥kKe, 9TO
B obsacTu |p| < [ BBINOJHSIOTCS CJIELYIONIAE YCJIOBUs: MOAMHTErPAJIbHAS
kBagparndaasg hopMa OT &, U — HOJOKHUTEIHHO IOJLyOlPeIe/IeHHAS, IIPUIEM
C(p) > 0; marpuna Pao(p)-rypsuresa; marpuna Hi(p) — MakCHMAILHOIO
panra: rank(Hi(n))=m. 13 (3),(4) cremyer, 9o yupasieHne oCyIECTBISAETCS
UCKJIIOUATENBHO 110 "MeJIEHHBIM MOJIaM IIPUIeM Ipu m<n; MHOOPMAIUS O
JIOMAHHUDYIOIIUX KOOD/MHATAX HEIIOJHAS.

Yepes MCR™™ oboznaunM MHOXKeCTBO Marpur MeER™ ™ Takux, 4To
cucrema (1)-(2), samxuyras yupasienuem (4) ¢ MeM, acumurorudecku
ycroitunsas. Ilycrs s Beex p € (0, 1) muo)kecrBo M # &, T.e. cucrema
(1)-(4) crabunusupyema. Yupasinenue (4) ¢ marpuneii MEM HasbiBaercs
JIOILYCTUMBIM yTipaBjieHneM. [Tpu Jiro60oM JI0IyCTHMOM yrpaBjieHun byHKIMO-
HaJt (5) IpUHUMAET CJeyIoliee 3HAYCHHE

T(u) = a50(M)zy™

J(M), (6)
rje ©(M)-pemenue ypapaenust JlsmyHosa s 3agaqan (1)-(5) (eM. Huzke
ypasuenue (8)). [lo npuunnam, uzaoxenusim B [1, 2], BBoguTcs yrpasienue,
ONTHMAJILHOE B CJIE/LYIONIEM CMBICIIE:

Amaz (O(M))= min . (7)
TToCKONBKY Apaz (©) = max{A1(0),..., A (0)}, tie \g(©),k € [1 : n] -
coOCTBeHHBIE 3HaUYEHUs MATpuilbl O, To ympasimenue ug = Mgz, MyeM,

pemaroiiee 3aia4dy (7), HA3BIBAETCS MUHUMAKCHBIM yipasienueM. Ilpu pu €
(0, 1) HEOOXOMUMBIE YCJIOBUSI OITHMAIBHOCTH UMEIOT BUJL:

O(P+QMH)+ (P+QMH)*©+ W (M) =0, (8)
L(P+QMH)*+(P+QMH)L+vxv* =0, (9)
Ov = Av, (10)

)

CMHLH* + (Q*©+B*)LH* = 0. (11
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IIpu stom (11)-3T0 ypaBHeHHEe Jisl OIPEIEJCHUsT HCKOMOIO 3HAUEHHsI
MATPUIBI MUHIMAKCHOTO yrpasienus (4). Ecan marpuna H LH* — neocobasi,
ro M u3 (11) onpejessieTcs: OJHO3HATHO:

M =-C YQ*6+B*)LH*(HLH*)"". (12)

B coornomenusx (8)-(12) P, ()-MaTpunsl pasmepa, COOTBETCTBEHHO, (1XN)
u (nxr) mas cucremsr (1)-(2) caemyrormero Buia

_( Pu P2 Q1.
P_<iP21 iP22>’ Q_(iQ2>’

BEJIMYIUHBI A\, ¥ — 3TO MaKCUMaJibHOE COOCTBEHHOE 3HAYEHNE M COOTBETCT-
ByIOIIMH coOGCcTBEHHBINH BekTop Marpunpl ©; H=[H; 0]; L — moaoxkuresbHO
noJtyoupejiesieHHas n-Marpuna; Mmarpuiia W(M) = A+ BMH + (BMH)* +
(MH)*CMH. Ons nccnenosannst ypasuernit (8)-(11) ucmonb3yeTcss MeTO
ACUMIITOTUIECKUX TTPEICTABICHNH, KOTOPBIN MO3BOJISET BBHIACIUTE TJIABHBIE
YWIEHBI MCKOMBIX BeJauduH. V3BecTHO [3], 9TO mpm 3TOM KIIOUEBYIO DPOJIb
UI'paeT pellleHre PeJIylupOBAHHON 3a/a4ui yIpaBJjeHus, KOTopas B paccMa-
TPUBAEMOM CJIy4dae UMeeT TAKO BUIL:

z(t) = Hsxs(t), (14)
u = Mz, (15)

o0
J(u):/ [} Asx s+t Bsutu® Bixs+u* Csuldt. (16)

0

Snecy x,€R™, a marpunpl P, Q,, Hgs, Ay, Bs;, Cs gaBHBIM 00pa3oMm
BhIpAXKAIOTCA depe3 marpuipl Pii, Pia, ...,C cucremsr (1)—(5) B Touke
i = 0. VYenoBus paspelmmuMOCTH peIylUpOBAHHON 3aJadd UMEIOT BHJ,

aHAJIOrMIHBIA cooTHOMmeHUsAM (8)—(11), HO pasmepHOCTDb 3a1a49u OymeT Ny <
n, & TaK¥Ke OTCYTCTBYET 3aBUCUMOCTD OT TapameTpa it [3].

JI0Ka3bIBAETCS, ITO UMEET MECTO CJIEMIYIONIee YTBEPIK IEHE.

Teopema. Ilycrs npu p € (0, i) Marpuia Pao—TypBuileBa, KBaJpaTHIHAST
dopma dyuknmonasa (5)-T0I0KUTENBHO ONPEJIEJICHHAs] U PeyIMPOBAHHAS
cucrema (13)—(15) crabmmmsupyema. Torma mumanmakcHas 3agada (1)-(7)
paspemmMa 1 aCUMITOTHYECKHE IIPEACTABICHAS UCKOMBIX DENICHUH MMEIOT
BUJI:

Mo:Ms+Ol (/J), J(Uo)=$1093$10+02(u)7

rje M, ©s — pemenne penyimposanHoii 3amaan (13)—(16), a O1(u), Oa(u) —
COOTBETCTBEHHO, MATPUYHBII I CKAJISIPHBII CTelleHHbIC PSIIbI, HAYMHAIOITHEC ST
C 4JIeHOB TIOPSJIKA [i'.
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171t TpaKTHYIECKOT0 UCITOJIH30BAHUS JJAHHOTO TIO/IX0/A BEChMa CYIECTBEHHBIM
00CTOSATEIHCTBOM MOXKET OKa3aThCsl TO, YTO PEyIUPOBAHHAS 33/1a9a UMEEeT
HOPSIJIOK MEHBbIIe, YeM ncxoaHast 3ajada (1) — (5), u He 3aBUCHUT OT apaMerpa
w. OTMeruM TakzKe, 9TO pa3padoTanbl 3(DMEKTUBHBIE YNCIEHHBIE METOIbI
perrerns 3amaqan ontuMusanun (13)-(16) [1,2].

Pabora Bemosinena npu nommaepxke POOU, npoekr 12-01-00752.
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Strong graphical LLN for random outer semicontinuous
mappings and its applications in stochastic variational
analysis
Norkin V., Wets R.
norkin@i.com.ua
Institute of Cybernetics, Glushkov avenue 40, Kiev, 03187, Ukraine, University of
California, Davis, 95616, CA

In the report we give sufficient conditions providing strong graphical law
of large numbers (LLN) for random outer semi-continuous mappings, where
convergence of set valued mappings is understood as convergence of their
graphs and generally it is not uniform. These results extend LLN known for
random sets [1], [2] to the case of random set valued mappings.

In case of integrably bounded random mappings we show that graphical
convergence is equivalent to uniform convergence to some fattened mappings.
In case of unbounded mappings we give a number of sufficient conditions for
the fulfillment of the LLN. In particular, they cover the case of a sum of
bounded and cone random outer semi-continuous mappings.

The study is motivated by applications of the set convergence and the
graphical LLN in stochastic variational analysis [3], including approxima-
tion and solution of stochastic generalized equations, stochastic variational
inequalities and stochastic optimization problems. The nature of these appli-
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cations consists in sample average approximation of the problem mappings,
application of the graphical LLN and obtaining from here a graphical ap-
proximation of the set of solutions.

References

[1] Z. Artstein and S. Hart, Law of large numbers for random sets and allocation
processes, Mathematics of Operations Research, 6, No. 4, 485-492 (1981).

[2] H.Attouch and R.J-B Wets, Epigraphical processes: Law of large numbers for
random lsc functions, Seminaire d’Analyse Conveze, Montpellier (1990), pp.
13.1-13.29.

[3] R.T. Rockafellar and R.J-B Wets, Variational Analysis, Grundlehren der math-
ematischen Wissenschaften. Springer (1998) (3rd Printing in 2009).

Quasidifferential Calculus and Minimal Pairs of Compact
Convex Sets
Pallaschke D., Urbarnski R.
diethard.pallaschke@kit.edu
Institute of Operations Research, University of Karlsruhe (KIT), Kaiserstr. 12,
D-76128 Karlsruhe, Germany

This is a survey lecture on common work with Jerzy Grzybowski from
Poznan.

The quasidifferential calculus developed by V.F. Demyanov and A.M. Ru-
binov provides a complete analogon to the classical calculus of differentia-
tion for a wide class of non-smooth functions. Although this looks at the
first glance as a generalized subgradient calculus for pairs of subdifferen-
tials it turns out that, after a more detailed analysis, the quasidifferential
calculus is a kind of Fréchet-differentiations whose gradients are elements
of a suitable Minkowski-Radstrém—Hoérmander space. Since the elements of
the Minkowski-Radstrom—Hoérmander space are not uniquely determined, we
mainly focused our attention to smallest possible representations of quasid-
ifferentials, i.e. to minimal representations.

Therefore let X = (X, 7) be a topological vector space and B(X) (resp. K(X))
the family of all nonempty bounded closed (resp. compact) convex subsets
of X. For nonempty A, B C X : A+ B denotes the algebraic Minkowski
and A+ B the closure of A+ B. For A,B € K(X): A+B = A+ B. Since
B(X) satisfies the order cancellation law, i.e, for A, B,C € B(X) the inclu-
sion A+B C B+C implies A C C, the set B(X) endowed with the sum +
and K(X) with the Minkowski sum are commutative semigroups with can-
cellation property. For A, B,C € B(X) we put AV B = cl conv(A U B) “l
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conv” denotes the closed convex hull.

A equivalence relation on B?(X) = B(X) x B(X) is given by (A, B) ~
(C,D) iff A+D = B+C and a partial ordering by the relation: (4, B) <
(C,D) ifft A C C and B C D. With [A, B] the eqivalence class of (4, B) is
denoted.

A pair (A, B) € B?(X) is called minimal if there exists no pair (C, D) €
[A, B] with (C,D) < (A, B). For any (A, B) € K?(X) exists a minimal
pair (Ao, By) € [A, B], but this is not true for B%(X). There exists a class
[A, B] € B?(cy) which contains no minimal element, where ¢y is the Banach
space of all real sequences which converge to zero. For the 2-dimensional case,
equivalent minimal pairs of compact convex sets are uniquely determined up
to translation. For the 3-dimensional case, this is not true.

Let A, B, S € B(X), then we say that S separates the sets A and B if for
every a € A and b € B we have [a,b] NS # 2.

The following statements are equivalent:
1) AU B is convex, i) AN B separates A and B, iii) AV B is a summand
of A+B.

The condition that for A, B, S € B(X) the inclusion A+ B C (AV B)+S
implies that S separates the sets A and B is called the separation law. It is
equivalent to the order cancellation law.

We consider conditional minimality: A pair (A, B) € K?(X) is called convex
if AU B is a convex set and a convex pair (4, B) € K?(X) is called minimal
convez if for any convex pair (C, D) € [A, B] the relation (C,D) < (A, B)
implies that (4, B) = (C, D).

It is possible to consider the problem pairs of convex sets in the more
general frame of a commutative semigroup S which is ordered by a relation
< and which satifies the condition: if as < bs for some s € S, then a < b.
Then (a,b) € S2 =S x S corresponds to a fraction a/b € S? and minimality
to a relative prime representation of a/b € S2.
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Approximations for an NP-hard Min-Max Coverage
Problem in Wireless Sensor Networks
Pardalos P.
pardalos@ufl.edu
Department of Industrial and Systems Engineering, University of Florida 303 Weil
Hall, Gainesville, FL 32611 USA, Laboratory of Algorithms and Technologies for
Networks Analysis (LATNA) National Research University, Higher School of
Economics 20 Myasnitskaya st. Moscow 101000 Russia

Consider a set of sensors and a set of targets. Suppose each sensor has unit
lifetime. Given a time period, we want to find a sleep/active schedule to max-
imize the minimum coverage during the time period. The problem has been
known to be NP-hard for a long time. In this talk, some new approximation
algorithms will be presented.

Cooperation in Dynamic Games with Stochastic Payoffs
Parilina E.
elena.parilina@gmail.com
Saint-Petersburg State University, Faculty of Applied Mathematics and Control
Processes, Universitetskii prospekt 35, Petergof, Saint-Petersburg, 198504, Russia

There are many types of dynamic games where players’ payoffs are
stochastic. It happens because the real dynamic players’ cooperation is influ-
enced by many factors, and these influences often have random nature. That
is why, the total payoffs in the whole game are more often stochastic. There
is a natural question: how should we allocate stochastic total payoff among
the players who take place in cooperation? The second important task is to
find the scheme of payments to the players at each stage of dynamic game
so that their expected payoffs could be not less than the expected value of
appropriate components of stochastic allocation.

