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Abstract

In these lecture notes a pedagogical introduction to Donaldson-Witten theory is
given. After a survey of four-manifold topology, some basic aspects of Donaldson
theory are presented in detail. The physical approach to Donaldson theory is based on
topological quantum field theory (TQFT), and some general properties of TQFT’s are
explained. Finally, the TQFT underlying Donaldson theory (which is usually called
Donaldson-Witten theory) is constructed in detail by twisting N = 2 super Yang-Mills
theory.
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1 Introduction

Donaldson-Witten theory has played an important role both in mathematics and in physics.
In mathematics, Donaldson theory has been a fundamental tool in understanding the dif-
ferential topology of four-manifolds. In physics, topological Yang-Mills theory, also known
as Donaldson-Witten theory, is the canonical example of a topological quantum field theory.
The development of the subject has seen a remarkable interaction between these two differ-
ent approaches -one of them based on geometry, and the other one based on quantum field
theory.

In these lectures, we give a self-contained introduction to Donaldson-Witten theory. Un-
fortunately, we are not going to be able to cover the whole development of the subject.
A more complete treatment can be found in [30]. The organization of the lectures is as
follows: in section 2, we review some elementary properties of four-manifolds. In section
3, we present Donaldson theory from a rather elementary point of view. A more detailed
and rigorous point of view can be found in [13]. In section 4, we give a quick introduction
to N = 1 supersymmetry. In section 5, we present the physical theory behind Donaldson-
Witten theory, i.e. N = 2 supersymmetric Yang-Mills theory. In section 6, we give a general
overview of topological field theories and we explain the twisting procedure. In section 7, we
construct Donaldson-Witten theory in detail and show that its correlation functions are in
fact the Donaldson invariants introduced in section 3. Finally, in section 8, we give a very
brief overview of recent developments.
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for making available to me his notes on Donaldson theory and four-manifolds, and for the
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2 Basics of four-manifolds

The purpose of this section is to collect a series of more or less elementary facts about the
topology of four-manifolds that will be used in the rest of these lectures. We haven’t made
any attempt to be self-contained, and the reader should consult for example the excellent
book [20] for a more complete survey. The first chapter of [13] gives also a very good
summary. A general warning: in these lectures we will assume that the four-manifolds under
consideration are closed, compact and orientable. We will also assume that they are endowed
with a Riemannian metric.
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2.1 Homology and cohomology

The most basic classical topological invariants of a four-manifold are the homology and
cohomology groups Hi(X,Z), H i(X,Z). These homology groups are abelian groups, and
the rank of Hi(X,Z) is called the i-th Betti number of X, and denoted by bi. Remember
that by Poincaré duality one has

H i(X,Z) ≃ Hn−i(X,Z). (2.1)

and hence bi = bn−i. We will also need the (co)homology groups with coefficients in other
groups like Z2. To obtain these groups one uses the universal coefficient theorem, which
states that

Hi(X,G) ≃ Hi(X,Z) ⊗Z G⊕ Tor(Hi−1(X,Z), G). (2.2)

Let’s focus on the case G = Zp. Given an element x in Hi(X,Z), one can always find an
element in Hi(X,Zp) by sending x→ x⊗ 1. This in fact gives a map:

Hi(X,Z) → Hi(X,Zp) (2.3)

which is called the reduction mod p of the class x. Notice that, by construction, the image
of (2.3) is in Hi(X,Z) ⊗ Zp. Therefore, if the torsion part in (2.2) is not zero, the map
(2.3) is clearly not surjective. When the torsion product is zero, any element in Hi(X,Zp)
comes from the reduction mod p of an element in Hi(X,Z). For the cohomology groups we
have a similar result. Physicists are more familiar with the de Rham cohomology groups,
H∗
DR(X) which are defined in terms of differential forms. These groups are defined over R,

and therefore they are insensitive to the torsion part of the singular cohomology. Formally,
one has H i

DR(X) ≃ (H i(X,Z)/Tor(H i(X,Z))) ⊗Z R.
Remember also that there is a nondegenerate pairing in cohomology, which in the de

Rham case is the usual wedge product followed by integration. We will denote the pairing
of the cohomology classes (or differential form representatives) α, β by (α, β).

Let’s now focus on dimension four. Poincaré duality gives then an isomorphism be-
tween H2(X,Z) and H2(X,Z). It also follows that b1(X) = b3(X). Recall that the Euler
characteristic χ(X) of an n-dimensional manifold is defined as

χ(X) =
n∑

i=0

(−1)ibi(X). (2.4)

For a connected four-manifold X, we have then, using Poincaré duality, that

χ(X) = 2 − 2b1(X) + b2(X). (2.5)

2.2 The intersection form

An important object in the geometry and topology of four-manifolds is the intersection form,

Q : H2(X,Z) ×H2(X,Z) → Z (2.6)
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which is just the pairing restricted to the two-classes. By Poincaré duality, it can be defined
on H2(X,Z) ×H2(X,Z) as well. Notice that Q is zero if any of the arguments is a torsion
element, therefore one can define Q on the torsion free parts of homology and cohomology.

Another useful way to look at the intersection form is precisely in terms of intersection
of submanifolds in X. One fundamental fact in this respect is that we can represent any
two-homology class in a four-manifold by a closed, oriented surface S: given an embedding

i : S →֒ X, (2.7)

we have a two-homology class i∗([S]) ∈ H2(X,Z), where [S] is the fundamental class of S.
Conversely, any a ∈ H2(X,Z) can be represented in this way, and a = [Sa] [20]. One can
also prove that

Q(a, b) = Sa ∪ Sb,
where the right hand side is the number of points in the intersection of the two surfaces,
couted with signs which depend on the relative orientation of the surfaces. If, moreover, ηSa

,
ηSb

denote the Poincaré duals of the submanifolds Sa, Sb (see [8]), one has

Q(a, b) =

∫

X

ηSa
∧ ηSb

= Q([ηSa
], [ηSb

]).

If we choose a basis {ai}i=1,...,b2(X) for the torsion-free part of H2(X,Z), we can represent Q
by a matrix with integer entries that we will also denote by Q. Under a change of basis,
we obtain another matrix Q → CTQC, where C is the transformation matrix. This matrix
is obviously symmetric, and it follows by Poincaré duality that it is unimodular, i.e. it has
det(Q) = ±1. If we consider the intersection form on the real vector space H2(X,R), we
see that it is a symmetric, bilinear, nondegenerate form, and therefore it is classified by its
rank and its signature. The rank of Q, rk(Q), is clearly given by b2(X), the second Betti
number. The number of positive and negative eigenvalues of Q will be denoted by b+2 (X),
b−2 (X), respectively, and the signature of the manifold X is then defined as

σ(X) = b+2 (X) − b−2 (X). (2.8)

We will say that the intersection form is even if Q(a, a) ≡ 0 mod 2. Otherwise, it is odd. An
element x of H2(X,Z)/Tor(H2(X,Z)) is called characteristic if

Q(x, a) ≡ Q(a, a) mod 2 (2.9)

for any a ∈ H2(X,Z)/Tor(H2(X,Z)). An important property of characteristic elements is
that

Q(x, x) ≡ σ(X) mod 8. (2.10)

In particular, if Q is even, then the signature of the manifold is divisible by 8.
Examples.
(1) The simplest intersection form is:

n(1) ⊕m(−1) = diag(1, . . . , 1,−1, . . . ,−1), (2.11)
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which is odd and has b+2 = n, b−2 = m.
(2) Another important form is the hyperbolic lattice,

H =

(
0 1
1 0

)
, (2.12)

which is even and has b+2 = b−2 = 1.
(3) Finally, one has the even, positive definite form of rank 8

E8 =




2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2




(2.13)

which is the Dynkin diagram of the exceptional Lie algebra E8.
Fortunately, unimodular lattices have been classified. The result depends on whether the

intersection form is even or odd and whether it is definite (positive or negative) or not. Odd,
indefinite lattices are equivalent to p(1)⊕ q(−1), while even indefinite lattices are equivalent
to pH⊕qE8. Definite lattices are more complicated, since they involve “exotic” cases. Clearly
the intersection form is a homotopy invariant. It turns out that simply connected smooth
four-manifolds are completely characterized topologically by the intersection form, i.e. two
simply-connected, smooth four-manifolds are homeomorphic if their intersection forms are
equivalent. This is a result due to Freedman. The classification of smooth four-manifolds up
to diffeomorphism is another story, and this is the main reason to introduce new invariants
which are sensitive to the differentiable structure. But before going into that, we have to
give some more details about classical topology.

2.3 Self-dual and anti-self-dual forms

The Riemannian structure of the manifold X allows us to define the Hodge star operator ∗,
which can be used to define an induced metric on the forms by:

ψ ∧ ∗θ = (ψ, θ)dµ,

where dµ is the Riemannian volume element. Since ∗2 = 1, the Hodge operator has eigenval-
ues ±1, hence it gives a splitting of the two-forms Ω2(M) in self-dual (SD) and anti-self-dual
(ASD) forms, defined as the ±1 eigenspaces of ∗ and denoted by Ω2,+(X) and Ω2,−(X), re-
spectively. Given a differential form ψ ∈ Ω2(M), its self-dual (SD) and anti-self-dual (ASD)
parts will be denoted by ψ±. Explicitly,

ψ± =
1

2
(ψ ± ∗ψ). (2.14)
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The Hodge operator lifts to cohomology and in four dimensions it maps

∗ : H2(X) → H2(X). (2.15)

The number of +1 eigenvalues of ∗ inH2(X) is precisely b+2 , and the number of −1 eigenvalues
is b−2 . This means that we can interpret b+2 as the number of self-dual harmonic forms on X.
This interpretation will be useful in the context of gauge invariants.

2.4 Characteristic classes

An important set of topological invariants ofX is given by the characteristic classes of its real
tangent bundle. The most elementary ones are the Pontriagin class p(X) and the Euler class
e(X), both in H4(X,Z) ≃ Z. These classes are then completely determined by two integers,
once a generator of H4(X,Z) is chosen. These integers will be also denoted by p(X), e(X),
and they give the Prontriagin number and the Euler characteristic of the four-manifold X,
so e(X) = χ. The Pontriagin number is related to the signature of the manifold through the
Hirzebruch theorem, which states that:

p(X) = 3σ(X). (2.16)

If a manifold admits an almost-complex structure, one can define a holomorphic tangent
bundle T (1,0)(X). This is a complex bundle of rank r = dim(X), therefore we can associate
to it the Chern character c(T (1,0)(X)) which is denoted by c(X). For a four-dimensional
manifold, one has c(X) = 1 + c1(X) + c2(X). Since c1(X) is a two-form, its square can
be paired with the fundamental class of the four manifold. The resulting number can be
expressed in terms of the Euler characteristic and the signature as follows:

c21(X) = 2χ(X) + 3σ(X). (2.17)

Finally, the second Chern class of X is just its Euler class: c2(X) = e(X). If the almost
complex structure is integrable, then the manifold X is complex, and it is called a complex
surface. Complex surfaces provide many examples in the theory of four-manifolds. Moreover,
there is a very beautiful classification of complex surfaces due to Kodaira, using techniques
of algebraic geometry. The interested reader can consult [4, 6].

There is another set of characteristic classes which is perhaps less known in physics.
These are the Stiefel-Whitney classes of real bundles F over X, denoted by wi(F ). They
take values in H i(X,Z2), and a precise definition can be found in [20, 31], for example.
The Stiefel-Whitney classes of a four-manifold X are defined as wi(X) = wi(TX). The
first Stiefel-Whitney class of a manifold measures its orientability, so we will always have
w1(X) = 0. The second Stiefel-Whitney class plays an important role in what follows. This
is a two-cohomology class with coefficients in Z2, and it has three important properties. If
the manifold admits an almost complex structure, then

c1(X) ≡ w2(X) mod 2, (2.18)

i.e. w2(X) is the reduction mod 2 of the first Chern class of the manifold. This is a general
property of w2(X) for any almost-complex manifold. In four dimensions, w2(X) satisfies in
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addition two other properties: first, it always has a integer lift to an integer class [21] (for
example, it the manifold is almost complex, then c1(X) is such a lift). The second property
is the Wu formula, which states that

(w2(X), α) = (α, α) mod 2, (2.19)

for any α ∈ H2(X,Z). The l.h.s can be interpreted as the pairing of α with the integer
lift of w2(X). A corollary of the Wu formula is that an integer two-cohomology class is
characteristic if and only if it is an integer lift of w2(X).

2.5 Examples of four-manifolds

(1) A simple example is the four-sphere, S4. It has b1 = b2 = 0, and therefore χ = 2,
σ = 0, Q = 0.

(2) Next we have the complex projective space CP2. Recall that this is the complex
manifold obtained from C3 − {(0, 0)} by indentifying zi ≃ λzi, i = 1, 2, 3, with λ 6= 0. CP2

has b1 = 0 and b2 = 1. In fact, the basic two-homology class is the so-called class of the
hyperplane h, which is given in projective coordinates by z1 = 0. It is not difficult to prove
that h2 = 1, so QCP

2 = (1). Notice that h is in fact a CP1, therefore it is an embedded

sphere in CP2. The projective plane with the opposite orientation will be denoted by CP2,
and it has Q = (−1).

(3) An easy way to obtain four-manifolds is by taking products of two Riemann surfaces.
A simple example are the so-called product ruled surfaces S2 × Σg, where Σg is a Riemann
surface of genus g. This manifold has b1 = 2g, b2 = 2. The homology classes have the
submanifold representatives S2 and Σg. They have self intersection zero and they intersect
in one point, therefore Q = H , the hyperbolic lattice, with b+2 = b−2 = 1. One then has
χ = 4(1 − g).

(4) Our last example is a hypersurface of degree d in CP3, described by a homogeneous
polynomial

∑4
i=1 z

d
i = 0. We will denote this surface by Sd. For d = 4, one obtains the

so-called K3 surface.

Exercise 2.1. 1) Compute c1(Sd) and c2(Sd). Deduce the values of χ and σ.
2) Use the classification of unimodular symmetric, bilinear forms to deduce QK3 (for

help, see [20]).

3 Basics of Donaldson invariants

Donaldson invariants can be mathematically motivated as follows: as we have mentioned,
Freedman’s results imply that two simply-connected smooth manifolds are homeomorphic if
and only if they have the same intersection form. However, the classification of four-manifolds
up to diffeomorphism turns out to be much more subtle: most of the techniques that one uses
in dimension ≥ 5 to approach this problem (like cobordism theory) fail in four dimensions.
For example, four dimensions is the only dimension in which a fixed homeomorphism type
of closed four-manifolds is represented by infinitely many diffeomorphism types, and n = 4
is the only dimension where there are “exotic” Rn’s, i.e. manifolds which are homeomorphic
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to Rn but not diffeomorphic to it. One has to look then for a new class of invariants of
differentiable manifolds in order to solve the classification problem, and this was the great
achievement of Donaldson. Remarkably, the new invariants introduced by Donaldson are
defined by looking at instanton configurations of nonabelian gauge theories on the four-
manifold. We will give here a sketch of the mathematical procedure to define Donaldson
invariants, in a rather formal way and without entering into the difficult parts of the theory.
The interested reader can consult the excellent book by Donaldson and Kronheimer [13].
Other useful resources include [16–18], on the mathematical side, and [9,34] on the physical
side. The reference [15] gives a very nice review of the mathematical background.

3.1 Yang-Mills theory on a four-manifold

Donaldson theory defines differentiable invariants of smooth four-manifolds starting from
Yang-Mills fields on a vector bundle over the manifold. The basic framework is then gauge
theory on a four-manifold, and the moduli space of ASD connections. Here we review very
quickly some basic notions of gauge connections on manifolds. A more detailed account can
be found for example in [10, 15].

Let G be a Lie group (usually we will take G = SO(3) or SU(2)). Let P → M be a
principal G-bundle over a manifold M with a connection A, taking values in the Lie algebra
of G, g. Given a vector space V and a representation ρ of G in GL(V ), we can form an
associated vector bundle E = P ×G V in the standard way. G acts on V through the
representation ρ. The connection A on P induces a connection on the vector bundle E
(which we will also denote by A) and a covariant derivative ∇A. Notice that, while the
connection A on the principal bundle is an element in Ω1(P, g), the induced connection on
the vector bundle E is better understood in terms of a local trivialization Uα. On each Uα,
the connection 1-form Aα is a gl(V ) valued one-form (where gl(V ) denotes the Lie algebra of
GL(V )) and the transformation rule which glues together the different descriptions is given
by:

Aβ = g−1
αβAαgαβ + ig−1

αβdgαβ, (3.1)

where gαβ are the transition functions of E.
Recall that the representation ρ induces a representation of Lie algebras ρ∗ : g → gl(V ).

We will identify ρ∗(g) = g, and define the adjoint action of G on ρ∗(g) through the repre-
sentation ρ. On M one can consider the adjoint bundle gE , defined by:

gE = P ×G g, (3.2)

which is a subbundle of End(E). For example, for G = SU(2) and V corresponding to the
fundamental representation, gE consists of Hermitian, trace-free endomorphisms of E. If
we look at (3.1), we see that the difference of two connections is an element in Ω1(gE) (the
one-forms on X with values in the bundle gE). Therefore, we can think about the space of
all connections A as an affine space with tangent space at A given by TAA = Ω1(gE).

The curvature FA of the vector bundle E associated to the connection A can be also
defined in terms of the local trivialization of E. On Uα, the curvature Fα is a gl(V )-valued
two-form that behaves under a change of trivialization as:

Fβ = g−1
αβFαgαβ, (3.3)
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and this shows that the curvature can be considered as an element in Ω2(gE).
The next geometrical objects we must introduce are gauge transformations, which are

automorphisms of the vector bundle E, u : E → E preserving the fibre structure (i.e., they
map one fibre onto another) and descend to the identity on X. They can be described
as sections of the bundle Aut(E). Gauge transformations form an infinite-dimensional Lie
group G, where the group structure is given by pointwise multiplication. The Lie algebra
of G = Γ(Aut(E)) is given by Lie(G) = Ω0(gE). This can be seen by looking at the local
description, since on an open set Uα the gauge transformation is given by a map uα : Uα → G,
where G acts through the representation ρ. As it is well-known, the gauge transformations
act on the connections as

u∗(Aα) = uαAαu
−1
α + iduαu

−1
α = Aα + i(∇Auα)u

−1
α , (3.4)

where ∇Auα = duα + i[Aα, uα], and they act on the curvature as:

u∗(Fα) = uαFαu
−1
α . (3.5)

3.2 SU(2) and SO(3) bundles

In these lectures we will restrict ourselves to the gauge groups SU(2) and SO(3), and E
corresponding to the fundamental representation. Therefore, E will be a two-dimensional
complex vector bundle or a three-dimensional real vector bundle, respectively. SU(2) bundles
over a compact four-manifold are completely classified by the second Chern class c2(E) (for
a proof, see for example [16]).

In the case of a SO(3) bundle V , the isomophism class is completely classified by the
first Pontriagin class

p1(V ) = −c2(V ⊗ C), (3.6)

and the Stiefel-Whitney class w2(V ) ∈ H2(X,Z2). These characteristic classes are related
by

w2(V )2 = p1(V ) mod 4. (3.7)

SU(2) bundles and SO(3) bundles are of course related: given an SU(2) bundle, we can
form an SO(3) bundle by taking the bundle gE in (3.2). However, although an SO(3)
bundle can be always regarded locally as an SU(2) bundle, there are global obstructions
to lift the SO(3) group to an SU(2) group. The obstruction is measured precisely by the
second Stiefel-Whitney class w2(V ). Therefore, we can view SU(2) bundles as a special case
of SO(3) bundle with zero Stiefel-Whitney class, and this is what we are going to do in these
lectures. When the SO(3) bundle can be lifted to an SU(2) bundle, one has the relation:

p1(V ) = −4c2(E). (3.8)

Chern-Weil theory gives a representative of the characteristic class p1(V )/4 in terms of the
curvature of the connection:

1

4
p1(V ) =

1

8π2
TrF 2

A, (3.9)
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where FA is a Hermitian, trace-free matrix valued two-form. Notice that Hermitian, trace-
free matrices have the form:

ξ =

(
a −ib + c

ib+ c −a

)
, a, b, c ∈ R, (3.10)

so the trace is a positive definite form:

Trξ2 = 2(a2 + b2 + c2) = 2|ξ|2, ξ ∈ su(2). (3.11)

We define the instanton number k as:

k = − 1

8π2

∫

X

TrF 2
A. (3.12)

Notice that, if V has not a lifting to an SU(2) bundle, the instanton number is not an integer.
If V lifts to E, then k = c2(E).

The topological invariant w2(V ) for SO(3) bundles may be less familiar to physicists,
but it has been used by ’t Hooft [39] when X = T4, the four-torus, to construct gauge
configurations called torons. To construct torons, one considers SU(N) gauge fields on
a four-torus of lengths aµ, µ = 1, · · · , 4. To find configurations which are topologically
nontrivial, we require of the gauge fields to be periodic up to a gauge transformation in two
directions:

Aµ(a1, x2) = Ω1(x2)Aµ(0, x2),

Aµ(x1, a2) = Ω2(x1)Aµ(x1, 0), (3.13)

where we have denoted by ΩA the action of the gauge transformation Ω on the connection
A. Looking at the corners, we find the compatibility condition

Ω1(a2)Ω2(0) = Ω2(a1)Ω1(0)Z, (3.14)

where Z ∈ C(SU(N)) = ZN is an element in the center of the gauge group. We can allow a
nontrivial Z since a gauge transformation which is in the center of SU(N) does not act on
the SU(N) gauge fields. This means that when we allow torons we are effectively dealing
with an SU(N)/ZN gauge theory. For SU(2), this means that we are dealing with an SO(3)
theory, and the toron configurations are in fact topologically nontrivial SO(3) gauge fields
with nonzero Stiefel-Whitney class.