Stochastic games were introduced by Shapley in 1953 [5]. He considered
two-players zero-sum stochastic games with finite state space and finite strat-
egy spaces. Shapley proved that the players have optimal stationary strategies
if they maximize the expectation of the discounted payoff. In the work the
stochastic games in pure stationary strategies are considered. We are limited
by the set of the pure strategies because of the computational difficulties of
stationary equilibrium deriving [1, 2].

In the earlier works on cooperative stochastic games the expectation of
the player’s payoff is considered as a measure of his payoff in the stochastic
game. This approach to cooperative stochastic games were studied by Pet-
rosjan and Baranova in [3, 4], but they did not suppose that players’ payoffs
are random variables, i.e. players allocated the sum of expected payoffs. Suijs
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et al. [7] introduced a new class of cooperative games arising from coopera-
tive decision making problems in a stochastic environment. They introduced
some types of utilities to order the stochastic payoffs. In [7] Suijs et al. deter-
mined the core of the cooperative game with stochastic payoffs and found the
necessary and sufficient conditions for the non-emptiness of the core. Suijs
in [7] introduced the deterministic equivalent of stochastic payoff with some
properties. The Shapley-like solutions and nucleolus for the cooperative game
with stochastic payoffs were found by Timmer et al. [8] and Suijs [6]. In the
work new solutions of the cooperative stochastic games with some utilities
on stochastic payoffs of the players are introduced.
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A Complementarity Partition Result for Multifold Conic
Systems
Pena J., Roshchina V.
jfp@andrew.cmu.edu, vera.roshchina@gmail.com
Tepper School of Business Carnegie Mellon University 5000 Forbes Avenue
Pittsburgh, PA 15213, USA, CIMA, University of Evora Colégio Luis Verney Rua
Romao Ramalho, 59 Evora, 7000-671, Portugal

Consider a homogeneous multifold convex conic system
Ax =0,z € Ky x --- x K,
and its alternative system
ATy e K7 x - x K7,

where K1, ..., K, are regular closed convex cones. We show that there is a
canonical partition of the index set {1,...,r} determined by certain comple-
mentarity sets associated to the most interior solutions to the two systems.
Our results are inspired by and extend the Goldman-Tucker Theorem for lin-
ear programming. The talk is based on our recent work available in preprint

(1].
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An algorithm for constructing the characteristic function in
a assymetric network game
Petrosyan L., Seryakov I.
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Saint-Petersburg State University, 7-9 Universitetskaya nab., Saint-Petersburg,
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A model of network game in which n players wish to rich a fixed node
of the network G = (X, D) with minimal costs is considered. It is assumed
that the trajectories of the players do not have common edges, i.e. should not
intersect. The latter condition considerably complicates the problem, since
sets of the strategies are mutually dependent.

Additionally assumed that the cost of transportation along the edge of
the network are different for all players. Conditionally cooperative equilibrium
and cooperative equilibrium are introduced. On this basis, the correspond-
ing characteristic functions are constructed. To calculate the characteristic
function the Bellman equation is used.
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Corresponding example is considered.
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On Differentiation of Set-Valued Functions and Differential
Inclusions
Polovinkin FE.
polovinkin@mail .mipt.ru
Moscow Institute of Physics and Technology (State University),
Institutsky per., 9, Dolgoprudny, 141700, Russia

The report provides a direct method for investigating optimization prob-
lems with differential inclusions in Banach spaces. The method consists in
the fact that any differential inclusion in a neighborhood of the test trajecto-
ry can be approached by a simpler differential inclusion, whose graph of the
right side is a closed convex cone, which is measurably time-dependent. In
contrast to other approximation research methods for such non-smooth op-
timization problems, the given direct method allows to obtain the necessary
conditions with more precise conjugate (polar) cones.

1. Let E, E4, E3 be a separable Banach spaces. We denote by P(E) (F(E))
the family of all nonempty (closed) subsets of E. There are a lot of known
concepts of tangent cones to a given nonconvex set A at a point a € A of
E. Among them it should be noted the lower tangent cone (also called: sim-
ple tangent cone) Ty (A;a), the upper tangent cone (also called: contingent
cone) Tp(A;a) (see [1]), and the Clarke tangent cone T (A;a) (see [2]). Be-
sides, using the concept of the Minkowski difference of the sets of the form
A-B ={zx € E | z+ B C A}, and following the work of [3], we define
another tangent cones. For example, this is the asymptotically lower tangent
cone Tap(A;a) =Ty (A;a) = Ty (A;a) and the asymptotically upper tangent
cone Tap(A;a) =Tap(A;a) + Tp(A;a) = Te(A;a)) (see [3]). Obviously, the
cones Tap(A;a), Tap(A;a) are convex, closed, and the following inclusions
are valid: To(A;a) C Tag(A;a) C Tap(A;a) C Tr(A;a).

Definition 1 (see [1, 3]) The L- derivative ( where L € {H, B,C, AH, AB})
of set-valued mapping F: Ey — P(Fs) at point zg € graphF C Z = E; X Ey
is the set-valued mapping Dy, F(z) : E1 — P(E2) defined by

DpF(z)(u) = {v € Ey | (u,v) € Tr(graphF; z0)}, u € FEj.
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2. Denote by T the interval [tg,t;] C R' and by AC(T,E) the Ba-
nach space of absolutely continuous functions f : T — FE with the norm
1fOllac = IfGE)lle + |f ()|, Let a subset Cy C E and mapping F:
T x E — P(E) be given. We consider the Cauchy problem for differential
inclusion

2'(t) € F(t,z(t)), xz(typ) € Co, teT. (1)

The set of all Caratheodory solutions z(-) € AC(T, E) of problem (1) we
denote by Ry (F, Cy).

Let the solution &(-) € Rr(F, Cp) be fixed. Following Definition 1, you can
differentiate the right side of the differential inclusion (1) about the decision,
but you can differentiate mapping © — R¢(F,x) and compare them. To do
this we denote for every t € T' the L— derivatives of mapping x — F(t,z) at
the point (Z(¢),2'(t)) as follows

Fy(t,u) = DLF(t, &(t), 2 (1)) ().

Then the set of all Caratheodory solutions u(-) € AC(T,E) of problem
uw'(t) € Fr(t,u(t)) with u(to) = ug we denote by Ry (F},up). Also the lower
derivative of set-valued mapping Rp(F,-): E — P(AC(T,E)) at the point
(&(to), %(-)) we denote as
Dy (u) = liminf(limsup A\~ (R(F, 2(to) + A\z) — &(+))), u € E.
A—0 U

Theorem 1.(see [3]) Let &(-) € Rr(F,Cy) and the mapping F be measur-
able in t and pseudo- Lipschitz in x around (Z(t),'(t)) € graphF(¢,-) with
modulus 1(t) € Li(T,RY) (see [4]). Then for any ug € E and any solution
u(-) € Rr(Fy,uo) that has v/ () € Loo(T, E), the following inclusion hold
u(+) € Dy (up).

3. An existence theorem for solutions of inclusion.

Theorem 2. Let F: T x E — P(E), y(-) € AC(T, E), p(-) € L1(T,RL),
d >0 and xg € E be given such that |y(to) — xo|| < 9, d(y'(t), F(t,y(t))) <
p(t) for a.e. t € T. Let B > 0 exist such that F' is measurable- pseudo-
Lipschitz around (£(t), &' (t)) for the neighborhood Vg = {(t,z,2) € TXEXE |
Iz =y@Il < &), llz=y' Ol < ns(t), t € T} with modulus I(-) € Ly (T, RL),
where the functions m, &g, ng : T — Ri_ defined as

m(t) i/ I(r)dr, &p(t) = em(t)+6(5+/ e ™ Mp(r) dr(1+ ),

tU tO

np(t) = 1(H)Es(8) + p(t)(1 + ).
Then there is a solution x : T — E of problem (1) such that

z(to) =m0, [x(t) =y <&p(1),  [l2'(t) =y’ )] < mp(t), VEeT.
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4. A theorem on the polar of a convex process.

Theorem 3. Let K be a closed convex cone in a separable Banach space
E. Let F: T x E — F(F) be such that F(t,z) = {y € E | (z,y) € K(t)},
where the set K (t) is a closed convex cone in space E x E and it’s measurably
time-dependent (i.e. F(t,-) : E — FE is a closed convex process). Suppose that
there is a function v(-) € Ly(T,RY) such that |F(¢,-)|| < v(t), t € T. Let
KQ and K°(t) be polar cones to the cones Ky and K (t) respectively. Then the
polar cone (Rr(F, Kg))? to the set of solutions Rz (F, Ky) of the differential
inclusion consists of pairs of points b* € E* and functions y*(-) € Lo (T, E*)
such that for each pair there is a function z*(-) € Li(T, E*), for which the
following inclusions hold

b*—/t1 z*(s)ds € KQ; <;1c*(t)7y*(t)—/tt1 x*(s)ds) € K°t), VteT.

to

5. The optimization problem for a differential inclusion.
In the interval T = [tg,t1], we consider the following problem ( see [5])

Minimize {¢(z(t1)) | 2(-) € Rr(F,Co)}. (2)

Let the function : E — R! satisfies a local Lipschitz condition, and the set
Cy C E is closed.

Suppose we are given a solution Z(-) € Rp(F,Cy) of the differential in-
clusion. Let the mapping F: T x E — P(E) be measurable- pseudo-Lipschitz
around (Z(t),4'(t)). Assume that the closed convex cone K(t) C F x F mea-
surably depends on t € T" and satisfies the inclusion

K(t) C Ty (graphF(t,-); (2(t),2'(¢))) VteT.

An example of such cone K(t) is any cone of Tr(graphF'(¢,-); (&(t),2'(t)))
at L € {C,AH1, AH2}. The necessary optimality conditions in (2) take the
following form:

Theorem 4. Let Z(-) be a local (in AC(T, E)) solution to the problem
(2). Then there is a function p(-) € AC(T, E*) such that

p(to) € Tap(Co,2(to)), p(t1) € =% g(d(t1)),

(' (1), p(t)) € K°(t), Vi€ [to, ta].

6. Similarly, the direct method can be used to obtain the necessary
optimality conditions for optimization problems with differential inclusions
in Banach space with the conditions at the endpoints, for time optimal control
problem, etc.
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One problem of global optimization
Polyakova L.
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Let us consider the following optimization problem: find

inf f(z), f(0)=fi(z) - fola), xR,

rER™

where f; and f5 are polyhedral functions defined on R", i.e.
fl(m) = I?ealeli(w)a fli = <ai7x> + bi, I= {]-a s 7m}7

f2($) = Ijneajifé](m)? f2j(x) = <Cj7x> +dj7 J: {]—w",p}a

a;, CjERn, b, djER, iel, jed

The solution of the given problem can be reduced to solving a finite num-
ber of minimax problems (which, in turn, are reduced to linear programming
problems). Therefore this problem can be solved in a finite number of itera-
tions. If at some step the function is unbounded from below, then, obviously,
and the initial problem is also unbounded from below.

The function f is quasidifferentiable on R™ and Df (z) = [0.f1(z), —0f2(z)]
is its quasidifferential at a point x € R™, where 0f;(x) are the subdifferentials
of convex functions f;(z), i = 1,2, at the point x € R™ in the sense of the
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definition of Convex Analysis [1]. In our case the sets df; and 0f are convex
polyhedra at any z € R".

Theorem 1. [2]|. For a point x* € R™ to be a minimizer of the function
f on R™, it is necessary that

dfa(a") C Ofr(x").

For the first time necessary and sufficient conditions for a global minimum
of the difference of convex functions were received by Hiriart-Urruty [3]. In
the proof of these conditions he used e-subdifferentials.

Theorem 2.[3] For ¢ point x* € R™ to be a global minimizer of the
function f on R™, it is necessary and sufficiently that the inclusion

8£f2(x*) - 85f1(l’*) Ve >0,

be hold, where O¢ f;(x*) are e- subdifferentials of the convex functions f;, ¢ =
1,2, at the point x*.

Consider some optimization properties of the function f.

Formulate conditions of the unboundedness of the function f on R™.

Theorem 3. For the function f to be unbounded from below in R™, it is
necessary and sufficient that there exist j* € J and a vector cj«, such that

the condition
cj= & co {U ai}
iel
holds.

The function f on R™ is also codifferentiable [4] and Df(z) =
[df1(x), —df2(x)] is its codifferential at a point € R™, where df;(z), i = 1,2,
are the hypodifferentials of convex functions f;(x), ¢ = 1,2, at the point
x € R™. In this case one can take the following polyhedra

U ( (a;, x) +Céi_fl(x) >} CR" xR,

el

dfi(xz) = co {

dfs(z) = co { | ( <Cj’z>+fijj_f2(x) ) CR" xR,

jeJ
as hypodifferentials of the functions f;(x), i = 1,2, at any « € R™. The given
hypodifferentiable mappings

Rn+1

df; (R — 28" i =1,2,
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are continuous in the Hausdorff metric. It is obvious that the set df;(x) C
R™*! for each i = 1,2, is also a convex polyhedron contained in the half-space

H={z= (Zl"'vzn’zn+l)T €R" xR ’ Zny1 < 0},

where T denotes transposition.
Let the function f be bounded from below in R"™. Formulate necessary
and sufficient conditions for the global minimum of the function f in R"™.
Theorem 4. For a point z* € R™ to be a global minimizer of the function
f on R™, it is necessary and sufficient, that the condition

@ ool (o ey ) (§) 22 vien
hold.