3.3 ASD connections

The splitting (2.14) between SD and ASD forms extends in a natural way to bundle-valued
forms, in particular to the curvature associated to the connection A, FA ∈ Ω2(gE). We call
a connection ASD if

F+
A = 0. (3.15)

It is instructive to consider this condition in the case of X = R4 with the Euclidean metric.
If {dx1, dx2, dx3, dx4} is an oriented orthonormal frame, a basis for SD (ASD) forms is given
by:

{dx1 ∧ dx2 ± dx3 ∧ dx4, dx1 ∧ dx4 ± dx2 ∧ dx3, dx1 ∧ dx3 ± dx4 ∧ dx1}, (3.16)
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with ± for SD and ASD, respectively. If we write F = 1
2
Fµνdx

µ∧dxν , then the ASD condition
reads:

F12 + F34 = 0

F14 + F23 = 0

F13 + F42 = 0. (3.17)

Notice that the second Chern class density can be written as

Tr(F 2
A) = {|F+

A |2 − |F−
A |2}dµ, (3.18)

where dµ is the volume element and the norm is defined as:

|ψ|2 =
1

2
Tr(ψ ∧ ∗ψ). (3.19)

We then see that, with our conventions, if A is an ASD connection the instanton number k
is positive. This gives a topological constraint on the existence of ASD connections.

One of the most important properties of ASD connections is that they minimize the
Yang-Mills action

SYM =
1

2

∫

X

F ∧ ∗F =
1

4

∫

X

d4x
√
gFµνF

µν (3.20)

in a given topological sector. This is so because the integrand of (3.20) can be written as
|F+
A |2 + |F−

A |2, therefore

SYM =
1

2

∫

X

|F+
A |2dµ+ 8π2k, (3.21)

which is bounded from below by 8π2k. The minima are attained precisely when (3.15) holds.
The ASD condition is a nonlinear differential equation for non-abelian gauge connections,

and it defines a subspace of the (infinite dimensional) configuration space of connections A
1. This subspace can be regarded as the zero locus of the section

s : A −→ Ω2,+(gE) (3.22)

given by
s(A) = F+

A . (3.23)

Our main goal is to define a finite-dimensional moduli space starting from s−1(0). The key
fact to take into account is that the section (3.22) is equivariant with respect to the action of
the gauge group: s(u∗(A)) = u∗(s(A)). Therefore, if a gauge connection A satisfies the ASD
condition, then any gauge-transformed connection u∗(A) will also be ASD. To get rid of the
gauge redundancy in order to obtain a finite dimensional moduli space, one must “divide
by G” i.e. one has to quotient s−1(0) by the action of the gauge group. We are thus led to
define the moduli space of ASD connections, MASD, as follows:

MASD =
{
[A] ∈ A/G | s(A) = 0

}
, (3.24)

1In the following, when we refer to the space of smooth connections we will proceed on a purely formal
level, and we will avoid the hard functional analysis which is needed in order to give a rigorous treatment.
We refer to [13, 16] for details concerning this point.
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where [A] denotes the gauge-equivalence class of the connection A. Notice that, since s is
gauge-equivariant, the above space is well-defined. The fact that the ASD connections form
a moduli space is well-known in field theory. For example, on R4 SU(2) instantons are
parameterized by a finite number of data (which include, for example, the position of the
instanton), giving 8k − 3 parameters for instanton number k [22]. The moduli space MASD

is in general a complicated object, and in the next subsections we will analyze some of its
aspects in order to provide a local model for it.

3.4 Reducible connections

In order to analyze MASD, we will first look at the map

G ×A → A (3.25)

and the associated quotient space A/G. The first problem we find when we quotient by G
is that, if the action of the group is not free, one has singularities in the resulting quotient
space. If we want a smooth moduli space of ASD connections, we have to exclude the points
of A which are fixed under the action of G. To characterize these points, we define the
isotropy group of a connection A, ΓA, as

ΓA = {u ∈ G|u(A) = A}, (3.26)

which measures the extent at which the action of G on a connection A is not free. If the
isotropy group is the center of the group C(G), then the action is free and we say that the
connection A is irreducible. Otherwise, we say that the connection A is reducible. Reducible
connections are well-known in field theory, since they correspond to gauge configurations
where the gauge symmetry is broken to a smaller subgroup. For example, the SU(2) con-
nection

A =

(
a 0
0 −a

)
(3.27)

should be regarded in fact as a U(1) connection in disguise. It is clear that a constant gauge
transformation of the form uσ3 leaves (3.27) invariant, therefore the isotropy group of A is
bigger than the center of SU(2). We will denote the space of irreducible connections by A∗.
It follows from the definition that the reduced group of gauge transformations Ĝ = G/C(G)
acts freely on A∗.

By using the description of u as a section of Aut(E) and the action on A given in (3.4),
we see that

ΓA = {u ∈ Γ(Aut(E))|∇Au = 0}, (3.28)

i.e. the isotropy group at A is given by the covariantly constant sections of the bundle
Aut(E). It follows that ΓA is a Lie group, and its Lie algebra is given by

Lie(ΓA) = {f ∈ Ω0(gE)|∇Af = 0}. (3.29)

Therefore, a useful way to detect if ΓA is bigger than C(G) (and has positive dimension) is
to study the kernel of ∇A in Ω0(gE). Reducible connections correspond then to a non-zero
kernel of

−∇A : Ω0(gE) → Ω1(gE). (3.30)
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In the case of SU(2) and SO(3), a reducible connection has precisely the form (3.27),
with isotropy group ΓA/C(G) = U(1). This means, topologically, that the SU(2) bundle E
splits as:

E = L⊕ L−1, (3.31)

with L a complex line bundle, while a reducible SO(3) bundle splits as

V = R ⊕ T, (3.32)

where R denotes the trivial rank-one real bundle over X. The above structure for V is easily
derived by considering the real part of Sym2(E). Notice that, if V admits a SU(2) lifting
E, then T = L2. There are topological constraints to have these splittings, because (3.31)
implies that c2(E) = −c1(L)2, and (3.32) that

p1(V ) = c1(T )2. (3.33)

When E exists, the first Chern class λ = c1(L) is an integral cohomology class. However,
when w2(E) 6= 0, then it follows from (3.7) that L does not exist as a line bundle, since its
first Chern class is not an integral class but lives in the lattice

H2(X,Z) +
1

2
w2(V ). (3.34)

In particular, one has that
c1(T ) ≡ w2(V ) mod 2. (3.35)

Therefore, reductions of V are in one-to-one correspondence with cohomology classes α ∈
H2(M ;Z) such that α2 = p1(V ). In the following, when we study the local model of MASD,
we will restrict ourselves to irreducible connections.

3.5 A local model for the moduli space

To construct a local model for the moduli space means essentially to give a characterization
of its tangent space at a given point. The way to do that is to consider the tangent space
at an ASD connection A in A, which is isomorphic to Ω1(gE), and look for the directions in
this vector space which preserve the ASD condition and which are not gauge orbits (since
we are quotienting by G). The local model for MASD was first obtained by Atiyah, Hitchin
and Singer in [2].

Let us first address the second condition. We want to find out which directions in the
tangent space at a connection A are pure gauge, i.e. we want to find slices of the action of
the gauge group Ĝ. The procedure is simply to consider the derivative of the map (3.25) in
the G variable at a point A ∈ A∗ to obtain

C : Lie(G) −→ TAA, (3.36)

which is nothing but (3.30) (notice the minus sign in ∇A, which comes from the definition
of the action in (3.4)). Since there is a natural metric in the space Ω∗(gE), we can define a
formal adjoint operator:

C† : Ω1(gE) −→ Ω0(gE) (3.37)
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given by C† = ∇†
A. We can then orthogonally decompose the tangent space at A into the

gauge orbit Im C and its complement:

Ω1(gE) = Im C ⊕ Ker C†. (3.38)

Here we used the fact that IMC is closed as a consequence of its Fredholm property, which
follows from the injectivity of the leading symbol of C. (3.38) is precisely the slice of the
action we were looking for. Locally, this means that the neighbourhood of [A] in A∗/G can
be modelled by the subspace of TAA given by Ker ∇†

A. Furthermore, the isotropy group
ΓA has a natural action on Ω1(gE) given by the adjoint multiplication, as in (3.5). If the
connection is reducible, the moduli space is locally modelled on (Ker ∇†

A)/ΓA (see [13,16]).
We have obtained a local model for the orbit space A∗/G, and now we need to enforce

the ASD condition. Let A be an irreducible ASD connection, verifying F+
A = 0, and let A+a

be another ASD connection, where a ∈ Ω1(gE). The condition we get on a starting from
F+
A+a = 0 is p+(∇Aa + a ∧ a) = 0, where p+ is the projector on the SD part of a two-form.

At linear order we find:
p+∇Aa = 0. (3.39)

Notice that the map p+∇A is nothing but the linearization of the section s, ds:

ds : TAA −→ Ω2,+(gE) (3.40)

The kernel of ds corresponds to tangent vectors that satisfy the ASD condition at linear
order (3.39). We can now give a precise description of the tangent space of MASD at [A]:
we want directions which are in Ker ds but which are not in Im∇A. First notice that, since
s is gauge-equivariant, Im∇A ⊂ Ker ds. This can be checked by direct computation:

p+∇A∇Aφ = [F+
A , φ] = 0, φ ∈ Ω0(gE), (3.41)

since A is ASD. Taking now into account (3.38), we finally find:

T[A]MASD ≃ (Ker ds) ∩ (Ker∇†
A). (3.42)

This space can be regarded as the kernel of the operator D = p+∇A ⊕∇†
A:

D : Ω1(gE) −→ Ω0(gE) ⊕ Ω2,+(gE). (3.43)

Since Im∇A ⊂ Ker ds there is a short exact sequence:

0 −→ Ω0(gE)
∇A−→ Ω1(gE)

p+∇A−→ Ω2,+(gE) −→ 0. (3.44)

This complez is called the instanton deformation complex or Atiyah-Hitchin-Singer (AHS)
complex [2], and gives a very elegant local model for the moduli space of ASD connections.
In particular, one has that

T[A]MASD = H1
A, (3.45)

where H1
A is the middle cohomology group of the complex (3.44):

H1
A =

Ker p+∇A

Im ∇A
. (3.46)
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The index of the AHS complex (3.44) is given by

ind = dimH1
A − dimH0

A − dimH2
A, (3.47)

where H0
A = Ker∇A and H2

A = Coker p+∇A. This index is usually called the virtual
dimension of the moduli space. When A is an irreducible connection (in particular, Ker∇A =
0) and in addition it satisfies H2

A = 0, it is called a regular connection [13]. For these
connections, the dimension of T[A]MASD is given by the virtual dimension. This index can be
computed for any gauge group G using the Atiyah-Singer index theorem. The computation
is done in [2], and the result for SO(3) is:

dim MASD = −2p1(V ) − 3

2
(χ + σ), (3.48)

where p1(V ) denotes the first Pontriagin number (i.e. the Pontriagin class (3.6) integrated
over X) and χ, σ are the Euler characteristic and signature of X,respectively.

Exercise 3.1. Dimension of instanton moduli space. Compute MASD using the index theo-
rem for the twisted Dirac operator. Hint: use that Ω1(X) ≃ S+ ⊗ S−, and Ω2,+ ≃ S+ ⊗ S+.

The conclusion of this analysis is that, if A is an irreducible ASD connection, the moduli
space in a neighbourhood of this point is smooth and can be modelled by the cohomology
(3.46). If the connection is also regular, the index of the instanton deformation complex
gives minus the dimension of moduli space. Of course, the most difficult part of Donaldson
theory is to find the global structure of MASD. In particular, in order to define the invariants
one has to compactify the moduli space. We are not going to deal with these subtle issues
here, and refer the reader to the references mentioned at the beginning of this section.

3.6 Donaldson invariants

Donaldson invariants are roughly defined in terms of integrals of differential forms in the
moduli space of irreducible ASD connections. These differential forms come from the rational
cohomology ring of A∗/G = B∗, and it is necessary to have an explicit description of this
ring. The construction involves the universal bundle or universal instanton associated to this
moduli problem, and goes as follows: if the gauge group is SU(2), we consider the SO(3)
bundle gE associated to E, and if the gauge group is SO(3) we consider the vector bundle
V . We will denote both of them by gE , since the construction is the same in both cases. We
then consider the space A∗ × gE. This can be regarded as a bundle:

A∗ × gE → A∗ ×X (3.49)

which is the pullback from the bundle π : gE → X. The space A∗ × gE is called a family
of tautological connections, since the natural connection on A∗ × gE is tautological in the
gE direction and trivial in the A∗ direction: at the point (A, p), the connection is given by
Aα(π(p)) (where we have chosen a trivialization of gE as in section 3.1, and π(p) ∈ Uα).
Since the group of reduced gauge transformations Ĝ acts on both factors, A∗ and gE , the
quotient

P = A∗ ×Ĝ gE (3.50)
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is a G/C(G)-bundle over B∗ × X. This is the universal bundle associated to E (or V ).
In the case of G = SU(2) or SO(3), the universal bundle is an SO(3) bundle (since
SU(2)/Z2 = SO(3) and SO(3) has no center). Its Pontriagin class p1(P) can be computed
using Chern-Weil theory in terms of the curvature of a connection on P. One can construct
a natural connection on P, called the universal connection, by considering the quotient of
the tautological connection (see [9,13] for details). The curvature of the universal connection
will be denoted by KP. It is a form in Ω2(B∗×X, gE), and splits according to the bigrading
of Ω∗(B∗ × X) into three pieces: a two-form with respect to B∗, a two-form with respect
to X, and a mixed form (one-form on B∗ and one-form on X), all with values in gP . The
Pontriagin class is:

p1(P)

4
=

1

8π2
Tr(KP ∧KP) (3.51)

and defines a cohomology class in H4(B∗×X). By decomposing according to the bigrading,
we obtain an element in H∗(B∗) ⊗H∗(X). To get differential forms on B∗, we just take the
slant product with homology classes in X (i.e. we simply pair the forms on X with cyles on
X). In this way we obtain the Donaldson map:

µ : Hi(X) −→ H4−i(B∗). (3.52)

One can prove [13] that the differential forms obtained in this way actually generate the
cohomology ring of B∗. Finally, after restriction to MASD we obtain the following differential
forms on the moduli space of ASD connections:

x ∈ H0(X) → O(x) ∈ H4(MASD),

δ ∈ H1(X) → I1(δ) ∈ H3(MASD),

S ∈ H2(X) → I2(S) ∈ H2(MASD). (3.53)

There are also cohomology classes associated to three-cycles in X, but we will not consider
them in these lectures. In the next lecture we will see that the Donaldson map arises very
naturally in the context of topological field theory in what is called the descent procedure.
In any case, we can now formally define the Donaldson invariants as follows. Consider the
space

A(X) = Sym(H0(X) ⊕H2(X)) ⊗∧∗H1(X), (3.54)

with a typical element written as xℓSi1 · · ·Sipδj1 · · · δjq . The Donaldson invariant correspond-
ing to this element of A(X) is the following intersection number:

Dw2(V ),k
X (xℓSi1 · · ·Sipδj1 · · · δjq) =∫

MASD(w2(V ),k)
Oℓ ∧ I2(Si1) ∧ · · · ∧ I2(Sip) ∧ I1(δj1) ∧ · · · ∧ I1(δjq), (3.55)

where we denoted by MASD(w2(V ), k) the moduli space of ASD connections specified by
the second Stiefel-Whitney class w2(V ) and the instanton number k. Notice that, since the
integrals of differential forms are different from zero only when the dimension of the space
equals the total degree of the form, it is clear that the integral in (3.55) will be different
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from zero only if the degrees of the forms add up to dim(MASD(w2(V ), k)). It follows from
(3.55) that Donaldson invariants can be understood as functionals:

Dw2(V ),k
X : A(X) → Q. (3.56)

The reason that the values of the invariants are rational rather than integer is subtle and has
to do with the fact that they are rigorously defined as intersection numbers only in certain
situations (the so-called stable range). Outside this range, there is a natural way to extend
the definition which involves dividing by 2 (for more details, see [17]).

It is very convenient to pack all Donaldson invariants in a generating function. Let
{δi}i=1,...,b1 be a basis of one-cycles, and {Si}i=1,...,b2 a basis of two-cycles. We introduce the
formal sums

δ =

b1∑

i=1

ζi δi, S =

b2∑

i=1

vi Si, (3.57)

where vi are complex numbers, and ζi are Grassmann variables. We then define the Donaldson-
Witten generating function as:

Z
w2(V )
DW (p, ζi, vi) =

∞∑

k=0

Dw2(V ),k
X (epx+δ+S), (3.58)

where in the right hand side we are summing over all instanton numbers, i.e. we are summing
over all topological configurations of the SO(3) gauge field with a fixed w2(V ). This gives
a formal power series in p, ζi and vi. The Donaldson invariants are the coefficients of this
formal series. If we assign degree 4 to p, 2 to vi and 3 to ζi, and we fix the total degree (i.e.
we fix k), we get a finite polynomial which encodes all the Donaldson invariants for a fixed
instanton number. Therefore, Donaldson invariants at fixed instanton number can be also
regarded as polynomials in the (dual of the) cohomology of the manifold. Sometimes we will

also write (3.58) as a functional Z
w2(V )
DW (p, S, δ). It should be mentioned that in the math

literature the most common object is the so-called Donaldson series [24], which is defined
when δ = 0 as follows:

Dw2(V )(S) = Z
w2(V )
DW (p, S)

∣∣
p=0

+
1

2

∂

∂p
Z
w2(V )
DW (p, S)

∣∣
p=0

. (3.59)

The Donaldson series can then be regarded as a map:

Dw2(V ) : Sym(H2(X)) → Q. (3.60)

The basic goal of Donalson theory is the computation of the generating functional (3.58)
(or, in the simply-connected case, of the Donaldson series (3.59)). Many results have been
obtained along the years for different four-manifolds (a good review is [36]). The major
breakthrough in this sense was the structure theorem of Kronheimer and Mrowka [24] (see
also [19]) for the Donaldson series of simply-connected four-manifolds with b+2 > 1 and of
the so-called Donaldson simple type. A four-manifold is said to be of Donaldson simple type
if (

∂2

∂p2
− 4

)
Z
w2(V )
DW (p, S) = 0, (3.61)

18



for all choices of w2(V ). When this holds, then, according to the results of Kronheimer and
Mrowka, the Donaldson series has the following structure:

Dw2(V )(S) = exp(S2/2)

p∑

s=1

ase
(κs,S), (3.62)

for finitely many homology classes κ1, · · · , κp ∈ H2(X,Z) and nonzero rational numbers
a1, · · · , ap. Furthermore, each of the classes κi is characteristic. The classes κi are called
Donaldson basic classes.

A simple example of this situation is the K3 surface. In this case, the Donaldson-Witten
generating functional is given by

Z
w2(V )
DW =

1

2
e2πiλ2

0

(
e

S2

2
+2p − i−w2(V )2e−

S2

2
−2p

)
. (3.63)

In this expression, 2λ0 is a choice of an integer lifting of w2(E). The overall factor e2πiλ2
0 gives

a dependence on the choice a such a lifting, and this is due to the fact that the orientation
of instanton moduli space depends on such a choice [13]. From the above expression one can
deduce that for example for w2(V ) = 0, one has

∫
I2(S)2 = (S, S),

∫
I2(S)6 =

1

8
(S, S)3, (3.64)

and so on. Notice that in the first integral in (3.64) we integrate over the moduli space
MASD with instanton number k = 2, and in the second one we have k = 6. According to
(3.63), K3 is of simple type, and the Donalson series is simply given by:

Dw2(V ) = eS
2/2, (3.65)

which satisfies indeed the structure theorem of Kronheimer and Mrowka and shows that K3
has only one Donaldson basic class, namely κ = 0.

4 N = 1 supersymmetry

In this section, we give some useful background on supersymmetry. Since our motivation is
the construction of topological field theories, our presentation will be rather sketchy. The
standard reference is [40]. A very useful and compact presentation can be found in the
excellent review by Álvarez-Gaumé and Hassan [1], which is the main source for this very
quick review. We follow strictly the conventions of [1], which are essentially those in [40],
although there are some important differences. Some of these conventions can be found in
Appendix A. Another useful reference, intended for mathematicians, is [11].