Corollary 1. The condition (1) is equivalent to the following condition

Opi1 € [dfl(x*) _co{< ij(x*)Ci' o) )7( COJ )H VjeJ.

Corollary 2. The condition (1) is equivalent to the condition

O € ) [dfl(”“"*> ‘{< Fas@™) > fola) )( 0 )H |

jed

Corollary 3. (A sufficient condition for a global minimum of the function
f onR™) If at a point x* € R™ the inclusion

dfa(z%) C df1 (")

holds then the point * is a global minimizer of the function f on R™.
The work is supported by the Russian Foundation for Basic Research
(RFFI) under Grant No 12-01-00752.
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To a Problem of Equivalent Substitution of a Control
System
Proudnikov I.
pim_10@hotmail.com
St.Petersburg University, St.Petersburg, Petergof, Universitetskii Prospekt, 35,
198504, Russia

A system of differential equations with control is considered. A rule for
equivalent substitution of this system is given. The system of differential
equations is changed for two systems with upper and lower approximation
functions of a function on the right side of the initial system in a region of
attainability.

Calculation of a Biexhauster for a Lipschitz Function
Proudnikov I.
pim_10Ghotmail.com
St.Petersburg University, St.Petersburg, Petergof, Universitetskii Prospekt, 35,
198504, Russia

It was found an upper (lower) Exhaustive family for any Lipschitz function
f(-) : R™ - R at any point. We use for this purpose a set of curves defined
in [1], [2].

A special class of curves and the average values E of gradients of f(-)
are considered. Using the set E and the proved Theorem, a BiExhauster is
constructed. An algorithm for construction of the BiExhauster is given.

The work is supported by the Russian Foundation for Basic Research
(RFFI) under Grant No 12-01-00752.
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Third-order longitudinal correlation moments in the
intermittency model
Pyrkova O.
opyr@mail.ru
Moscow Institute of Physics and Technology (State University), Institutsky per.,
9, Dolgoprudny, 141700, Russia

In this paper we study the time dependence for third-order longitudinal
correlation moments By 1 in the intermittency model [1, 2], i.e. we use
the following model: flow is considered as a mixture of turbulent and viscous

B
regimes. We discuss the behavior of the function Lg’L (€) in terms of Lytkin

and Chernykh self-similar solutions [3]|, where A is the Taylor dissipation-
length parameter.
B
The behavior of %(ﬁ) is in good agreement with the experimental
data of Stewart and Townsend. But one cannot observed the self-similarity
B
Lg’L and ¢ [4].
u
Accounting intermittency amends value of the function By, 1, [2]:

in the variables

Brrr=7-Brr)r+ 1= (Brr,n)v,

where «y is coefficient of intermittency (fraction of the turbulent regime).
Index () refers to the purely turbulent Kolmogorov regime, index (), refers
to the purely viscous regime.

We have Bpr.;, =7 - (Brr,r)r in the hypothesis that the third-order lon-
gitudinal correlation moments are negligible in a purely viscous regime. In-
fluence of intermittency affects the behavior of the curves at small values of
€.

Fundamental Karman-Howarth equation relates the magnitude of the
two-point second-order and third-order longitudinal correlation moments:

6BLL - 1 0 4 aBLL
at _7~4'ar<r (BLL»L“” ar ))

In the absence of viscosity v = 0 it takes the following form in the purely
turbulent Kolmogorov regime

OB, 1 9 ,,
ot rd 87‘( Brii)- (1)

Equation (1) is initially not closed, because it contains two unknown func-
tions. Gradient hypothesis of Lytkin and Chernykh [3] is used to make it
closed by the expression of the two-point third-order correlation moment
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Brr,r, through the two-point second-order correlation moment By, in the
regime of Kolmogorov turbulence in the inertial range:

Brop = 2K, , P
LL,L o (2)

where K, is the turbulent diffusion (viscosity)coefficient. This provides a
self-similar solution for purely turbulent motion.
Considering von Karman self-similarity

(Brr), =2 fr(&1), (3)

equation (2) takes the form

Bl =T g

13.2A

u)\
R )\ [2] R(B)\ = —

Here & = A’ A is an integral correlation scale, B =

One can find a solution of (2)

Bglz—Qm—Hn(l—i—M)—ln(l—M), (5)

by integrating (4) with the boundary conditions fr|¢,=1 =1, frle;=0c =0
1, 3].

A A
The value of SURDY (Rey) is defined by the interpolation function of the

generalized von Karman model for the spectrum [5]

% — 1.23 4 0.03511/Re (\/Re)\ _ 1) .

Thus we have found that the value of B depends on the Reynolds number,
taken at the initial time.

The expression for the turbulent diffusion (viscosity) coefficient takes on
the basis of approximation between the expressions for one-point case of

the inertial range (51 = % = oo) and the limit for ({; — 0) on the basis of

semi-empirical model developed [1, 2|. in this case K, = &r+/Drr, where
& is empirical constant, Dy = 2uT2(1 — fr) is the longitudinal structure
function.

From (2), (3), (4), (5) we find

B ETY O(u2 f,

T

= 2v/2e& AT — [ 2580 %0 — 9 /Bty T — [, 2580 = —9/%61 B 7.
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Considering that fr = fr(&1) at the same time, we obtain

Brrr  Brreo €)
ZLLL _ ZLLL ey

u3 u3

Brr,r
3
at different times. This fact confirms the hypothesis about the similarity of

the generated turbulence from grid.

It was found that the curves of the variables

and &; are the same
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On Some Major Trends in Mathematics
Rassias T.M.
trassias@math.ntua.gr
Department of Mathematics, National Technical University of Athens, Zografou
Campus, GR-15780 Athens, Greece

We present here three basic directions of research in Mathematics and its
applications based on recent progress and the general trends of science.
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Applying Variational Analysis to Stablility Issues in
Economics
Rockafellar R.T.
rtrOuw.edu
Department of Mathematics, University of Washington, Seattle

Does the concept of equilibrium as defined in economics reflect the kinds
of stability that should go with it, or is equilibrium too delicate or subject
to pathology to be satisfactory without further qualifications? Discouraging
examples in the literature have pushed opinion toward the latter, but it seems
now that questions may not have been asked in the right way. Variational
inequality modeling and the perturbation theory for solutions to variational
inequalities have led to new results indicating that true stability of equilib-
rium can be counted on in circumstances even broader than typically ex-
amined. Moreover, these results deal effectively with the kinds of inequality
constraints that researchers had turned their backs on.

The Kelly Cutting Plane Method
in Solving Minimax Problems
Romanovsky J.V.
jsephromanovsky@gmail.com
St-Petersburg University, St-Petersburg, Russia

The cutting plane method, proposed by J. Kelley in 1960 [1] is remaining
its popularity and even actively developed now (cf. for example, [2].

I am planning to talk about our applications of this method in minimax
problems arising in a problem of optimal maintenance [3], where we are find-
ing the optimal answer to the least favorable distribution selected by the
Nature (following the terms of A. Wald [4]).

We also considered some antagonistic games (i. e. zero-sum two person
games) with random information [5]. In the game problems the idea of col-
umn generation was very efficient. Our own experience with this method was
reviewed in [6].

It was a game when the first player selected its move ¢ € I, then the
Nature selected a parameter £ with a known distribution function, and then
the second player selects its move j € J. The payoff to the first player is
given by a known function K(i, €&, j). It is known that if the distribution of
¢ is continuous then there exist a pure optimal strategy of the second player

171, [8].
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Optimality conditions in nondifferentiable fuzzy
optimization
Ruziyeva A., Dempe S.
ruziyeva@student.tu-freiberg.de, dempe@tu-freiberg.de
TU Bergakademie Freiberg, Department of Mathematics and Computer Science,
Freiberg, D-09596, Germany

In practical situations, data are often not known exactly, i.e. only (subjec-
tive) estimations are pro- vided. One commonly used approach to deal with
these problems is to model them as fuzzy optimization problems [1]. This
approach proved very useful in many applied sciences, such as economics,
physics, etc.

An early approach for solving a fuzzy optimization problem is the exten-
sion principle due to Bellman and Zadeh [2|. Nevertheless, in the talk the
fuzzy optimization problem is solved by its reformulation into the biobjec-
tive optimization problem and application of methods of the multiobjective
optimization problem’s scalarization technique [3], where modern solution al-
gorithms based on the minimization of the a-cut on the feasible set are used
(see e.g. [4, 5, 6, 7, §]). Elements of the Pareto set of each biobjective opti-
mization problem are interpreted as solutions fuzzy optimization problem on
a certain level-cut.



146 Sakbaev V.

An involvement of adapted to the fuzzy case the tangent cone, directional
derivative and the Hadamard derivatives permits to derive with the afore-
said approach necessary and sufficient optimality conditions for the optimal
solution of the nondifferentiable fuzzy optimization problem.
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On variational description of the trajectories of averaging
dynamical semigroups
Sakbaev V.
fumi2003@mail.ru
Moscow Institute of Physics and Technology (State University),
Institutsky per., 9, Dolgoprudny, 141700, Russia

We study the dynamics of quantum system with degenerated Hamilto-
nian. For this aim we consider the approximating sequence of regularized
Hamiltonians and corresponding sequence of dynamical semigroups acting in
the space of quantum states. The limit points set of the sequence of regu-
larized semigroups is obtained as the result of averaging by finitely additive
measure on the set of regularizing parameters. We establish that the family
of averaging dynamical maps does not possess the semigroup property and
the injectivity property. We define the functionals on the space of maps of the
time interval into the quantum states space such that the maximum points
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of this functionals coincide with the trajectories of the family of averaging
dynamical maps.

The work was supported by the Federal Program "Scientific and Scientific-
Educational Staff of Innovative Russia"for years 2009-2013.

Dynamic Network Games with Changing Link Costs
Sedakov A.
a.sedakov@yahoo.com
St. Petersburg University, 35 Universitetski prospekt, Petrodvorets, 198504,
Russia

In the paper an n-person network game is considered. A strategy of a
player is a profile consisting of zeros and ones. Zero means that the player
does not want to form a link, and one means that the player does.

It is assumed that players choose their strategies simultaneously, and after
that a network is formed. A link connecting two players is formed if only one
of them wants it to be formed. Players payoffs from being connected depend
on problem parameters and current network and can be either positive or
negative.

A dynamic model is also considered. In dynamic case payoffs are changed
from stage to stage.

The cooperative approach of the dynamic network model is studied. As
a solution it is considered such evolution of the network, which converges
to efficient network. And the problem that we face, is to define the optimal
in some sense allocation rule of joint maximal payoff among all players in
accordance with some imputation. For this purpose a characteristic function
is constructed in a special way.
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Choice of service model in the presence of various policies
and desired delays in the customer order fulfillment
Sergeeva A., Bure V.
sergeeva_a_a@mail.ru, v1b310154Q@gmail.com
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg,
199034, Russia

We consider the cases of different policies of customer order fulfillment
schemes in company which provide some kind service for customers. The
game-theoretic model of choosing order service is constructed.

We consider company which services to build customer orders and pro-
vides various ways to make orders. Customers, in turn, refer to the company
for the service, while trying to minimize the total cost of implementing the
order. Each ordering device has its own scheme of service: the first device
serves all customers in a queue and takes a fixed cost for customer order
fulfillment, the second device serves all clients at ones but it takes a fixed
cost for customer order fulfillment and also a cost for unit service time and
the third device serves all customers in a queue and takes only cost for unit
service time.

Except cost of order fulfillment customers also bear costs for waiting time
as a costs for missed opportunities and penalty for late. We assume that after
a certain amount of time T customers pay heavy fine R for having to delay.
Customers choose the ordering scheme in company trying to minimize its
operational costs.

The model of n-person game with perfect information is suggested.

Define the non-antagonistic game in normal form: I' =< N, {p]}ien,
{H;}ien >, where

N ={1,...,n} - set of players,

{pl(-J)},»eN - set of strategies, pl(-J) €[0,1], 5 =1,2,3,

{H,;}ien - set of payoff functions.

Hi =~ Qi+ (1= pi" = p)Qai + 1 Qsi) =
= — (M (Q1i — Qo) + P (Q3i — Qi) + Qai),

where p(l)

,~ is the probability of player i choose service scheme 1, p<3) - is the

@ _ (

probability of player ¢ choose service scheme 3, p; — pgl) — pgg) - is the

probability of player ¢ choose service scheme 2.

Let c¢j; - fixed cost of customer order fulfillment and c;s - cost of - unit

. 1 . " . 2 . .
service time, Ti(j ) _ time of waiting service, Tz»(] ) _ time of service for the

device j, j = 1,2,3 and player i, i = 1,...,n. For the first and second
(12) () = 6D 4 (32

devices we have Ti(l) = Ti(ll) +7,7" and T, A .~ respectively, but
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for the second device Ti(22) = 0 because we don’t have a queue in the second

@) _ (22

device, so we have T, . Duration of the customer service by the

device 1, 2 and 3 are independent random variables with densities functions:

1 _ L
)= —e ml t>0,
M1
1 _L
Falt) = e wl 10,
2
1 _ L
fat) = —e st t>0.
M3

Also define customer specific loss of waiting service r; for player i and
indicator .
1, if 19 <1y

. (
{9, 15} = g
1) 0, if 9 <1,

which define the time when customer begin to loose an amount R; by waiting
service, i = 1,...,n j = 1,2,3. (For some period of time customer prefer to
wait the service and after this it begin to loose.)