4.1 The supersymmetry algebra

Supersymmetry is the only nontrivial extension of Poincaré symmetry which is compatible
with the general principles of relativistic quantum field theory. In R1,3 one introduces N
fermionic generators

Qu =

(
Qαu

Q
α̇u

)
(4.1)
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where u = 1, · · · ,N . The superPoincaré algebra extends the usual Poincaré algebra, and
the (anti)commutators of the fermionic generators are:

{Qαu, Qβ̇v} = 2ǫuvσ
µ

αβ̇
Pµ

[Pµ, Qαv] = 0

[Mµν , Qαu] = −(σµν)α
βQβu

{Qαu, Qβv} = 2
√

2ǫαβZuv[
Pµ, Qα̇u

]
= 0

[
Mµν , Q

α̇u
]

= −(σ̄µν)
α̇
β̇Q

β̇u
(4.2)

where u, v = 1, · · · ,N , and Mµν are the generators of the Lorentz group SO(4) ≃ SU(2)+ ×
SU(2)−. The terms Zuv are the so-called central charges. They satisfy

Zuv = −Zvu (4.3)

and they commute with all the generators of the algebra.
When the central charges vanish, the theory has an internal U(N ) symmetry:

Qαv → Uv
wQαw Q̄ v

α̇ → U∗
v
wQ̄ w

α̇ , (4.4)

where U ∈ U(N ) is a unitary matrix. This symmetry is called in physics an R-symmetry,
and it is denoted by U(N )R. The generators of this symmetry will be denoted by Ba, and
their commutation relations with the fermionic supercharges are:

[Qαv, Ba] = (ba)v
wQαw [Q

w

α̇ , Ba] = −Q v

α̇ (ba)v
w (4.5)

where ba = b+a . The central charges are linear combinations of the U(N) generators

Zuv = duv
aBa. (4.6)

If the central charges are not zero, the internal symmetry gets reduced to USp(N ), formed
by the unitary transformations that leave invariant the 2-form (4.6) in N dimensions. The
U(1)R of the internal symmetry (4.4), with generator R, gives a chiral symmetry of the
theory,

[Qαv, R] = Qαv, [Q
w

α̇ , R] = −Q v

α̇. (4.7)

This symmetry is typically anomalous, quantum-mechanically, and the quantum effects break
it down to a discrete subgroup.

4.2 N = 1 superspace and superfields

In order to find a local realization of supersymmetry, one has to extend the usual Minkowski
space to the so-called superspace. In this section we are going to develop the basics of
N = 1 superspace, which is extremely useful to formulate supersymmetric field multiplets
and supersymmetric Lagrangians. Therefore, we are going to construct a local realization of
the supersymmetry algebra (4.2) when we have two supercharges Qα, Q̄

α̇.
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The superspace is obtained by adding four spinor coordinates θα, θ̄α̇ to the four space-time
coordinates xµ. The generator of supersymmetric transformations in superspace is

−iξαQα − iξ̄α̇Q̄
α̇ (4.8)

where ξα, ξ̄α̇ are (fermionic) transformation parameters2. Under this generator, the super-
space coordinates transform as

xµ → xµ + iθσµξ̄ − iξσµθ̄

θ → θ + ξ ,
θ̄ → θ̄ + ξ̄ . (4.9)

The representation of the supercharges acting on the superspace is then given by

Qα = i

(
∂

∂θα
− iσµαα̇θ̄

α̇ ∂µ

)
, Qα̇ = −i

(
∂

∂θ̄α̇
+ iθασµαα̇ ∂µ

)
(4.10)

and they satisfy {Qα, Q̄α̇} = −2iσµαα̇ ∂µ. Since Pµ = −i∂µ, this gives a representation of the
supersymmetry algebra. It is also convenient to introduce the super-covariant derivatives

Dα =
∂

∂θα
+ iσµαα̇ ∂µ , D̄α̇ = − ∂

∂θ̄α̇
− iσµαα̇θ

α ∂µ , (4.11)

which satisfy {Dα, D̄α̇} = −2iσµαα̇ ∂µ and commute with Q and Q̄.
A superfield is just a function on the superspace F (x, θ, θ̄). Since the θ-coordinates are

anti-commuting, the Taylor expansion in the fermionic coordinates truncates after a finite
number of terms. Therefore, the most general N = 1 superfield can always be expanded as

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x)

+ θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄d(x) . (4.12)

Under a supersymmetry transformation (4.8), the superfield transforms as δF = (ξQ+ξ̄Q̄)F ,
and from this expression one can obtain the transformation of the components.

The generic superfield gives a reducible representation of the supersymmetry algebra.
Therefore, in order to obtain irreducible representations one must impose constraints. There
are two different N = 1 irreducible supermultiplets:

a) Chiral multiplet: The N = 1 scalar multiplet is a superfield which satisfies the following
constraint:

D̄α̇Φ = 0 (4.13)

and it is called the chiral superfield. The constraint can be easily solved by noting that, if
yµ = xµ + iθσµθ̄, then

D̄α̇y
µ = 0, D̄α̇θ

β = 0 . (4.14)

Therefore, any function of (y, θ) is a chiral superfield. We can then write

Φ(y, θ) = φ(y) +
√

2θαψα(y) + θ2F (y) , (4.15)

2This is the only case in which we do not follow the conventions of [1]: their susy charges are −i times
ours.
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and we see that a chiral superfield contains two complex scalar fields, φ and F , and a Weyl
spinor ψα. In a similar way we can define an anti-chiral superfield by DαΦ

† = 0, which can
be expanded as

Φ†(y†, θ̄) = φ†(y†) +
√

2θ̄ψ̄(y†) + θ̄2F †(y†) , (4.16)

where, yµ† = xµ − iθσµθ̄.

Exercise 4.1. Show that, in terms of the original variables, Φ and Φ† take the form

Φ(x, θ, θ̄) = A(x) + iθσµθ̄∂µA− 1

4
θ2θ̄2∇2A+

√
2θψ(x) − i√

2
θθ∂µψσ

µθ̄ + θθF (x) ,

Φ†(x, θ, θ̄) = A†(x) − iθσµθ̄∂µA
† − 1

4
θ2θ̄2∇2A† +

√
2θ̄ψ̄(x)

+
i√
2
θ̄θ̄ θσµ ∂µψ̄ + θ̄θ̄F †(x) . (4.17)

Here, ∇2 = ∂µ∂
µ.

b) Vector Multiplet: this is a real superfield satifying V = V †. In components, it takes
the form

V (x, θ, θ̄) = C + iθχ− iθ̄χ̄+
i

2
θ2(M + iN) − i

2
θ̄2(M − iN) − θσµθ̄Aµ

+ iθ2θ̄(λ̄+
i

2
σ̄µ∂µχ) − iθ̄2θ(λ+

i

2
σµ∂µχ̄) +

1

2
θ2θ̄2(D − 1

2
∇2C) . (4.18)

By performing an abelian gauge transformation V → V + Λ + Λ†, where Λ (Λ†) are chiral
(antichiral) superfields, one can set C = M = N = χ = 0. This is the so called Wess-Zumino
gauge, where

V = −θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D . (4.19)

In this gauge, V 2 = 1
2
AµA

µθ2θ̄2 and V 3 = 0. The Wess-Zumino gauge breaks supersymmetry,
but not the gauge symmetry of the abelian gauge field Aµ. The Abelian field strength is
defined by

Wα = −1

4
D̄2DαV , W̄α̇ = −1

4
D2D̄α̇V ,

and Wα is a chiral superfield. In the Wess-Zumino gauge it takes the form

Wα = −iλα(y) + θαD − i

2
(σµσ̄νθ)α Fµν + θ2(σµ∂µλ̄)α . (4.20)

The non-Abelian case is similar: V is in the adjoint representation of the gauge group,
V = VAT

A, and the gauge transformations are

e−2V → e−iΛ
†

e−2V eiΛ

where Λ = ΛAT
A. The non-Abelian gauge field strength is defined by

Wα =
1

8
D̄2e2VDαe

−2V
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and transforms as
Wα →W ′

α = e−iΛWαe
iΛ .

In components, it takes the form

Wα = T a
(
−iλaα + θαD

a − i

2
(σµσ̄νθ)αF

a
µν + θ2σµ∇µλ̄

a

)
(4.21)

where
F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAbµA

c
ν , ∇µλ̄

a = ∂µλ̄
a + fabcAbµλ̄

c .

4.3 Construction of N = 1 Lagrangians

In the previous subsection we have constructed supermultiplets of N = 1 supersymmetry.
The next step is to construct manifestly supersymmetric Lagrangians. Again, this is easily
done in superspace.

The most general N = 1 supersymmetric Lagrangian for the scalar multiplet (including
the interaction terms) is given by

L =

∫
d4θ K(Φ,Φ†) +

∫
d2θW(Φ) +

∫
d2θ̄W̄(Φ†) . (4.22)

We are following here the usual rules of Grasmmannian integration, and the θ-integrals pick
up the highest component of the superfield. In our conventions,

∫
d2θθ2 = 1 and

∫
d2θ̄θ̄2 = 1.

The kinetic term for the scalar fields Ai has the form

gij∂µAi∂
µA†

j (4.23)

where

gij =
∂2K

∂Ai∂A
†
j

(4.24)

is in general a nontrivial metric for the space of fields Φ. This has the form of a Kähler
metric derived from a Kähler potential K(Ai, A

†
j). For this reason, the function K(Φ,Φ†) is

referred to as the Kähler potential. The simplest Kähler potential, corresponding to the flat
metric, is

K(Φ,Φ†) =
∑

i=1

Φ†
iΦi

which gives the free Lagrangian for a massless scalar and a massless fermion with an auxiliary
field which can be eliminated by its equation of motion:

L =
∑

i

Φ†
iΦi |θ2θ̄2= ∂µA

†
i∂
µAi + F †

i Fi − iψ̄iσ̄
µ∂µψi . (4.25)

Exercise 4.2. Show that

Φ†
iΦj |θ2θ̄2 = −1

4
A†
i∇2Aj −

1

4
∇2A†

iAj + F †
i Fj +

1

2
∂µA

†
i∂
µAj

− i

2
ψjσ

µ∂µψ̄i +
i

2
∂µψjσ

µψ̄i . (4.26)

and from this derive (4.25).

23



The function W (Φ) in (4.22) is an arbitrary holomorphic function of chiral superfields,
and it is called the superpotential. It can be expanded as,

W(Φi) = W(Ai +
√

2θψi + θθFi)

= W(Ai) +
∂W
∂Ai

√
2θψi + θθ

(
∂W
∂Ai

Fi −
1

2

∂2W
∂AiAj

ψiψj

)
. (4.27)

Supersymmetric interaction terms can be constructed in terms of the superpotential and its
conjugate. Finally, we have to mention that there is U(1)R symmetry that acts as follows:

RΦ(x, θ) = e2inαΦ(x, e−iαθ) ,

RΦ†(x, θ̄) = e−2inαΦ†(x, eiαθ̄) . (4.28)

Under this, the component fields transform as

A → e2inαA ,

ψ → e2i(n−1/2)αψ ,

F → e2i(n−1)αF . (4.29)

Let us now present the Lagrangian for vector superfields. The super Yang-Mills La-
grangian with a θ-term can be written as

L =
1

8π
Im

(
τ Tr

∫
d2θW αWα

)

= − 1

4g2
F a
µνF

aµν +
θ

32π2
F a
µνF̃

aµν +
1

g2
(
1

2
DaDa − iλaσµ∇µλ̄

a) , (4.30)

where τ = θ/2π + 4πi/g2, and F̃ aµν = 1
2
ǫµναβFαβ.

Exercise 4.3. Using the normalization TrT aT b = δab, show that

Tr(W αWα |θθ) = −2iλaσµ∇µλ̄
a +DaDa − 1

2
F aµνF a

µν +
i

4
ǫµνρσF a

µνF
a
ρσ , (4.31)

and from here derive (4.30).