Q1i, Q2i, Q3 - player i expected loss for 1’st, 2'nd and 3’rd service scheme
respectively where Q1; = E(Q1:), Q2 = F(Q2), Q3 = E(Q3:). So we can
define

Qui = B(Qui) = B(ri(r" +7"7) + RuI{t}”. i} + 1),

Q2 = E(Qa:) = B((ri + 2272 + RoI{t!?, Ta} + e21),

Qsi = E(Qs:) = B((ry + c32)7 + ReI{t® T3}),i = 1,...,n.
We consider the casualty functions below: h; = —H;, i =1,...,n.

Customers choose order fulfillment schemes trying to minimize expected
losses. So to find the optimal behavior of customers we should find mean
value of Qj;,i=1,...,nj=1,2,3.

The equilibrium strategies for clients of company with different cases of
ordering schemes is found. The existence of these equilibria is proved.
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Optimality Conditions and Duality for Nonsmooth
Multiobjective Semi-Infinite Programming Problems with
Support Functions under Generalized (C, a, p, d)-convexity

Singh V.
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Department of Mathematics, Banaras Hindu University, Varanasi-221005, India

In this paper, we consider the following nonsmooth multiobjective semi-
infinite programming problem:

Min  fi(x) + S(z|D;)

subject to g;(x)+ S(z|E;), je€J,

where J is an infinite index set, f;,7 € {1,2,...9} and g¢;,j € J are locally
Lipschitz functions from a nonempty open set X C R"™ to R. D; and E; are
compact convex sets in R", and S(z|D;), S(z|E;) are designate the support
functions of compact sets.

We establish sufficient optimality conditions and duality results for nons-
mooth multiobjective semi-infinite programming problem with support func-
tion under generalized (C, «, p, d)-convexity.
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Differential Games with Random Duration and a
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Game theory as a branch of mathematics investigates conflict processes
controlled by many participants (players). In this paper we consider games
with the fixed duration [0, T], where T is a random variable with cumulative
distribution function F'(t).
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In many cases the cumulative distribution function (CDF) of the terminal
time may change depending on some conditions, which can be expressed as
a function of time and/or state. One particular example is the development
of a mineral deposit. The probability of a breakdown may depend on the
development stage. Namely, at the initial stage this probability is higher than
during the routine mining operation. Thus, given a set of CDFs related to
the single phases, we define a uniform composite distribution function for the
terminal time. It is shown that under some week conditions on the individual
CDFs, the composite distribution function is well defined.

Furthermore, it is shown that the Pareto-optimal strategy in this class of
differential games can be found as a sequence of optimal control problems
expressed in terms of the Pontryagin Maximum Principle with additional
constraints imposed on the state and on the adjoint variables.

Finally, an application of the obtained theoretical results is presented. We
investigate one simple model of non-renewable resource extraction, where the
termination time is a random variable with a composite distribution function.
Two different switching rules are studied and a qualitative analysis of the
obtained results is presented.
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In the report, we discuss the problem of transferring a material point
along an interval by a bounded force at a given time with the minimal speed
under the condition that the length of the interval and the initial speed are
not known in advance. To construct a control function, a criterion of maximal
robustness under uncertainty conditions is used.
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06 opHoIi 3agave MakCUMasibHO PobacTHOro ynpasieHus

B mammHOM coOOmIEHNE paccMaTpUBaeTCH 3aJada MEPEMEeIIeHus] MaTe-
PHUAJABHOI TOYKH BJIOJb OTPE3Ka IPAMOIl OIPAHMYEHHOU 110 BEJIMYUHE CUJION
3a 3aJlaHHOe BpeMsI C MUHIUMAJIBHON CKOPOCTBIO IIPU YCJIOBUM, UTO BeJIMIUHA
OTpe3Ka M HadajlbHAs CKODOCTb JBUKEHHS 3apaHee He U3BeCTHBI. [l
[IOCTPOEHUS yIIPABJICHUS HCIIOJIB30BaH KPUTEPUIl MAKCHMAJIBLHON POOACTHOCTH
yIpaBJIeHus B yCJI0BUAX Heonpezaenennoctu [1, 2]. B coBpemennoit Tepmuno-
Jjorun poDACTHBIM HA3BIBAETCS YIIPABJEHUE, 0DECIIEINBAIOIIEe BBHIIIOIHEHUE
yCJIOBUIT 3aJa41 yIIpaBJIeHUS JJIsd KaxKJ0ro 3HAUEeHUs I1apaMeTpa Heollpe/jie-
JIEHHOCTH 13 MHOXKECTBA €0 BO3MOXKHBIX 3Ha4UeHuil. Kpurepnit MakcuMaJIbHON
pOBACTHOCTU COCTOUT B TOM, YTOOBI KaXK/IOMY YIIPABJICHUIO 33/ IAHHOTO KJIACCA
COIIOCTAaBUTh MHOXKECTBO BCEX 3HAUYEHWII NapaMeTpa HEOIPEIeJIEHHOCTH,
JIJIs. KOTOPBIX JIAHHOE ylpasienue 3(PQeKTUBHO (T.€. YJAOBJIETBOPIOTCS BCE
YCJIOBHs Ha TPAEKTODPUIO, 3aJAIONIHe IIeb YIPABJIEHUs ). DTO MHOXKECTBO,
Ha3bIBAEMOE MHOXKECTBOM PODACTHOCTH, MAaKCUMHU3UPYETCH B YKa3aHHOM
HIKE CMBICJIE Ha MHOYKECTBE BCEX YIIPABJIEHHH PAcCMaTpPHUBAEMOro KJlacca.
B rnoknaze 3ajada MakcuMaJbHO POOACTHOIO YIPABIEHUS] PACCMOTPEHA
JUIS cJlydas, KOIJIa 3apaHee He HU3BECTHBIM I[apaMerpoM ([IapameTpoM
HEOIIPEJICJIEHHOCTH) $BJISI€TC JJIMHA OTPe3Ka, W JJIsd Coydas, KOrJa He
M3BECTHBI KaK JJIMHA OTPEe3Ka, TaK M HadaJbHas CKOpOCThb. s Kaxkioro
ciIydasi MOCTPOEHO MaKCHMAaJbHOE MHOYXKECTBO POOACTHOCTH M PeaIH3yIoliee
9TO MHOXKECTBO MaKCHMAaJIbHO poOacTHOEe yIpaBjeHue. B mepBom ciryuae
MaKCHMAaJbHO pODACTHOE yIpaBjeHHE eCThb (DyHKIHs (Hha30BBIX KOOPIUHAT
CHCTEMBI, BO BTOPOM ciy4ae - (pyHKIus ($Ha30BbIX KOOPIUHAT U HAIATBHOMN
ckopocru (6e3 undopManuu o JUIMHE OTPE3KA).

IloctanoBka 3aja4du. YpaBHEHHE [IBUKEHHUS MATEPHAJbHON TOYKU
BJIOJTb TIPSIMOI ¥ HAYAIBHBIN BEKTOD JIBUKEHUS

Z=wu, z(0) =19, ©(0) =do

OIIPEJIEJISIIOT TPACKTOPHIO CHCTEMBI B (pa30oBOoM mpocrpancTse (t; u). 31ech
u— yupasJstiomas GyHKIMs 3aJaHHoro Kiaacca (Hamp., u = u(-|t), u(-|x, £)).
Orpanunvenust 3a/1aHbl B BUJE

lul <1, =(T)=0, #(T)=0, T —3azano.

PaccMOTpeHBI [1Ba, BApUAHTA HEOIPEJAEICHHOCTH B MATEMATHIECKOM OIMCAHUM
CHCTEMBI.

1. HeompezesieHHOCTH ITIOABEPKEHO HadaslbHOE II0JIOXKeHHe Tg, KOTOpOe
MOXKeT IPUHUMATD JII000e 3HaueHue. Bpeienne Heolpe eJIeHHOCTH 03HAYaeT,
YTO TPAEKTOPHs CHCTEMbBI OIpeJesseTcs He TOJLKO YIpPaBIeHHeM u, HO U
HAYAJILHBIM IIOJIOXKEHUEM To, & (t;u,xo).
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MHo2KecTBO HOMYCTUMBIX HAap (U, To) 3aIUIIETCS B BUAE
M= {(U,I()) | |U| <1 QZ(T;U,Io) =0, I(T7 u, IO) = 0}

3aMeTrM, MHOYKECTBO JOIYCTUMBIX YIIPABJIEHUN OKA3bIBAETCS 3aBUCAMBIM OT
3HAYEHUU T

U(zo) ={u | (u,z9) € M}.

Ha rpaekropuio z(t;u,Zp) HAKIaJbIBAETCHA CJIELYIONIee YCJIOBHE OIITH-
MaJsibHocTH. PaccMarpuBaercst (pyHKIMOHAI

J(u,z9) = max | (t;u, zo) |,

te[0,T
€ro cedeHme 10 IIepeMeHHol g — Jy(u) — u 3amada
Jzo(u) = min . (1)
uw€eU (xo)

Tenepn, ¢ yderom yciaoBus (1), MHOXKECTBO JOIYCTUMBIX IIAD 3aJa4d
nmeeT BUJ,

MT ={(u,z0) |u=arg min J,, (u)},
w€eU(zo)

a MHOYKECTBO POOACTHOCTH KasKJIOTO YIPABJICHNS U3 33 JaHHOTO KIACCa — BUJ,
_ +
Xo(u) ={zo | (u,x0) € MT}.

Crapurcs 3aja9a MaKCUMAJIBHO POOACTHOIO yIIPABJIEHUS: HANTH yIpaBjeHIe
u*, TaKoe UTO

Xo(u") 2 Xo(u) VYu. (2)

2. Jns caydasi, KOrja HEONPEJIEJEHHOCTH MOJBEPXKEHO HAYATBLHOEe
[IOJIOYKEHHE Tg U HAYaJIbHAs CKOPOCTH (g, 3a/1a1a MaKCHMAaJIbHO POOACTHOIO
yupapjeHus (hpOPMyJIUPYETCs aHAJIOTUIHO.

Perunenune 3amaum. s ciaydasi HEONPEIEIEHHOCTH HAYAIBLHOTO IOJIO-
JKEeHHMsl MaTepUaJbHON TOYKH DelleHue 3a1adu (2) I[0oJIydeHO Ha KJIAcce
yupapieHuii Kak dbyHkIwmii da3oBbix KoopauHaT u = u(z, ). MakcuMaibHO
pobacTHOe yIIpaBJIeHne UMEeT BH/JL TOBEPXHOCTH HaJT (ha30BOil IIJIOCKOCTHIO CO
snaveHusimu —1,0, +1 1 JUHUSIMU TIePEKJIIOUYEHNI B BHUJIE COOTBETCTBYIOIIUX
napaboji. MakcumaabHOEe MHOXKECTBO PODACTHOCTH 3aBUCUT OT 3HAYECHUN
HagaIbHOMN cKOpocTH. J11s1 Hys1eBoit CKopocTH 9T0 oTpesok [—0.2572,0.2572].

Jnst caydasi HEOIPEJIeJIEHHOCTH HAYAJIBLHOTO IOJIOYKEHUsI W HAYAJIbHOM
CKOPOCTH peIleHne 3a1a49u (2) Ha MHOYKECTBe YIPABJSIONMX QYHKINH U =
u(x, ) HE CymEeCTBYeT, HO OBLIO IOJYYEHO Ha MHOXKECTBE YIPaBJISIOIIIX
byakuumit v = u(x, &, Lo). MakcumaabHO poOACTHOE YIIPABJIEHUE MMEET BUJL
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MTOBEPXHOCTH HAJT (DA30BOit MJIOCKOCTBHIO €O 3HadeHusMu — 1,0, +1 u TuHIIM™T
[IePEKJIIOYEHUIl B BU/Ie COOTBETCTBYIOIMX apaboJ, OHa U3 KOTOPBIX UMeeT
K03 DUIUEHT, 3aBUCSIIUN OT HAYAJIBHOW CKOPOCTH &().

3akmaouenue. PaccMoTpeH nmpuMep MaKCUMAJIbHO pOOACTHOTO yIIpaBJie-
HUS MEXaHWYIECKON CHCTEMOIl ¢ OIHOI CTEmeHbIO0 CBOOOIBI C HEOIpEeIeseH-
HOCTBIO [JIBYX THUIIOB. B 3a/ade ¢ HEM3BECTHOH [JIMHON OTpe3Ka ObLIO
[IOKA33aHO, YTO /I yIPaBJIeHWH KakK (DyHKIUI BpeMEHHU DpelleHHe 33a/1a9u
He CYIIeCTBYeT, a Jjist PyHKIUi (Ha30BbIX KOOPIUHAT PEIeHNe CyIIeCTBYeT,
U OHO OBLIO MOCTPOEHO BMECTE C MAKCUMAJIBHBIM MHOXKECTBOM 3HAYEHUH
JUIMHBL OTpe3Ka. B 3ajate ¢ HEM3BECTHO MJIMHON OTPE3KA M ¢ HEN3BECTHOMN
HaYaJIbHOM CKOPOCTHIO MAKCUMAJIBHO POOACTHOE yIIPABJIEHNE CPeau DYy HKITII
Gda30BBIX KOOPAMHAT HE CYIIECTBYeT, OHO ObLIO IIOCTPOEHO TOJBKO Kak
dyHKIMs (Ha30BBIX KOOPJAMHAT W HAYAJBHONW CKOpOCTH. PaccMoTpeHHbIe
[IPUMEPHI TI03BOJISIIOT CJIeJIATh BBIBOJ, 9YTO II0 Mepe pocTa obbeMa MHMOpMa-
M, KOTOPOE WCIOJNB3YeT yIpaBjeHWe, pacTeT “OorarcTBO”’ MHOXKECTB
pobacraocTu. [lomgxom maer BO3MOXKHOCTB UCCJIEIOBATD PA3JIMIHBIE KJIACCHI
YUPABASIOMUX OYHKIMH U JJI8 PEllenns 33/1a9i MAaKCUMAJIHLHO POOACTHOTO
yIpaBJIeHUs BRIOMPATh HyKHBIH Kiaacc. Ciiegyer OTMETUTD, 9TO MaKCUMAJIb-
HOEe MHOXKECTBO PODACTHOCTH, COOTBETCTBYIOIEE MAKCUMAJIHLHO POOACTHOMY
VIIPABJIEHUIO, OMUCHIBAET IpeeIbHbIE BO3MOXKHOCTU CHACTEMbBI ObITh YIIpaB-
JgeMoii (cobozaTh yCaOBUs, HAKJIAIbIBAEMbIE HA TPAEKTOPUU CHUCTEMBI B
[IPOCTPAHCTBE COCTOSIHUIA) IIPU HEONPEJIEJIEHHOCTH 33AHHOIO THIIA.
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Nonsmooth mechanics uses theoretical results and algorithms from non-
smooth analysis and optimization for the study of structures with unilateral
behaviour. Unilateral contact, stick-slip in friction, multi-block and cracked
continua and other similar effects induce nonsmoothness in structures. Usual-
ly a finite element discretization is used and the resulting system of equations,
inequalities, variational inequalities, nonsmooth equations etc has many de-
grees of freedom. Therefore specialized techniques for the efficient numerical
treatment of the arising problems are required. Previous publications of the
first author include [1], [2], [3].

A review of recent results in the area of computational nonsmooth me-
chanics and practical applications will be given in the talk. Two applications
in which the authors are actively involved in the last years, namely mod-
elling of masonry monuments and bolted connections of steel structures, will
be presented in more details.

Unilateral modelling of discontinuous and multiblock masonry structures
can be used for both structural analysis and collapse modelling and predic-
tion. Detailed investigation of unilateral models for two-dimensional masonry
bridges has been compared with analytical and experimental results during
the last years. The developed models can be used for further strength and
reinforcement studies as well as for damage prediction or explanation in ex-
isting monuments. Detailed results in this direction have been published in
4, [3], [6].

The mechanical behaviour of bolted steel structure connections is dom-
inated from the unilateral contact and friction effects between the involved
parts of the connection. Extended end-plate steel connections and top and
seat angle bolted steel connections with double web angles have been stud-
ied. Detailed finite element models including unilateral contact and friction
nonlinearities together with classical elastoplasticity and large displacements
are used. The results are comparable with experimental measurements tak-
en at the Jordan University of Science and Technology [7]. Furthermore, in
order to access combined thermomechanical behaviour, relevant to combined
earthquake and fire loadings, the finite element models have been extend-
ed accordingly. Different fire and loading scenarios have been considered.
Strength reduction, which is a well-known fact for steel structures, is clearly
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demonstrated. In addition unilateral interface opening due to thermal loads
appear as well [8].
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YckopeHHbii no LLopy cybrpagueHTHbii metog, Monsika

ITycrs f(x) — BblIyKiIasg QyHKIUsS BEKTOPHOrO aprymenta r € R™ u ee
cybrpajauent O f(x) yI0BIETBOPSET YCIOBUIO:

(x—x*,af(x)) >m(f(x)—f*), rue m = 1; (1)

st VeeR™ u Ve*e X*. Bnece R™ — eBKINI0BO MPOCTPAHCTBO PA3MEPHOCTH
N CO CKAJISIPHBIM Hpou3BejierneM (x,y); X* — MHOXKECTBO TOYEK MHUHHMYMa
dyukmun f(x); f* — murnManabHOe 3HaveHne dbyukuuu f(z): f* = f(z*),
r* € X*. Ilapamerp m 3ajJaeT BEJIUYUHY MAaKCHUMAJIBLHOTO CJBUTA IO
BoirykjocTr GyHkumu f(xr) U BBeJeH i ydera CIENUATbHBIX KJIACCOB
BBIMYKJIBIX yHKIUH. I8 KycOuHO-TMHEIHON Heryiaakoit dyHkmun m = 1,
I KBaJIPATHIHON TJIaIKON byHKImm m = 2.

[Iycrs uzBectHo f*. iis HaxoxKmeHust ToUky ¥ € X ™ MOXKHO UCIIOJIB30BATH

cybrpaymenTabiit Meroy onsika [1]:

of (x)

B m (f (o) = £*)
Tt = 0 g )

10 ()|

3nech mar hy 3a7aeT BEIMYMHY MAKCHMAJBHOTO CIBHTa B HAMDPABIEHUH
HOPMUPOBAHHOTO aHTUCYOrpaIMeHTa, IPU KOTOPOM JIJIs BBITYKJION (byHKIMY
f(z) ycmosue (1) rapaHTHpyeT, YTO YroJ MeXKJy aHTUCYOTrpajMeHTOM u
HATIpABJIEHUEM U3 TOUKU Ty HA TOUKY MUHAMYyMa OYeT HETYIIHIM.
O6ocHOBaHMEe CXOMAMOCTH MeTO/Ia (2) OYeHB MPOCTOE, TaK KaK JIst BCEX

hy, = . k=0,1,2,.... (2

TOYEK UTEPAIMOHHOI'O IIPOITeCCa CIIpaBEIJINBbI HEPABEHCTBa
2
2 2 m(f(m)f*))
Tk 1—1'* < T — T —( k:()l
H + || ~ || || Haf(xk)H ’ [t}
OTCIO,H& 1A Ka)K,ZLOﬁ urepamnunumn K > 1 umeem HepaBeHCTBO
K—-1 2
m(f(zg) — ")
loge = 2*)1* < flwo —2|* — (
S 2 Tareon )

13 KOTOPOTO, HCHOIB3Y st PACXO/UMOCTD DS, JIETKO UPHTH K IPOTHEOPETHIO,
qro [T — @ *|I> < 0 st mexoToporo K.
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Meanenayio cxomuMocTh MeTofa llodgka i OBpaXKHBIX (PYHKITHI
OIIPEJIEJISAET TYIIOHN YOI MEXK Ty JIBYMsI ITOCJIEI0BATEIbHBIMU CyOrpaIueHTaMu.
Yewm Ommke yroa K 180 rpajrycam, Tem 6osiee MeJIEHHON Oy/IeT CXOMMMOCTb.
Tak, nanpumep, s HENJIAJAKON (DYHKIUM IBYX IepeMeHHbIX f(r1,T2) =
|z1|+k |z2| ckopocTs cxommmocTr MeToza (2) onpeessieTcst TeOMETPHIECKOi
nporpeccueii co 3HamenareneMm /1 — 1/k?, xoropsriit 6im30k k 1 gaxe npn
CPaBHUTEJBHO HEOOJIBINNX 3HAYEHUAX k.

Yexkoputh MeTog (2) MOXKHO, €CJIM IIPOCTPAHCTBO [EPEMEHHBIX IIpeofpa-
30BaThb TaK, 9TOOBI TYIIOHl yrosl MeXKJ1y JBYMsI IIOCJI€I0BATEILHBIMA CyOrpa-
JIMEHTAMU yMeHbInajcs. Tymnoil yroja MexKiy JIByMs BEKTOPAMU MOXKHO
peobpas3oBaTh B MPSMOI C MTOMOIIBIO ,,OJJHOPAHTOBOTO JIIUIICOUIATHLHOIO
oneparopa® [2|. lna AByX HOPMHUPOBAHHBIX BEKTOPOB & u 1) m3 R™ 310
peanmsyeT JuHeHHBIH oniepaTop w3 R" B R, KOTOpHIH B MaTpu4HOil (popme
vMeeT BUIL

1
=/ - — — _ 2 _ T
3aech &€, € R™ — BekTopsl, Takue, urto ||&]| = 1, ||| = 1 n ux ckauxsiproe

IpOW3BeIeHNe yIoBaeTBopsaeT yeaosmio (£,1)? # 1, I — euHIIHAS MATPHTIA
pasmepa n x n. Jlas oneparopa T (€,n) cymectsyer obpatusiii T; ' (€,7):

1746 = 1+ e (1= VTP = (€ )"

Omeparop Ti(§,n) cBsizaH ¢ npeobpasoBaHMeM B IIap CIEIUAIBLHOIO
9JITUIICON/IA, OIUCAHHOIO BOKPYI Tejla, KOTOPOe IOJYyYeHO B Pe3yJIbTare
[epeceveHns mapa W JABYX MOJIYIIPOCTPAHCTB, MPOXOIAIINX dYepe3 IEHTP
mapa.

CybrpaauenTHBINH MeTo 1 MeTo 1 [ToJisika ¢ ipeobpa3oBaHueM IIPOCTPAHCTBA
UMeeT CJIEYIOIINii BUL;

By 0f(wx) m(f(zx) = )
’ h = ) k:O,1,2,...,
[Brof@al ™ BToses]

(5)
rae matpuna By = I, a MmaTpuna Bjy4; IEPEeCUUTHIBAETCA IO CJIELYIONEMY
MIPABUJIY:

Tpy1 = Tp — hi By

B _ Blm ecji (ga’r]) 2 0
T BTN, m)  umaue ’
B 0f () By 0f (zk41)

= o) " [Brof(ar)]
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IIycts A = B,;l, Agr1 = B,;_&l. Hmsg Vx* € X* m Bcex TodUek
UTEPAIMOHHOTO mporecca (5) CIpaBeiInBbl HEPABEHCTBA

ki@ — 2P < |Ax(er — )P - (W) CE=01,....
(6)

Hepasencrsa (6) o3nagator, 9yro B MeToge (5) npeobpasoBaHmue MpoOCTPAHCTBA
TaKOBO, ITO B KasKIOM OUEpPETHOM ITPe0OPA30BAHHOM ITPOCTPAHCTBE TEPEMEHHBIX
rapaHTHUPYeTCsl YMEHBIIIEHNE PACCTOSHUSA IO MHOXKECTBA TOYEK MHUHUMYMA.
Braronaps sTomy quis Kax ot urepanun k > 1 mMeeM HEPABEHCTBO

k—1 2
o2 o2 m(f(x:) = )

1Ak (21 — 2|2 < oo — ¥ = 7 [ Ft =)
e ’ =< 1B 0 f (x| )

AnrnoBpaxknasi TexHuka B Meroe (D) HampaBieHa HA yMEHbIIEHUE
CTEeIleHN OBPAXKHOCTHU IOBEPXHOCTEH YPOBHS BBINYKJIBIX (DYHKINNA 110I0OHO
TOMy, KaK 3TO cZeiaHo B r-aaroputmax [3|. derepmunant marpurpt By
CTPEMUTCH K HYJIIO, TaK KaK, €CJIM Ha k-M IIare peajgnsyercs IIpeodpa3oBaHue
IIPOCTPAHCTBA, TO

det(By11) = det(By) det(T*(&,n)) = det(Byg)v/1 — cos? i,

e ¢ — yroja MexXJy JBYMsl IIOCJeI0BaTe/IbHbIMEU cyOrpajguerTamu. JIjst
OBpaXKHBIX QYHKIMI 3T0 00eCIIeYynBaeT YCKOPEHHYIO CXOMMOCTb MeTos @ (5)
10 OTHOIIEHUIO K MeTO/y (2) Ipu IPOU3BOJILHON HAYAJILHON CTAPTOBO TOYKE
xo. Tak, Hanpumep, yist OBparxKHON (DyHKIUM ABYX 1epeMeHHbIX f(1,2a) =
|x1 |4k |x2| MeToz (5) Gyaer HaxoquTh TOUKY x* He GoJiee YeM 3a J[Be UTePaIuu
HE3aBUCUMO OT 3HAYECHUS k.

Ormernm, 9To Meros (5) MOXKHO Ha3BaTh yCKOPEHHBbIM MeTojaoM [lossaka
3a CYeT Mpeobpa30BaHUst TPOCTPAHCTBA IIEPEMEHHBIX KOTOPOE CBOUCTBEHHO 7'~
anropurmam lopa [3]. HeitcrBuresnbro, o 06JaJaer AByMs XapAKTEPHBIMU
gepTaMu 7-aJrOPUTMOB. BO-IepBBIX, ABMKEHUE U3 TOYKH OCYIIECTBIISIETCS B
HaIPaBJIEHUN AHTUCYOI'DAMEHTA U, BO-BTOPBIX, PACTSKEHNE IIPOCTPAHCTBA
[IPOM3BOJIUTCS B HAIIPABJIEHUN PA3HOCTH HOPMUPOBAHHBIX [TOCJIEI0BATETbHBIX
CcyOrpaJIneHTOB, €CJIM YIoJI MeXKIy HUMU Tynoii. K HopMbl cyOrpaimeHnToB
OJINHAKOBBI, TO 9TO HAIPaBJICHWE OYJEeT COBIAJATH C PA3HOCTHIO IBYX
[IOCJIEIOBATEBHBIX CYyOIPAINEHTOB, HO B OTJINYNE OT T-aJTOPUTMOB BTOPOit
cyOrpaslenT moJIyyueH He COIVIACHO IIAry HAHCKOPEHIero CIyCKa, a COTJIACHO
mary IloJsisika B IpeoOpa30BaHHOM IIPOCTPAHCTBE IIEPEMEHHBIX.
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Non-differentiable Optimization Problems with Hidden
Non-convex Structures
Strekalovsky A.
strekal@Qicc.ru
Institute for System Dynamics and Control Theory SB RAS, Lermontov St. 134,
Irkutsk, 664033, Russia

We consider various non-convex optimization problems with the functions
of A.D.Alexandrov [3, 4, 5] (D.C. functions) that might be non-smooth. For
example, the problems of financial and medical diagnostics turn out often to
be of the kind.