Now we can present the general Lagrangian that describes chiral multiplets coupled to a
gauge field. Let the chiral superfields Φi belong to a given representation of the gauge group
in which the generators are the matrices T aij. The kinetic energy term Φ†

iΦi is invariant
under global gauge transformations Φ′ = e−iΛΦ. In the local case, to insure that Φ′ remains
a chiral superfield, Λ has to be a chiral superfield. The supersymmetric gauge invariant
kinetic energy term is then given by Φ†e−2V Φ. The full N = 1 supersymmetric Lagrangian
is

L =
1

8π
Im

(
τTr

∫
dθW αWα

)
+

∫
d2θd2θ̄Φ†e−2V Φ +

∫
d2θW +

∫
d2θ̄ W̄ . (4.32)
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Exercise 4.4. Expand (4.32) in components to obtain

L = − 1

4g2
F a
µνF

aµν +
θ

32π2
F a
µνF̃

aµν − i

g2
λaσµ∇µλ̄

a +
1

2g2
DaDa

+ (∂µA− iAaµT
aA)†(∂µA− iAaµT aA) − i ψ̄σ̄µ(∂µψ − iAaµT

aψ)

− DaA†T aA− i
√

2A†T aλaψ + i
√

2 ψ̄T aAλ̄a + F †
i Fi

+
∂W
∂Ai

Fi +
∂W̄
∂A†

i

F †
i −

1

2

∂2W
∂Ai∂Aj

ψiψj −
1

2

∂2W̄
∂A†

i∂A
†
j

ψ̄iψ̄j . (4.33)

In (4.33), the auxiliary fields F and Da can be eliminated by using their equations of
motion. The terms involving these fields, thus, give rise to the scalar potential

V =
∑

i

∣∣∣∣
∂W
∂Ai

∣∣∣∣
2

− 1

2
g2(A†T aA)2 . (4.34)

5 N = 2 super Yang-Mills theory

To construct topological field theories in four dimensions, we are actually interested in models
with two supersymmetries (i.e. with eight supercharges). In this section we will present
N = 2 supersymmetric Yang-Mills theory in some detail, following the conventions in [27,32].
We will use the N = 1 superspace formalism of the previous section as our starting point, and
then we will write the supersymmetric transformations in a manifest N = 2 supersymmetric
way.

N = 2 Yang-Mills theory contains a real superfields V , and a massless chiral superfield
Φ, both in the adjoint representation of the gauge group G. The action, written in N = 1
superspace, is a particular case of the general action (4.32) with W = 0, and it reads:

∫
d4xd2θTr(W 2) +

∫
d4xd2θ̄Tr(W †2) +

∫
d4xd2θd2θ̄Tr(Φ†ke2VklΦl). (5.1)

In this equation, Vkl = T aklV
a, where T a is a Hermitian basis for the Lie algebra in the

adjoint representation, and the real superfield is in the WZ gauge, with components Aµ,
λ1

α = λ2α and D (all in the adjoint representation of the gauge group):

V = −θσµθ̄Aµ − iθ̄2θλ1 − iθ2θ̄λ̄2 +
1

2
θ2θ̄2D. (5.2)

Notice that the conjugate of λ1
α is λ̄1α̇ = −λ̄2

α̇. The chiral superfield Φ, also in the adjoint
representation, has components φ, λ2

α = −λ1α and F :

Φ = φa +
√

2θλ2 + θ2F,

Φ† = φ† +
√

2θ̄λ̄1 + θ̄2F, (5.3)

and the conjugate of λ2
α is λ̄2α̇ = λ̄1

α̇. We can now write the action in components. First,
we redefine the auxiliary field D as D → D + [φ, φ†]. The action then reads:

S =
∫
d4xTr

{
∇µφ

†∇µφ− iλ1σµ∇µλ̄1 − iλ2σµ∇µλ̄2 − 1
4
FµνF

µν+
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+1
2
D2 + |F |2 − 1

2
[φ, φ†]2 − i

√
2λ1α[φ†, λ2

α] + i
√

2λ̄1α̇[λ̄
α̇
2 , φ]

}
. (5.4)

This action is not manifestly N = 2 supersymmetric, since the N = 2 supersymmetric
algebra has an internal SU(2)R symmetry, which is not manifest in (5.4). SU(2)R invariance
is easily achieved: the scalars φ and the gluons Aµ are singlets, while the gluinos λv, v = 1, 2
form a doublet. The auxiliary fields form a real triplet:

Dvw =

( √
2F iD

iD
√

2F

)
, (5.5)

and the SU(2)R indices are raised and lowered with the matrices ǫvw, ǫvw. Notice that
Dvw = D∗

vw. Finally, by covariantizing the N = 1 transformations, one finds the N = 2
transformations:

[Qvα, φ] = i
√

2λvα,[
Qvα, φ

†] = 0,

[Qvα, Aµ] = (σµ)αβ̇λ̄v
β̇

[Qvα, λwβ] = −iǫαβDvw −
[
φ, φ†] ǫαβǫvw − i(σµν)αβǫvwFµν ,[

Qvα, λ̄wβ̇
]

=
√

2(σ̄µ)β̇α∇µφ
†ǫvw,

[Quα, Dvw] = (σµ)αβ̇
(
ǫuv(∇µλ̄)w

β̇ + ǫuw(∇µλ̄)v
β̇
)

+
√

2
(
ǫuv

[
λwα, φ

†] + ǫuw
[
λvα, φ

†]),
[
Qvα̇, φ

]
= 0,

[
Qvα̇, φ

†] = i
√

2λ̄vα̇,[
Qvα̇, Aµ

]
= (σ̄µ)α̇βλv

β,

[Qvα, λwβ] = −
√

2(σµ)βα̇∇µφǫvw,[
Qvα̇, λ̄wβ̇

]
= iǫα̇β̇Dvw +

[
φ, φ†] ǫα̇β̇ǫvw + i(σ̄µν)α̇β̇ǫvwFµν ,[

Quα̇, Dvw

]
= −(σ̄µ)α̇β

(
ǫuv(∇µλ)w

β + ǫuw(∇µλ)v
β
)

−
√

2
(
ǫuv

[
λ̄wα̇, φ

]
+ ǫuw

[
λ̄vα̇, φ

])
. (5.6)

The action reads, once the SU(2)R symmetry is manifest,:

S =

∫
d4xTr

{
∇µφ

†∇µφ− iλvσµ∇µλ̄v −
1

4
FµνF

µν +
1

4
DvwD

vw

− 1

2

[
φ, φ†]2 − i√

2
ǫvwλv

α
[
φ†, λwα

]
− i√

2
ǫvwλ̄

v
α̇

[
λ̄wα̇, φ

]}
. (5.7)

The above action also has a classical U(1)R symmetry:

Aµ → Aµ,
λvα → eiϕλvα,
λ̄vα̇ → e−iϕλ̄vα̇,

Dvw → Dvw,
φ → e2iϕφ,
φ† → e−2iϕφ†.

(5.8)
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6 Topological field theories from twisted supersymmetry

In this section, we introduce topological field theories and we give a brief general overview of
their properties, focusing on the so-called theories of the Witten or cohomological type. We
then explain the twisting procedure, which produces topological field theories from N = 2
theories, and put it in practice with the examples of the previous section. General introduc-
tions to topological field theories can be found in [7, 9, 25], among other references.

6.1 Topological field theories: basic properties

Topological field theories (TFT’s) were first introduced by Witten in [43]. A quantum
field theory is topological if, when put on a manifold X with a Riemannian metric gµν , the
correlation functions of some set of operators do not depend (at least formally) on the metric.
We then have

δ

δgµν
〈Oi1 · · ·Oin〉 = 0, (6.1)

where Oi1 , · · · ,Oin are operators in the theory. There are two different types of TFT’s: in
the TFT’s theories of the Schwarz type, one tries to define all the ingredients in the theory
(the action, the operators, and so on) without using the metric of the manifold. The most
important example is Chern-Simons theory, introduced by Witten in [45]. In the TFT’s of
the Witten type, one has an explicit metric dependence, but the theory has an underlying
scalar symmetry δ acting on the fields in such a way that the correlation functions of the
theory do not depend on the background metric. More precisely, if the energy-momentum
tensor of the theory Tµν = (δ/δgµν)S(φi) can be written as

Tµν = −iδGµν (6.2)

where Gµν is some tensor, then (6.1) holds for any operator O which is δ-invariant. This is
because:

δ

δgµν
〈Oi1Oi2 · · ·Oin〉 = 〈Oi1Oi2 · · ·OinTµν〉

= −i〈Oi1Oi2 · · ·OinδGµν〉 = ±i〈δ(Oi1Oi2 · · ·OinGµν)〉 = 0. (6.3)

In this derivation we have used the fact that δ is a symmetry of the classical action S(φi)
and of the quantum theory. Such a symmetry is called a topological symmetry. In some
situations this symmetry is anomalous, and the theory is not strictly topological. However,
in most of the interesting cases, this dependence is mild and under control. We will see a
very explicit example of this in Donaldson theory on manifolds of b+2 = 1.

If the theory is topological, as we have described it, the natural operators are then those
which are δ-invariant. On the other hand, operators which are δ-exact decouple from the
theory, since their correlation functions vanish. The operators that are in the cohomology
of δ are called topological observables:

O ∈ Ker δ

Im δ
. (6.4)
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The topological symmetry δ is not nilpotent: in general one has

δ2 = Z (6.5)

where Z is a certain transformation in the theory. It can be a local transformation (a gauge
transformation) or a global transformation (for example, a global U(1) symmetry). The
appropriate framework to analyze the observables is then equivariant cohomology, and for
consistency one has to consider only operators that are invariant under the transformation
generated by Z (for example, gauge invariant operators). Equivariant cohomology turns out
to be a very natural language to describe TFT’s with local and global symmetries, but we
are not going to explore it in these lectures. The interested reader should look at [9, 26].

The structure of topological field theories of the Witten type leads immediately to a
general version of the Donaldson map [43]. Remember that, starting with the curvature of
the universal bundle, this map associates cohomology classes in the instanton moduli space
to homology classes in the four-manifold. One can easily see that in any theory where (6.2) is
satisfied, one can define topological observables associated to homology cycles in spacetime.
If (6.2) holds, then one has:

Pµ = T0µ = −iδGµ, (6.6)

where
Gµ ≡ G0µ. (6.7)

In the theories that we are goint to consider, δ is essentially given by a supersymmetric
transformation, and therefore it is a Grassmannian symmetry. It follows that Gµ is an
anticommuting operator. On the other hand, from the point of view of the Lorentz group,
they are a scalar and a one-form, respectively. Then, topological field theories of Witten
type violate the spin-statistics theorem. Consider now a δ-invariant operator φ(0)(x). The
descent operators are defined as

φ(n)
µ1µ2···µn

(x) = Gµ1Gµ2 · · ·Gµn
φ(0)(x), n = 1, · · · , d, (6.8)

where d is the dimension of the spacetime manifold. Since the Gµi
anticonmute, φ(n) is

antisymmetric in the indices µ1, · · · , µn, and therefore it gives an n-form:

φ(n) =
1

n!
φ(n)
µ1µ2···µn

dxµ1 ∧ · · · ∧ dxµn . (6.9)

As an immediate consequence of (6.6) and the δ-invariance of φ(0), one has the following
descent equations:

dφ(n) = δφ(n+1), (6.10)

where d is the exterior derivative and we have taken into account that Pµ = −i∂µ. The
descent equations can be also obtained by considering the cohomology of the operator d+ δ,
see [5, 9] for more details. Using now (6.10) it is easy to see that the operator

W
(γn)

φ(0) =

∫

γn

φ(n), (6.11)
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where γn ∈ Hn(X), is a topological observable:

δW
(γn)

φ(0) =

∫

γn

δφ(n) =

∫

γn

dφ(n−1) =

∫

∂γn

φ(n−1) = 0, (6.12)

since ∂γn = 0.