The problems of hierarchical structure |7, 8] provide for another type of
optimization problems with hidden non-convex structures, as complementar-
ily problems [9] as well.

As well known, the direct application of classical optimization schemes
(methods) may have unpredictable consequences while the computational
results are often interpreted only in the content aspect. On the other hand
the crucial question of nowadays optimization is how to escape a stationary
or local solution (provided by local search method) with improving of the cost
function. We present new mathematical tools (global search theory) which
allow to do it (see [5]).

The global search theory consist of two principal stages, as follows:

a) local search (several new special local search methods have been developed
at least two decades);

b) procedures of escaping out of the stationary and local solutions (based on
global optimality conditions).

This new apparatus is oriented to deal with non-differentiable objects and
to use in interior of the general scheme the classical and non-smooth opti-
mization methods [1, 2]. The results of numerous computational simulations
show the competitive effectiveness of the developed methods [6].
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On a method of solving a bilevel optimization problem
Sukach M.P.
nskmike@yandex.ru
St. Petersburg State University, Universitetskii prospekt 35, Petergof, 198504,
St. Petersburg, Russia

The problem of finding optimal values of one functional on the set of
optimal solutions for another functional is discussed in the report. It is pro-
posed to solve the stated bilevel optimization problem by reducing it to an
unconstrained optimization problem. The reduction is done by employing the
Exact Penalization Technique.

O meToge pelleHus 3agayvyun ABYXYpPOBHEBOI oNnTuMumsauum

B nanHoit paboTe paccMaTpuBaeTcs 3a7a4a HaXOXK/ICHHs ONTUMAJILHOTO
3Ha4YeHusl (pyHKIMOHAJA Ha PEINeHUsIX JPYroil ONTHMHU3AIMOHHON 33a4u.
Ilpeniaraercs pemaTh 3Ty 3ajady CBeIeHHEM K 3ajade 6e3yCJIOBHOI
MUHAMHI3AIAA HEKOTOPOTO (DYHKITMOHAIA, KOTOPBIH (JTazKe B CIIydae TIaIKOCTH
UCXOMHBIX (DYHKIMOHAJIOB) SIBJISIETCS CYIIECTBEHHO HETJIAIKAM. YKA3aHHOE
CBeJleHne IIPOBOJUTCSA € IIOMOINBI0 TEOPUU TOYHBIX IMTpadHLIX (yHKITHIL.
Hasublit noxxo 66T pejioxkeH B pabore[l].
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ITocranoBka 3amaun. Ilycrs f, f1 : R” — R — 3a1aHHbIe HEIIPEPbIBHBIE
dbyukiun, G C R" — 3aganHoe MuoxkectBo. [lomoxm

QO={recG| filz) < fily) Yy € G},

T.e. 2 C G - MHOXKeCTBO TOYeK MUHHMyMa GyHKImMH f; Ha MHOXKecTBe G.
Ipeanosoxkum, aro ) # &. Sagaga
f(x) — inf (1)
€N
Ha3bIBACTCH 33/1a4eil JBYXyPOBHEBOU OIITUMU3AIIAN.
IIrpadHble dyHKIIMN B JABYXYPOBHEBOU 3amade. /st Toro 4rods
IPUMEHATH TEOPHIO0 TOYHBIX InTpadubix dynkimii(6onee noapobuo ¢ Heit
MOKHO TIO3HAKOMUTBCS B [2]), npencrasum muoxkectso ) B Buge ) = {x €

G | p(z) =0}, rze

p(x) = sup(fi(z) = f1(y)) = fi(x) = fig, fig = inf Fi(y).
yeG yea

Pacemorpum cotygait, koraa MHOXKeCTBO GG TIPEJICTABUMO B BUJIE
G={zeR"|pi(z) =0},

rie p1(x) = 0 Vo € R™. Ilyers A; > 0, A2 > 0 dbukcuposansl. Oupeennm
mrrpadHy0 QyHKIIIO

Fx(z) = f(z) + Mfe(x) + A1 (z)]. (2)

Ounpenenenne. Oyukius F)(z) HasbBaercd ToYHOl mTpadHOil hyHK-
nueit st pyHKIuu f Ha MHOXKeCTBe ), eCJIii CyIIeCTByeT TaKoii mTpadHoii
napamMerp Aj, 4TO I JIFOOBIX A1 > A] MHOXKECTBO TOYEK MHUHUMYyMa
dyuximn F)(z) Ha BCeM npocTpaHcTBe R™ COBIAJAET ¢ MHOXKECTBOM TOYEK
Mmunumyma dyukiun f na MHOXKecTBe ().

Takum obpazom, ecsiu Fy(z) rounas mrpaduas GyHKIMs, TO UCXOIHAL
sagada (1) skBuBajieHTHA 3ajade Ge3yCJIOBHONW MUHUMU3AIUU MTPAdHOI
dyuximu (2). Iyist TOro 9066 BOCIOIB30BATHCS METOIOM TOUHBIX MITPAMHBIX
dyHKIMIT Ha TPaKTHKe, HEOOXOIMMO 3HATH 3HAYEHHE TOYHOIO IMITPapHOrO
mapameTpa. Ero omneHky MOKHO OCTPOUTL Ha OCHOBaHMM TeopeMmbr 3.4.1 u3
[2] o dbopmymam

2L
ATz —, 36>0,a>0: gpi(x)—i—/\ggof(x) < —a <0 Vze Qs\Q,
a

raue L — xoncranrta Jlunmmna mius dysxkium f(z) Ha MmHOXKecrBe (25\€2,
@t(r) = liminf % — CKOpOCTb HamCKopeiiero crycka, {35 = {z €
y—x

R | ¢(z) < d}.
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Ecnu Fy(z) sBasiercss Tounoii mrpaduoil dyukuueit u koauddepernu-
pyeMa, TOr/ia UCIOJIb3Ysl METOJ] yCeIEHHOTO KOauddepeHaIbHOr0 CIIyCcKa
[3] momyuaem pemenue. IlpuBesieHBI UNCIAEHHBIE DE3YJIBTATHl PEIIEHUs
3ajaun, nosydeHHsle ¢ nomompio nakera MATLAB [4]. Hauwas 3anada
TakxKe paccMarpuBaercd B pabore [5] u apyrux paborax aBTOpA.

Pabora Beinostaena npu dunancosoit moaaepkke PODU, rpant Ne 12-01-
00752.
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Characterization theorem for best polynomial spline
approximation with free knots
Sukhorukova N., Ugon J.
n.sukhorukova@ballarat.edu.au, j.ugon@ballart.edu.au
Centre for Informatics and Applied Optimization University of Ballarat, P.O. Box
663, Ballarat, Vic. 3350, Australia

We derive a necessary condition for a best approximation by piecewise
polynomial functions. We apply nonsmooth nonconvex analysis to obtain
this result, which is also a necessary and sufficient condition for the inf-
stationarity in the sense of Demyanov-Rubinov. We start from identifying a
special property of the knots. Then, basing on this property, we construct a
characterization theorem for best free knots polynomial spline approximation,
which is stronger than the existing necessary optimality conditions.
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Direct methods in the simplest variational problem in the
parametric form
Tamasyan G.Sh.
grigoriytamasjan@mail.ru
St. Petersburg State University, Universitetskii prospekt 35, Petergof, 198504,
St. Petersburg, Russia

In the talk, the simplest problem of Calculus of Variations in the paramet-
ric form is considered. Necessary optimality conditions are derived by employ-
ing the Exact Penalization Theory. New effective direct numerical methods
are proposed.

MNpsamble MeToabl B NpocTeliwiein BapMauVoOHHOW 3aja4e B
napameTtpudeckoii popme

MHoOTrHe NpuKJIaIHbIE 380891 BAPUAIMOHHOTO UCIUCICHUsS boJiee y06H0
M3y4aTh, €CJM MCKOMYIO KPHUBYIO IIPEJICTABATH B MAPAMETPUIECKOM BHJIE.
IIpu 3TOM Clle/IyeT 3aMeTUTD, ITO KaXKJIasl JINHUS JIOIyCKAET He eIMHCTBEHHOE
napamerpudeckoe npezcrasienne [1]-[4]. B c¢Bssu ¢ stum, 1yist Toro 4To6hl
HCCJIelyeMblii Ha 3KCTpeMyM (DYHKIHMOHAJ 3aBUCE] OT JIMHUM, & He OT
€e TapaMeTPUIEeCKOTO IIPEJCTABICHUS HAKJIAIBIBAIOTCS JOTOJHATETHHBIE
TpeboBaHUsl «YCJIOBUS OIHOpOIHOCTH> |1, 2].

Ilycth to, t € R, to < t1. Yepes Pl[ty, 1] obozHaumM KTace HelpepbiBHO-
muddepennmpyembIx Ha [tg, t1] GYHKIMI ¢ KyCOUHO-HENPEPHIBHO U OrpaHu-
YeHHOI Ha [tg, 1] npoussozHoil. Mccaenyem Ha skcTpeMyM DYHKIMOHAI

t1
I(:E,y)=/ F(x,y,2',y") dt,
to

rme ¢pyuknmuio F OymeM cunTaTh HEMPEPHIBHO-AN(dMEpPEHIIPYEMOi 0 BCEM
cBoMM aprymentaM Ha R*, a rpanmunble ycioBus MMeIoT BH

z(to) = wo, w(t1) =m1, y(to) =yo, y(t1)=w1.

Tpebyercst HAUTH T4, Y. € (), TaKMe, ITO

I(zy,ys) = min I(z,y), (1)
[z,y]€Q

rie

Q= {az,y e P'to,t1] | x(to) = wo, z(t1) = x1, y(to) = o, y(t1) = y1}.

(2)
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He ywmamsgsa obmrmoctn Oymem cumTaTh, 9to tog = 0, t7 = 1, a
HnoJuHTerpaibHas pyHKIus F ueTbpex IepeMeHHBIX T, Y, x’, Yy sBjsgercs
MOJIO?KUTEHLHO OJTHOPOIHOMN II€pBOil CTeIeHn OTHOCUTENBbHO T', 3, T.e.

F(x,y,kx' ky') = kF(z,y,2",y') Vk>0.

ITepedopmynupyem mocrabieHHyto Bbime 3amaay (1), (2). O6oznaunm
uepes 21 (t) = 2'(t), z2(t) = ¢/(t), Torma

2(t) = 20 + / a(dy, y(t) =0+ / 2o(7) dr.

TTooxum
1
7 = {z = [21,22] € P[0,1] x P[0,1] | 2o +/ 21 () dy = 21,
0

1
yo+/ Zz(T)dT:yl},
0

rje P[0, 1] — MHOXKeCTBO KyCOUHO-HEIIPEPBIBHBIX, OTPAHUUEHHBIX HA OTPE3KE
[0,1] dyskumii. Beegem byHKImoHAX

1 t t
F(e122) = / F (0 + / 21 (y) dy, o + / 2(y) dy 2 (1), 22) dt.

Hecnoxuo nokazars, 9o 3ajga4a (1), (2) sxksusasentna sagaqe f(z) — mig.
ze

MHo2kecTBO Z MOXKHO IIPEJICTaBUTh B 9KBUBAJEHTHOM BUJIE
Z = {[z1, 2] € P[0,1] x P[0,1] | (2) = 0},

rie

1
+/ 22(y) dy +yo — y1| -
0

o) = Lo (2] +lpa(z2)] = ' [ a0z

ITycte A > 0 dukcuposano. Beenem dyrknmio @y (z) = f(z) + Ap(z).
Dyuxius Py (z) naspiBaercs wmpagnot dynryued, a auciao A — wmpagdrvim
napamempom. B [5] mpencrapieHsl ps TeOpeM, P BBINOJIHEHAN KOTOPBIX
) (z) stBasiercst byHKIMeEH TouHOTO MITpada.

ITycrb 21, 2o € P[0, 1] dukcuposanbl, € > 0. Bbibepem pou3BosbHOE V1,
vy € P[0, 1]. Iosmoxum

21e (t) =2 (t) + vy (t), 29¢ (t) = 29 (t) + €vg (t)
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[Ipumensis knaccuyueckne Bapuanuu GYHKIANR 21 U 2, IMEEM

1 1
/ (Fz’1+ / F;dT)ul(t)dtJr
0 t
1 1
+ / (FZ’2 + / F;d7> vo(t) dt
0 t

4 Amax {gpl(zl) 11 ()] + 5/0 o (8) dt,

Dy(z:) =Dr(2)+¢

+

—p1(21) — lp1(z1)| — 5/01U1(t) dt} -
+ AmaX{m(Zz) — |p2(z2)] +e/01v2(t) dt,

~ palea) - leateall — [ a0 dt} Fole). (3)

U3 (3) caenyer, uro dyuxmmonan Py (z) runomuddepennupyem B TOUKe
z. Ormernm, uro runoguddepennuanbaoe orobpazkenue dPy(z) aBiasgerca
HenpepbiBHLIM B Merpuke Xaycuopda [6, 5]. Ussecrrno, uro HeobxommmMoe
ycaoBue munuMmyMa Gyakiuu Py (z) aBisercs

[0,0p10,77, 0P, 17] € dPA(2). (4)

Meton runonud depeHmuanbHOro cirycka. Bribepem mpon3BosbHOe
20. Mycrs yaxe maitneno z¥. Ecm p(2F) = 0 u somosmeno yenosue (4), To
ToUKa 2* SBJISETCS CTAIMOHAPHOLL, U TTPOTIECC MPEKPAIIACTCS.

Ecmm ke ¢(2%) # 0 wm p(Z%) = 0, no ycmosme (4) He BBITIOTHEHO,
10 BO3bMeM dynkmuio G(z¥) — HauMeHbIIMii 0O HOPME T'MIIOrPajIeHT
dbynkimonana ®y B Touke 2.

Hamee perraercs 3a/1a4a 0JITHOMEPHON MUHUMUBAIUN

r51>i%1<1>>\(zk — BGA(ZF)) = B (2" — BLGA(ZF)).

=

Teneps nonoskum 2P+t = 28 — 3Gy (2F). Umeem @) (K1) < @) (2F).

ITosb3ysich HENPEPBIBHOCTBIO B MeTpuKe Xaycaopda runouddepeHnuaabHoro
orobpazkeHust, KaK (QYHKIMH 2z, MOXKHO I[OKa3aTh, YTO OHMCAHHBIH MeTOJ
cxoauTest B caenyiomeM cMbicse: |G| — 0. Bompoc o cymectBoBaHnn
NPEJIeBHBIX TOYEK MOCIEA0BATEABHOCTH {27} 0CTAETCA OTKPBITHIM.
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Implicit Multifunctions Theorems: recent developments
Théra M.
michel.thera@unilim.fr
XLIM and University of Limoges

Setting up equations or equations systems, and solving them is an impor-
tant problem in mathematics. A central question is whether the solutions to
an equation involving parameters, that is, the equation generally speaking
form F(z,p) = 0, may be viewed as a function of those parameters. Such a
function is called an implicit function defined by the equation

F(z,p) =0, (1)

Finding an implicit function is one of the most important, and one of the
oldest paradigm in modern mathematics, and has many applications to al-
gebra, differential geometry, differential topology, functional analysis, partial
differential equations, and many other areas of mathematics. The first idea
for implicit function theorems goes back to Newton and later to Leibniz,
Lagrange, Cauchy, Dini, Nash. The classical implicit function theorem is a
device to solve equations and systems of equations.

When the target space is m-dimensional, solving Equation (1) is equiva-
lent to finding the solution of the system of equations

Fi(z,p)=0, i=1,...,m. (2)
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and it is well known that if X is of dimension n and m = n, then, if (Z,p)
satisfies (2) and the partial gradients of the F;,i = 1,...,m with respect to x
are continuous and linearly independent at (Z,p), then the classical implicit
function theorem tells us that for any p near p, there is a unique solution
x = s(p) of (2); furthermore the function s is continuous at p. However, the
classical implicit function theorem cannot handle a system of inequalities,
of the form

Fi(z,p) <0, i=1,...,m. (3)

These systems are extremely important in optimization problems with in-
equalities constraints. So, it is necessary to consider equations in the form
(1), where F': X x P =Y is a set-valued mapping, which defines (3). The
study of the behavior of such parameterized generalized equations is relat-
ed to implicit multifunction theorems and plays a central role in variational
analysis, especially, in investing problems of sensitivity analysis with respect
to parameters. A recent book by Dontchev & Rockafellar highlights many
variant forms of implicit multifunction theorems as well as their their ap-
plications. The study of implicit multifunction theorems arises in problems
related to metric regularity, open covering properties, variational inequalities
and many other areas. Similarly to the classical implicit function theorem, we
also want to setting up a sufficient condition for the existence of a solutionto
a generalized equation and give the formular for calculating of the derivative
(coderivative) of the implicit multifunction (if may be).

In this presentation, we use an approach based on the error bound property
of the lower semicontinuous envelope of distance functions to the images of
set-valued mappings to derive implicit multifunction results. This approach
was introduced by Ngai & Théra and allows to avoid the completeness of the
image space.

Through these new characterizations, it is possible to investigate implicit
multifunction theorems based on coderivatives and on contigent derivatives,
as well as the perturbation stability of implicit multifunctions.

Nonlinear extremal problems and approximation theory
Tikhomarov V.
vmtikh@googlemail.com
Moscow State University, Russia

In this report the intercommunication between general principles of op-
timization and the theory of approximation and recovery will be illustrat-
ed by solution of some concrete extremal problems of this theory (such as
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Landau-Kolmogorov inequalities, polynomial inequalities, extremal proper-
ties of splines, optimal recovery of functions and operators etc).

Quantitative Semicontinuity Properties of Variational
Systems with Application to Parametric Optimization
Uderzo A.
amos.uderzo@unimib.it
University of Milano-Bicocca, Via Bicocca degli Arcimboldi, 8, Milan 20126, Italy

Given a set-valued mapping F : P x X — 2¥ and a function f : P x
X — Y, since the seminal paper [3| by parametric generalized equation the
problem is meant of finding = € X such that

(GEp) f(p,z) € F(p, ),

with the variable p playing the role of a parameter subject to perturbation.
The related solution mapping G : P — 2% implicitly defined by (GEp),
namely

Gp)={reX: f(p,z) € F(p,2)},

is often referred to as a wvariational system. Variational systems are an ab-
stract formalism that appears in a variety of particular forms within several
topics of nonsmooth optimization and variational analysis: for instance, as
constraining systems, as nonlinear programming problems, as variational con-
ditions (including variational inequalities, complementarity problems, fixed
points and equilibria).

The present talk is mainly devoted to the analysis of some stability proper-
ties of variational systems associated with a parametric generalized equation
(GEp). Whenever P, X and Y are endowed with a metric space structure,
it becomes possible to investigate “quantitative"! semicontinuity properties
of G, starting from adequate assumptions on the problem data f and F'. In
particular, the analysis here proposed focusses its attention on the following
two properties of G (see [1, 2, 4]):

— Lipschitz lower semicontinuity at a point (p,z) € P x X, with z € G(p),
which postulates the existence of positive constants ( and [ such that

G(p) N B(z,1d(p,p)) # @, Vp € B(p,);

— calmness at a point (p,z) € P x X, with & € G(p), which postulates the
existence of positive constants ¢, § and ¢ such that

G(p) N B(z,0) € B(G(p), td(p,p)), Vp € B(p,().

INote that the adjective “quantitative"is to be read here in contrast to “merely topo-
logical".
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Here B(x,r) denotes the open ball centered at x with radius r > 0,
whereas B(S,r) denotes the r-enlargement of set S in a metric space. Notice
that both such properties are of different nature with respect to the Aubin
property (see [2, 4]), which has been the subject of many investigations for
specific as well as for abstract variational systems (see [1, 2]). In fact, it
turns out that they may occur in circumstances where the latter fails. The
technique employed in the analysis relies on the use of derivative-like objects,
which are well known in nonsmooth analysis.

As an illustration of the achieved results, some applications are present-
ed to parametric constrained optimization, establishing local solvability and
solution stability of extremum problems subject to perturbation near a ref-
erence value of the parameter.
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Solving Piecewise Linear Programming problems using
codifferentials
Ugon J., Bagirov A.
j.ugon@ballarat.edu.au, a.bagirov@ballarat.edu.au
SITE, University of Ballarat, Ballarat, Australia

In this talk, necessary and sufficient local and global optimality condi-
tions for continuous piecewise linear functions are investigated. These condi-
tions are formulated using the concept of codifferential. Since any continuous
piecewise linear function can be represented as a maxima of minima of linear
functions we use this representation to demonstrate that in many practical
situations these conditions can be efficiently checked.

Algorithms for local and global minimization of functions represented as
a difference of two polyhedral functions are proposed. These algorithms are
based on the concept of codifferential. We prove that the proposed algorithms
are finite convergent. Examples are presented to demonstrate the performance
of the global search algorithm.
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Reduction of upper exhausters
Urbariski R., Grzybowsk: J., Pallaschke D.
rich@amu.edu.pl, jgrz@amu.edu.pl, 1h09Q@rz.uni-karlsruhe.de
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We present equivalent conditions for reducing upper exhauster to one
set or to an element of Minkowski-Radstrém—-Hoérmander space. We connect
reducing upper exhauster with the property of translation of the intersection
of a family of convex sets. We also discuss the minimality of upper exhausters
and answer Demyanov’s question on the uniqueness of minimal exhauster.
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Nonsmooth Analyze Methods for Constructions of
Differential Games and Control Problems Solutions
Approximations
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Both numerical and analytical and difference algorithms for approximate
solutions of differential games and control problems are proposed using convex
and nonsmooth analyze methods.

Difference operators and connected mesh algorithms of differential game
coast function approximate calculation for dynamic conflict controlled system
considered on a finite time interval [1]. These algorithms are based on uni-
fication constructions [2, 3]. Regularization of nonsmooth functions defined
in points of a mesh with local convex down (or up) hulls [4, 5]. Sub differen-
tials (or super differentials) of convex hulls and quasi differentials (by V.F.
Demyanov) are used instead of differences of functions, which are traditional
in mesh schemes [6].

The problem of appearance of optimal result function singularities in con-
trol problem with simple movements is studied. The singularities research
technique uses local diffeomorphism properties [7]. Elements of numerical
and analytical procedures for control sets construction with quite common
properties of the target set boarder are given [8, 9]. Finite-difference opera-
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tor for optimal result function approximation based on generalized derivative
(which is sometimes similar to Schwartz derivative) is suggested.

Application of the researched results for numerical construction of Hamil-
ton type PDE Cauchy and Dirichlet problems generalized (minimax) solu-
tions is discussed [10].

The study is illustrated with computing modeling of dynamical problems
solutions results.

This work was supported by the Presidium of RAS Program “Mathemati-
cal Control Theory” (with finance support of the Ural Branch of RAS, project
no. 09-P-1-1015) and by the Russian Foundation for Basic Research (projects
no. 11-01-12088 ofi-m-2011 and no. 11-01-00427-a)
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Numerical solution for minimax problems
Vinogradova T., Pupysheva J.
vinogradova@inbox.ru, j_poupycheva@mail.ru
Cankt-IleTepOyprckuii rocy1apCTBEHHbIN 9JIEKTPOTEXHUYECKHU YHUBEPCUTET, YiI.
IIpodeccopa Ilonosa, 1.5, Caukr-Ilerepbypr, 197376, Poccust,
Canxkr-IlerepOyprckuit ToCcy1apCTBEHHBIN YHUBEPCUTET, (DAKYIBTET TPUKJIATHON
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Cankr-Ilerepbypr, 198504, Poccus

The study of a wide class of extremal problems with nonsmooth criterion
functions can be done by making use of different approaches. In the talk,
for solving minimax problems, the theorem of Grachev-Evtushenko [3] is
employed. By means of this theorem a minimax problem is reduced to a
Cauchy problem for ODEs. Then, the problem thus obtained is reduced to
a polynomial Cauchy problem, which, in turn, is solved by means of the
Tailor series method. The method proposed is used to solve one of well-known
minimax problems - namely, the Mandelstam one.

@) pewieHnn MNHUMAKCHbIX 3ada4d

HccenoBanue oOmMUpHOro Kiacca SKCTPEMAJbHBIX 3aJad ¢ HervIagKon
nesieBoit byHKIMEll, B YACTHOCTH MHHUMAKCHBIX 33124, MOXKHO IPOBOIUTD
B Da3HbIX HAIpaBjeHHUsiX. HekoTopble n3 BO3MOMKHBIX IIOXO/OB OIIMCAHBI
B [1]. TlocTpoeHne mnpUOIMIKEHHBIX METOMOB HA OCHOBE HEOOXOJUMBIX
ycrioBuii pasnuuHOi cuibl npejgiaraercs B [2]. Mbr ke cobupaemcst
BOCIIOJIb30BAThCS APYTUMHU COOOpakeHUsAMU. ByneM onmparbcs Ha TeopeMy
I'pauesa-EBrymenko [3], koropas CBOAMT MUHMMAKCHYIO 3aJa4y K 3aJade
Komm st o6b1kHOBEHHBIX mudbdepeHmaababiX ypasaennii. Jlagee mosyten-
Has 3aJada CBOJAWTCA K MOJIMHOMHAJBHOI 3amade Kormmm, kK KoTopoit
npumensiercst MeTog psios Teitopa [4]. Tlpearaemplii MeTo IPUMEHSIETCS
K OJHOIl M3 MHMHUMAKCHBIX 3aJlad, a HMEHHO K 3alade Mamnesbmirama:
nycte X = (z1,%2,...,2,) u F(X,t) = [>)_, cos(kt + z1)|. Cpenu Bcex

X € FE, tpebyerca wHaiitm BekTOop X* Takoii, d9TO n[lax]F(X ) =
tel0,27

min max F(X,1).
{X} t€l0,27]
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Prediction of Network Dynamics under Various Time and
Uncertainty Assumptions. Investigations in Education,
Finance, Economics, Biology and Medicine - Recent
Contributions Supported by Optimization
Weber G., Kuter S., Kerimov A., Temoc¢in B., Kiirim E.
gweber@metu.edu.tr, semihkuter@yahoo.com,
azer.kerimov@gmail.com, busras@gmail.com, efsun.kurum@gmail.com
Institute of Applied Mathematics, Middle East Technical University, Ankara,
06800, Turkey, Department of Forest Engineering, Faculty of Forestry, Cankiri
Karatekin University, Cankiri, 18200, Turkey

This presentation introduces recent research efforts and results in identi-
fying and predicting time dependent processes, with various degrees of model
discontinuity and uncertainty. This generalization is gradually unfolded, while
always motivated by real-world challenges and applications of them.