Exercise 6.1. Homology and observables. Show that, if γn is trivial in homology (i.e., if it

is ∂-exact), then W
(γn)

φ(0) is δ-exact.

Therefore, given a (scalar) topological observable, one can construct a family of topolog-
ical observables

W
(γin )

φ(0) , in = 1, · · · , bn; n = 1, · · · , d, (6.13)

in one-to-one correspondence with the homology classes of spacetime. This descent procedure
is the analog of the Donaldson map in Donaldson-Witten and Seiberg-Witten theory. Notice
that any family of operators φ(n) that satisfies the descent equations (6.10) gives topological
observables. The explicit realization (6.8) in terms of the G operator can then be regarded
as a canonical solution to (6.10).

6.2 Twist of N = 2 supersymmetry

In the early eighties, Witten noticed in two seminal papers [41,42] that supersymmetry has
a deep relation to topology. The simplest example of such a relation is supersymmetric
quantum mechanics, which provides a physical reformulation (and in fact a refinement) of
Morse theory [42]. Other examples are N = 2 theories in two and four dimensions. In 1988
Witten discovered that, by changing the coupling to gravity of the fields in an N = 2 theory
in two or four dimensions, a theory satisfying the requirements of the previous subsection
was obtained [43,44]. This redefinition of the theory is called twisting. We are now going to
explain in some detail how this works in the four-dimensional case.

The N = 2 supersymmetry algebra (with no central charges) is:

{Qαv, Qβ̇w} = 2ǫvwσ
µ

αβ̇
Pµ,

[Pµ, Qαv] = 0,
[Mµν , Qαv] = −(σµν)α

βQβv,
[Qαv, B

a] = −1
2
(τa)v

wQαw,
[Qαv, R] = Qαv,

{Qαv, Qβw} = 0,[
Pµ, Qα̇v

]
= 0,[

Mµν , Q
α̇v

]
= −(σ̄µν)

α̇
β̇Q

β̇v
,

[
Qα̇

v, Ba
]

= 1
2
Qα̇

w(τa)w
v,[

Qα̇v, R
]

= −Qα̇v.

(6.14)

Here, the indices v, w ∈ {1, 2}. The twisting procedure consists of redefining the coupling
to gravity of the theory, i.e. in redefining the spins of the fields. To do this, we couple the
fields to the SU(2)+ spin connection according to their isospin. This means that we add to
the Lagrangian the term

JRµ ω
µ
+, (6.15)

where JRµ is the SU(2)R current of the theory, and ωµ+ is the SU(2)+ spin connection. We
then have a new rotation group K′ = SU ′(2)+ ⊗ SU(2)−, where SU ′(2)+ is the diagonal
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of SU(2)+ × SU(2)R. In practice, the twist means essentially that the SU(2)R indices v, w
become spinorial indices α̇, β̇, and we have the change Qα̇v → Qα̇β̇ and Qαv → Qαβ̇ . It is
easy to check that the topological supercharge

Q ≡ ǫα̇β̇Qα̇β̇ = Q1̇2̇ −Q2̇1̇. (6.16)

is a scalar with respect to K′. This topological supercharge will provide the topological
symmetry δ that we need for a topological theory. The N = 2 algebra also gives a natural
way to construct the operator Gµ defined in (6.7). In fact, define:

Gµ =
i

4
(σ̄µ)

α̇γQγα̇. (6.17)

Using now the {Q,Q} anticommutator one can show that

{Q, Gµ} = ∂µ. (6.18)

This means that the supersymmetry algebra by itself almost guarantees (6.2), since it implies
that the momentum operator Pµ is Q-exact. In the models that we will consider, (6.2) is true
(at least on-shell). Finally, notice that from the anticommutator {Q,Q} in (6.14) follows

that the topological supercharge is nilpotent Q2
= 0 (in the absence of central charge).

Our main conclusion is that by twisting N = 2 supersymmetry one can construct a
quantum field theory that satisfies (almost) all the requirements of a topological field theory
of the Witten type.

7 Donaldson-Witten theory

Donaldson-Witten theory (also known as topological Yang-Mills theory) is the topological
field theory that results from twisting N = 2 Yang-Mills theory in four dimensions. His-
torically it was the first TFT of the Witten type, and as we will see it provides a physical
realization of Donaldson theory.

7.1 The topological action

Remember that N = 2 super Yang-Mills theory contains a gauge field Aµ, two gluinos λvα
and a complex scalar φ, all of them in the adjoint representation of the gauge group G. In
the off-shell formulation, we also have auxiliary fields Dvw in the 3 of the internal SU(2)R.
The total symmetry group of the theory is

H = SU(2)+ × SU(2)− × SU(2)R × U(1)R. (7.1)

Under the twist, the fields in the N = 2 supermultiplet change their spin content as follows:

Aµ (1/2, 1/2, 0)0 → Aµ (1/2, 1/2)0,
λvα (1/2, 0, 1/2)−1 → ψβ̇α (1/2, 1/2)1,
λ̄vα̇ (0, 1/2, 1/2)1 → η (0, 0)−1, χα̇β̇ (1, 0)−1,

φ (0, 0, 0)−2 → φ (0, 0)−2,
φ† (0, 0, 0)2 → φ† (0, 0)2,
Dvw (0, 0, 1)0 → Dα̇β̇ (1, 0)0,

(7.2)
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where we have written the quantum numbers with respect to the group H before the twist,
and with respect to the group H′ = SU(2)′+ ⊗ SU(2)− ⊗ U(1)R after the twist. In the
topological theory, the U(1)R charge is usually called ghost number. The η and χ fields are
given by the antisymmetric and symmetric pieces of λα̇β̇ , respectively. More precisely:

χα̇β̇ = λ(α̇β̇), η =
1

2
ǫα̇β̇λα̇β̇. (7.3)

From the N = 2 action it is straightforward to find:

S =

∫
d4x

√
gTr

{
∇µφ∇µφ† − iψβ̇α∇α̇αχβ̇α̇ − iψα̇α∇α̇αη − 1

4
FµνF

µν

+
1

4
Dα̇β̇D

α̇β̇ − 1

2
[φ, φ†]2 − i√

2
χα̇β̇[φ, χα̇β̇] + i

√
2η[φ, η] − i√

2
ψα̇α[ψ

α̇α, φ†]
}

(7.4)

where ∇α̇α = σ̄µα̇α∇µ. The Q-transformations are easily obtained from the N = 2 transfor-
mations: [

Q, φ
]

= 0,[
Q, Aµ

]
= ψµ,

{Q, η} =
[
φ, φ†] ,

{Q, ψµ} = 2
√

2∇µφ,

[
Q, φ†] = 2

√
2iη,

{Q, χα̇β̇} = i(F+
αβ −Dα̇β̇),[

Q, D
]

= (2∇ψ)+ + 2
√

2[φ, χ].

(7.5)

In (7.5), ψµ = σµαβ̇ψ
αβ̇ and F+

α̇β̇
= σ̄µν

α̇β̇
Fµν is the selfdual part of Fµν . It is not difficult to

show that the action of Donaldson-Witten theory is Q-exact up to a topological term, i.e.

S = {Q, V } − 1

2

∫
F ∧ F, (7.6)

where

V =

∫
d4xTr

{ i

4
χα̇β̇(F

α̇β̇ +Dα̇β̇) − 1

2
η[φ, η] +

1

2
√

2
ψαα̇∇α̇αφ† }

. (7.7)

As we will see in a moment, this has important implications for the quantum behavior of
the theory.

Exercise 7.1. The Lagrangian of Donaldson-Witten theory. Derive (7.4) and (7.6).

One of the most interesting aspects of the twisting procedure is the following: if we put
the original N = 2 Yang-Mills theory on an arbitrary Riemannian four-manifold, using the
well-known prescription of minimal coupling to gravity, we find global obstructions to have a
well-defined theory. The reason is very simple: not every four-manifold is Spin, and therefore
the fermionic fields λαv are not well-defined unless w2(X) = 0. However, after the twisting,
all fields are differential forms on X, and therefore the twisted theory makes sense globally
on an arbitrary Riemannian four-manifold.
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7.2 The observables

The observables of Donaldson-Witten theory can be constructed by using the topological
descent equations. As we have emphasized, these equations have a canonical solution given
by the operator (6.17). Using again the N = 2 supersymmetry transformations, one can
work out the action of Gµ on the different fields of the theory. The result is:

[Gµ, φ] = 1
2
√

2
ψµ,

[Gν , Aµ] = i
2
gµνη − iχµν ,

[G, η] = − i
√

2
4
∇φ,

{Gµ, ψν} = −(F−
µν +D+

µν),

[
G, φ

]
= 0,

[G,F+] = i∇χ + 3i
2
∗ ∇η,

{G,χ} = −3i
√

2
8

∗ ∇φ,
[G,D] = −3i

4
∗ ∇η + 3i

2
∇χ.

(7.8)

We can now construct the topological observables of the theory by using the descent equa-
tions. The starting point must be a gauge-invariant, Q-closed operator which is not Q-trivial.
Since [Q, φ] = 0, the simplest candidates are the operators

On = Tr(φn), n = 2, · · · , N. (7.9)

Here we are going to restrict ourselves to SU(2), therefore the starting point for the descent
procedure will be the operator,

O = Tr(φ2). (7.10)

It is easy to see that the following operators satisfy the descent equations (6.10):

O(1) = Tr (
1√
2
φψµ)dx

µ,

O(2) = −1

2
Tr (

1√
2
φFµν −

1

4
ψµψν)dx

µ ∧ dxν ,

O(3) = −1

8
Tr (ψλFµν)dx

λ ∧ dxµ ∧ dxν ,

O(4) =
1

32
Tr (FλτFµν)dx

λ ∧ dxτ ∧ dxµ ∧ dxν . (7.11)

Notice for example that
{Q,O(1)} = 2Tr(φ∇µφ)dxµ = dO. (7.12)

so the first descent equation is satisfied. This is, however, not the canonical solution to the
descent equations provided by G, which in this case is a little bit more complicated.

Exercise 7.2. Descent equations in topological Yang-Mills theory. Show that (7.11) satisfy
the descent equations. Compare with the canonical solution.

The observables

I1(δ) =

∫

δ

O(1), I2(S) =

∫

S

O(2), (7.13)

where δ ∈ H1(X), S ∈ H2(X), correspond to the differential forms on the moduli space
of ASD connections that were introduced in (3.53) through the use of the Donaldson map
(3.52) (and this is why we have used the same notation for both). Notice that the ghost
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number of the operators in (7.11) is in fact their degree as differential forms in moduli space.
The operators (7.11) are naturally interpreted as the decomposition of the Pontriagin class
of the universal bundle (3.51) with respect to the bigrading of Ω∗(B∗ × X). In fact, the
Grasmannian field ψµ can be interpreted as a (1, 1) form: a one-form in spacetime and
also a one-form in the space A. The operator Q is then interpreted as the equivariant
differential in A with respect to gauge transformations. This leads to a beautiful geometric
interpretation of topological Yang-Mills theory in terms of equivariant cohomology [23] and
the Mathai-Quillen formalism [3], which is reviewed in detail in [9].

7.3 Evaluation of the path integral

We now consider the topological theory defined by the topological Yang-Mills action, STYM =
{Q, V }, where V is defined in (7.7). The evaluation of the path integral of the theory defined
by the Donaldson-Witten action can be drastically simplified by taking into account the
following fact. The (unnormalized) correlation functions of the theory are defined by

〈φ1 · · ·φn〉 =

∫
Dφφ1 · · ·φn e

− 1
g2 STYM , (7.14)

where φ1, · · · , φn are generic fields, and g is the coupling constant. Since STYM is Q-exact,
one has:

∂

∂g
〈φ1 · · ·φn〉 =

2

g3
〈φ1 · · ·φnSTYM〉 = 0, (7.15)

where we have used the fact that Q is a symmetry of the theory, and therefore the insertion
of a Q-exact operator in the path integral gives zero. The above result is remarkable: it says
that, in a topological field theory in which the action is Q-exact, the computations do not
depend on the value of the coupling constant. In particular, the semiclassical approximation
is exact! [43]. We can then evaluate the path integral in the saddle-point approximation
as follows: first, we look at zero modes, i.e. classical configurations that minimize the
action. Then we look at nonzero modes, i.e. we consider quantum fluctuations around these
configurations. Since the saddle-point approximation is exact, it is enough to consider the
quadratic fluctuations. The integral over the zero modes gives a finite integral over the space
of bosonic collective coordinates, and a finite Grassmannian integral over the zero modes of
the fermi fields. The integral over the quadratic fluctuations gives a bunch of determinants.
Since the theory has a bose-fermi Q symmetry, it is easy to see that the determinants cancel
(up to a sign), as in supersymmetric theories.

Let us then analyze the bosonic and fermionic zero modes. A quick way to find the bosonic
zero modes is to look for supersymmetric configurations. These are classical configurations
such that {Q, fermi} = 0 for all Fermi fields in the theory, and they give minima of the
Lagrangian. Indeed, it was shown in [46] that in topological field theories with a fermionic
symmetry Q one can compute by localization on the fixed points of this symmetry. In this
case, by looking at {Q, χ} = 0, one finds

F+ = D+. (7.16)
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But on-shell D+ = 0, and therefore (7.16) reduces to the usual ASD equations. The
zero modes of the gauge field are then instanton configurations. In addition, by looking
at {Q, ψ} = 0, we find the equation of motion for the φ field,

∇Aφ = 0. (7.17)

This equation is also familiar: as we saw in section 3, its nontrivial solutions correspond to
reducible connections. Let us assume for simplicity that we are in a situation in which no
reducible solutions occur, so that φ = 0. In that case, (7.16) tells us that the integral over
the collective coordinates reduces to an integral over the instanton moduli space MASD.

Let us now look at the fermionic zero modes in the background of an instanton. The
kinetic terms for the ψ, χ and η fermions fit precisely into the instanton deformation complex
(3.44). Therefore, using the index theorem we can compute:

Nψ −Nχ = dimMASD, (7.18)

where Nψ,χ denotes the number of zeromodes of the corresponding fields, and we have used
the fact that the connection A is irreducible, so that η (which is a scalar) has no zero modes
(in other words, ∇Aη = 0 only has the trivial solution). Finally, if we assume that the
connection is regular, then one has that Coker p+∇A = 0, and there are no χ zero modes.
In this situation, the number of ψ zero modes is simply the dimension of the moduli space
of ASD instantons. If we denote the bosonic and the fermionic zero modes by dai, dψi,
respectively, where i = 1, · · · , D and D = dimMASD, then the zero-mode measure becomes:

D∏

i=1

daidψi. (7.19)

This is in fact the natural measure for integration of differential forms on MASD, and the
Grassmannian variables ψi are then interpreted as a basis of one-forms on MASD.

We can already discuss how to compute correlation functions of the operators O, I2(S),
and I1(δ). These operators contain the fields ψ, Aµ and φ. In evaluating the path integral, it
is enough to replace ψ and Aµ by their zero modes, and the field φ (with no zero modes) by
its quantum fluctuations, that we then integrate out at quadratic order. Further corrections
are higher order in the coupling constant and do not contribute to the saddle-point approx-
imation, which in this case is exact. We have then to compute the one-point function 〈φa〉.
The relevant terms in the action are

S(φ, φ†) =

∫
d4xTr{∇µφ∇µφ† − i√

2
φ†[ψµ, ψ

µ]}, (7.20)

since we are only considering quadratic terms. We then have to compute

〈φa(x)〉 =

∫
DφDφ†φa(x) exp−S(φ, φ†). (7.21)

If we take into account that

〈φa(x)φb†(y)〉 = −Gab(x− y), (7.22)
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where Gab(x− y) is the Green’s function of the Laplacian ∇µ∇µ, we find:

〈φa(x)〉 = − i√
2

∫
d4y

√
gGab(x, y)[ψ(x)µ, ψ(y)µ]b. (7.23)

This expresses φ in terms of zero modes. It turns out that this is precisely (up to a mul-
tiplicative constant) the component along B∗ of the curvature KP of the universal bundle
(see for example [13], p. 196). This is in perfect agreement with the correspondence be-
tween the observables (7.11) and the differential forms on moduli space (3.53) constructed
in Donaldson theory.

The main conclusion of this analysis is that, up to possible normalizations,

〈OℓI2(Si1) · · · I2(Sip)I1(δj1) · · · I1(δjq)〉 (7.24)

=
∫
MASD

Oℓ ∧ I2(Si1) ∧ · · · ∧ I2(Sip) ∧ I1(δj1) ∧ · · · ∧ I1(δjq), (7.25)

i.e. the correlation function of the observables of twisted N = 2 Yang-Mills theory is
precisely the corresponding Donaldson invariant. The requirement that the differential form
in the r.h.s. has top degree (otherwise the invariant is zero) corresponds, in the field theory
side, to the requirement that the correlation has ghost number equal to dimMASD, i.e. that
the operator in the correlation function soaks up all the fermionic zero modes, which is the
well-known ’t Hooft rule [38]. (7.24) was one of the most important results of Witten’s
seminal work [43], and it opened a completely different approach to Donaldson theory by
means of topological quantum field theory.

8 Conclusions and further developments

What we have covered in these lectures is just the beginning of a very beautiful story that
we can only summarize at this concluding section. Since we have a quantum field theory
realization of Donaldson-Witten theory, one could imagine that knowledge of the physics of
this theory would be extremely useful in learning about the deep mathematics of Donaldson
invariants. A first step in that direction was taken by Witten in [47], but a much more
ambitious picture appeared after the classical work of Seiberg and Witten on the low-energy
effective action of N = 2 super Yang-Mills theory [35]. This led to the introduction [48]
of the Seiberg-Witten monopole equations and the Seiberg-Witten invariants. It turns out
that the unknown constants as in (3.62) are essentially Seiberg-Witten invariants, and the
basic classes of Kronheimer and Mrowka can be reformulated in terms of a finite set of Spinc
structures called Seiberg-Witten classes. Moreover, one can evaluate using quantum field
theory techniques the Donaldson-Witten generating functional and write it in terms of some
universal functions and Seiberg-Witten invariants [32]. In one word, quantum field theory
leads to a complete solution of the basic problem in Donaldson theory (the evaluation of
Donaldson invariants). To learn about this, we recommend the references [14, 28, 33] (from
a mathematical point of view) and [12, 29, 37] from the quantum field theory viewpoint. A
systematic account of these developments can be found in [30].
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A Conventions for spinors

In this appendix we collect our conventions for spinors (both in Minkowski and Euclidean
space). We follow almost strictly [1].

The Minkowski flat metric is ηµν = diag (1,−1,−1,−1). We raise and lower spinor indices
with the antisymmetric tensor ǫαβ , ǫα̇β̇:

ψα = ǫαβψβ , ψα = ǫαβψ
β,

where the ǫ tensor is chosen as follows:

ǫ21 = ǫ12 = −ǫ12 = −ǫ21 = 1,

Contractions satisfy the perverse rule:

ψαφα = −ψαφα.
We define the matrices:

(σµ)αα̇ ≡ (1, ~σ),

where ~σ are the Pauli matrices, and after raising indices we find

(σ̄µ)α̇α = ǫα̇β̇ǫαβ(σµ)ββ̇ = (1,−~σ).

The continuation from Minkowski space is made via x0 = −ix4, p0 = ip4. The conventions
for Euclidean spinors are as follows:

σµ
αβ̇

= (i, ~σ), σ̄µα̇β = (i,−~σ).

The following identities are useful:

σ̄µσν + σ̄νσµ = −2gµνδα̇β̇,

(σ̄µ)α̇β(σµ)γρ̇ = −2δβγδ
α̇
ρ̇. (A.1)

The (A)SD projectors are

σµν =
1

4

(
σµσν − σνσµ

)
,

σµν =
1

4

(
σµσν − σνσµ

)
, (A.2)

where σµναβ is ASD, while σµν
α̇β̇

is SD. We have, explicitly:

σµν =




0 − i
2
σ3 i

2
σ2 i

2
σ1

i
2
σ3 0 − i

2
σ1 i

2
σ2

− i
2
σ2 i

2
σ1 0 i

2
σ3

− i
2
σ1 − i

2
σ2 − i

2
σ3 0




σµν =




0 − i
2
σ3 i

2
σ2 − i

2
σ1

i
2
σ3 0 − i

2
σ1 − i

2
σ2

− i
2
σ2 i

2
σ1 0 − i

2
σ3

i
2
σ1 i

2
σ2 i

2
σ3 0


 (A.3)

36



We finally define:
vα̇β̇ = σµν

α̇β̇
v+
µν .

This implies that, if we consider a self-dual tensor

F+
µν =




0 a b c
−a 0 c −b
−b −c 0 a
−c b −a 0




one has

Fα̇β̇ = 2i

(
c− ib −a
−a −c− ib

)
.
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