We aim at displaying joy and interest in state-of-the art optimization and
to invite to education, research and developing our countries by its help, in
our scientific community. In fact, we try to "make appetite" for this.
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Smoothness Versus Nonsmoothness in the Modeling of
Economic Equilibrium: the Need for a New Paradigm
Wets R.
rjbwets@ucdavis.edu
Department of Mathematics, University of California, Davis

In the theory of economic equilibrium, rigorous mathematical models with
proofs of existence did not arrive until the 1950’s. At first, full attention was
paid to the possibility that some agents might start with, or end up with,
zero quantities of some goods at their survival boundaries. Soon after, because
ways of working with inequality constraints had not yet been developed well,
boundary behavior was shunned. Assumptions precluded it, and the subject
turned to tools of smooth differential geometry and topology aimed chiefly
at generic results. Now this all could, and should, change.

Some Results on the Equivalence of Demyanov Difference
and Minkowski Difference
Xia Z., Lin S.
zgxiazhh@dlut.edu.cn, 1sdsl@163.com
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024,
China

Demyanov difference is an important concept in non-smooth analysis and
optimization, especially in quasidifferentiable analysis in the sense of De-
myanov and Rubinov. It is important and necessary, especially for the ker-
nelled quasidifferential of a quasidifferentiable function, to study the problem
of the equivalence of the Demyanov difference and the Minkowski difference
of two nonempty convex compact sets. Gao gave a sufficient condition for the
case in R™ (n > 2). Song et al gave a necessary and sufficient condition for
the case in R?.

However a necessary and sufficient condition for the case of R™ (n > 2) has
not been given. In this paper, this problem is transformed into an equivalent
problem of solving a generalized equation

PA;B(U):PA—B(U)7 VUERna

which is presented by using the support function P, - B(-) of the Demyanov
difference of two nonempty convex compact sets A—B, where A, B € Y,, and
Y, is the set of all nonempty convex compact subsets in R". The equivalence
of the Demyanov difference and the Minkowski difference of two nonempty
convex compact sets in R™ is equivalent to the existence of the solution of
the generalized equation, and some properties of the generalized equation are
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given. In order to conveniently determine whether the sets A and B satisfy
the equality
A-B=A-B.

The existence problem of the solution of the generalized equation can be
transformed to the following problem: finding A, B € Y,,, such that for any
v € R™, there exists a u € R", the following inequalities

OP,(u) N OP4(v) 2@ and OPg(u+v) N OPg(—v) # o

hold, where 0"denotes the symbol of subdifferential in the sense of convex
analysis. Some properties of the sets A and B which can satisfy the above
problem are given.
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Conically equivalent convex sets and applications
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Given a ls.c. sublinear function h on a normed space X and a cone K C
X, two closed, convex sets A and B in X* are said to be K-equivalent if the
support functions of A and B coincide on K. We characterize the greatest
set in an equivalence class, analyze the equivalence between two sets, find
conditions for the existence and the uniqueness of the least element with
respect to inclusion, extending previous results. The main assumption is that
the cone K is open. A relevant role is played by the set of weak® support
points of A determined by elements of K.

We give some applications to the study of sublinear gauges of convex
radiant sets and of superlinear cogauges of convex coradiant sets. Moreover
we study the minimality of a second order hypodifferential.
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Space Transformation in Quasi-Newton Methods and
Methods of Conjugate Directions (in Russian)
Zhurbenko N.
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Mpeobpa3oBaHue NPoCTpaHCTBA B KBAa3MHbIOTOHOBKUX
MeTodax U MeTodax COMPSIXKEHHbIX rPaavueHToB

Ob61mast cxemMa KBa3MHBIOTOHOBCKUX METOJOB 0€3yC/IOBHONW MHHMMU3AI[UN

dyuknun f(xz) B R™ :

Tp = Tk—1 — hicHpgr—1,k=1,2,..., (1)

rae hg WAaroBblii MHOXKUTENb, ¢(Tk—1)— rpaguent dyukiuu f(z) B TOYKe
ZTg_1, Hx — cHMMeTpUYHAS TTOJIO?KATENIHLHO ONpeIe/IeHHas MaTpua. Marpuma
Hj peKyppeHTHO IIePECUUTHIBAETCA C BBIIOJIHEHUEM TAK HA3bIBAEMOTO
KBa3UHBIOTOHOBCKOTO YCJIOBHS:

Hyt1(gk — gr—1) = b Hypgp—1. (2)

[MTar KBa3WHBTOHOBCKOI'O METOJ[@ COOTBETCTBYET IIary TI'PaJIUeHTHOrO
MeTO/Ia. B IIPOCTPAHCTBE C ONpejiesdeMolt Mmarpune#t H, ! merpuke. [Toaromy
KBa3UHBTOHOBCKHME METOJIbI OOBIYHO HA3BIBAIOT METOJaMM IIePeMEeHHON Me-
TpukHu. KBa3MHTOHOBCKIE METO/IBI 00ECIIEUNBAIOT PEIIeHNe 33,1491 MUHIUMU-
zanuu kBaaparuanoii yukuuu f(x) = (Cx, z)+ (b, ) 3a n maros. [Ipu sTom
H,=C"1.

Obmen3BecTHA €Iy IONMAs HHTEPIIPETAIlns KBA3MHHTOHOBCKOI'O METOJIa
C Ho3uIuu Ipeobpa3oBaHusi mpoctpancTa. Ilpeacrapum Hy B Bune Hp =
BkB{, rae By HeBbIpoxkIeHHas Marpuiia n X n. llomoxxum Ap = Bk_l.
Ilycts Y "mpeobpasosanuoe" cooTBercTByONUM MaTpure Ay JUHEHHBIM
ornieparopoM mpocrpanctso: Y = ApX Tpammenr §(y) dbyuxiun f(y) =
f(Byx) coorsercrsylomeit dynknun f(z) B npocrpancrse Y pasen BY g(x).
ITosToMy mIar KBa3MHBIOTOHOBCKOI'O METOJ[a COOTBETCTBYET Iary rpajueHT-
HOrO ajiropurMa B "mpeobpasosanHoM" MpocTpaHCTBe.

Hna xsaaparmanoit byskmmn f(y) = (Cry1y.y) + (B ,b,y), tae
CN’;CH = B;;,FHCB;CH — MaTpHUIla KBaJpaTUIHONW dYacTH (QYHKIUU B
npeobpazoBanHoM mpoctpancTse. [lomoxkum: pr = Higr—1, Px = Ak+1Dk,
( pxr - wuampasienuwe nBuKenus ajropurma (1), prp - HaupasjieHue B
IpeobpPa30BAHHOM POCTPAHCTBE, COOTBETCTBYIOIIEE HAIPABJICHUIO Pk ).
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IIycts marpumna npeobpasoBanus B4 YIOBIETBOPSET CJIELYIOIIEMY

YCJIOBUIO ~
CkPr = Pk- (3)

CrpaBeJINBO CJIEIYIONIEe yTBEPKIEHNUE.

Ksasunvmonoscroe ycaosue (2) u ycaosue (3) (daa weadpamuurod
PyHKYUL) IKEUBAACHMHDL.

EcrectBennast popma KOppEKTUPOBKHU 0OpATHON MATPHUITHI TPEOOPAZOBAHUST
npocrpascTsa By umeer Bun By = BpT) (takas dopma coOTBETCTBYET
[OCJIEIOBATEIHLHOMY IPEOOPA30BAHUIO IPOCTPAHCTBA). HeTpyHo mokas3ars,
YTO I KBRAPATHIHON (DYHKIMK yciaoBue (3) 9KBUBAJEHTHO CJIELYIOIIEMY
(HE COIEpPKAIILYIO SIBHO MATPHUILY ) YCJIOBHIO

TWT (Gk — Gr-1) = heGe-1 (Gx = Bi gk,  Gr—1 = Bl gr—1) (4)

Taxkum o6pazom, yciosust (4) u (2) sKBuBaJEHTHBI. DTOT (HAKT JErKO
YCTAHABJIUBACTCA HEIIOCPEJICTBEHHO M3 ycjoBus (2) 0e3 MCIIOJIb30BAHMS
ycaoBus (3). OTMernM, 9T0 NpeCTaBIeHle U3BECTHBIX BADUAHTOB KBA3UHbBIO-
ronoBckux Meronos (Jasunona—Dueruepa—Ilayssia, Bpoitnena—Dieraepa—
ITenno) B dopme npeobpasoBaHus IPOCTPAHCTBA IIPUBEIEHO, HAIIPDUMED, B
pabore [1].

[Iycrer maTpura npeobpazoBanust Bjyi1 YAOBJIETBODSET CJIEAYIONIEMY
YCIOBHIO (BEKTOP P, ABJISETC COOCTBEHHBIM BEKTOPOM MATPUIIBI KBAIPATHY-
Hoit (byHKIME B MpPeoOPa3OBAHHOM IIPOCTPAHCTBE; COOCTBEHHOE 3HATCHHE
BEKTODA PABHO A ) )

CrDr = bk, (5)

rae A > 0 (yemosue (3) coorsercrsyer (5) npu A = 1).

OxasbIBaeTcd, 9TO TPaJMEHTHBI METO/T C TPeobpa3s0OBaHueM TPOCTPAHCTBA
[P BBITIOJTHEHAN YCJIOBHs (5) SBIISIETCS METOJOM COMPSIZKEHHBIX TPAIMEHTOB.
Camo ycmoBue (5) COOTBETCTBYET M3BECTHOMY YCJIOBHIO C-OPTOrOHAIBHOCTH
2], 131

chpj:)\pk,jzo,l,...,k}—l. (6)

Venosue C-oproronanbioctu (6) sBjsieTcs OCHOBOI OCTPOEHHSI PA3JIMY-
HBIX BAPHAHTOB aJIFOPUTMa COLIPsI?KEHHBIX Halpasienuii [3] B dopme (1).

Koppekruposka Mmarpuipl Hy B Kilaccmueckux BapuaHTax MeTonos (1)
onpejiesisiercss B ajgutuBhoit dopme: Hyip1 = Hy + AHg. Ilpu srom
pPeKyppeHTHbIE (DOPMYJIBI epecdeTa MarTpull Hy He UCIOJb3YIOT B SIBHOM
BHUJE MPEJCTABJIEHUE ITUX MAaTpUIl, B (opMe MPOU3BEICHUS BkB,{. Ltst
anropurmoB (1) B dopme npeobpazoBaHus IIPOCTPAHCTBA DPEKYPEHTHDBIE
COOTHOIIIEHUS OIPEEISIOTCS HENOCPEICTBEHHO it MaTpull By. Ilpu stom
MTOJIOZKUTE/IbHAS OINPeIeIeHHOCTh MaTpul, Hy = BkB,? obecreunBaeTCs, B
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OIIPEJIEJIEBHHOM CMBICJIE, HE3ABUCUMO OT TOTPEITHOCTEH BBHIYUCIEHUST MATPHUI]
Bj,. 910 obecrieunBaeT YUCIEHHYIO YCTORYIUBOCTD AJTOPUTMOB.

Jutst KBaapaTnaHoi (DYHKIMYE IIPU BBIIOJHEHUH YCJoBust (5) mosydaem
CJIEYIONIYI0 TeOMETPUYECKYIO MHTepIperanuio ajaroputrmos (1) B dopme
upeobpasoBanus npocrpancrsa. O6pa3 rpaekropun Merona (1) B Tekyiiem
1peobpPa30BAHHOM [IPOCTPAHCTBE COOTBETCTBYET JBHXKEHHIO 110 (B3aKMHO
OPTOrOHAIBHBIM) COGCTBEHHBIM BEKTOPaM MaTpUIpl Cf, COOTBETCTBYIOIIE]t
MaTpUIle KBQIPATUIHON (PYHKIMKA B 3TOM IIPOCTPAHCTBE.

[TpuBesennast WHTEpUpPETAIMs KBA3WHBIOTOHOBCKOrO yejaoBusa (2) u
ycaoBusi C-oproronajbaocT (6) MO3BOJISIET CTPOUTH HOBbIE MOAUMDUKAIIAN
METOJIOB PaccMarpuBaeMoro kjacca. Tak B paborax [4], [5] paspaborano
CeMeliCTBO aJIrOPUTMOB HA OCHOBE HCIIOJIb30BaHus ycsoBus (5) U o1epaTopos
pactsizkeHus: mpoctpancTsa [6]. Kak qacTHblil ciryuaii B 9T0 ceMeiicTBO BXOAUT
OpeslesibHBI BapuaHT r-aaroputMma [6] ¢ GeckoHeYHBIM KO3 duIeHToM
pPACTSIKEHUsI.
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