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Abstract. Besides offering a friendly introduction to knot ho-
mologies and quantum curves, the goal of these lectures is to re-
view some of the concrete predictions that follow from the physical
interpretation of knot homologies. In particular, it allows one to
answer questions like Is there a direct relation between Khovanov
homology and the A-polynomial of a knot? which would not have
been asked otherwise. We will explain that the answer to this
question is “yes” and introduce a certain deformation of the pla-
nar algebraic curve defined by the zero locus of the A-polynomial.
This novel deformation leads to a categorified version of the Gen-
eralized Volume Conjecture that completely describes the “color
behavior” of the colored sl(2) knot homology and, eventually, to a
similar version for the colored HOMFLY homology. Furthermore,
this deformation is strong enough to distinguish mutants, and its
most interesting properties include relation to knot contact homol-
ogy and knot Floer homology.
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Foreword

An alternative title of these lecture notes could be “Categorifica-
tion and Quantization.” These lectures, however, will by no means
serve as a complete introduction to the two topics of quantization and
categorification. Each of these words represents not so much a single
idea as a broad tool, program, or theme in physics and mathematics,
and both are areas of active research and are still not fully understood.
One could easily give a full one-year course on each topic separately.

Rather, the goal of these lectures is to serve as an appetizer: to
give a glimpse of the ideas behind quantization and categorification,
by focusing on very concrete examples and giving a working knowledge
of how these ideas are manifested in simple cases. It is our hope that the
resulting discussion will remain accessible and clear while still shedding
some light on these complex ideas, and that the interest of the reader
will be piqued.

Imagine the category of finite-dimensional vector spaces and linear
maps. To each object in this category is naturally associated a number,
the dimension of that vector space. Replacing some collection of vector
spaces with a collection of numbers in this way can be thought of as a
decategorification: by remembering only the dimension of each space,
we keep some information, but lose all knowledge about (for instance)
morphisms between spaces. In this sense, decategorification forgets
about geometry.

Categorification can be thought of as the opposite procedure. Given
some piece of information (an invariant of a topological space, for in-
stance), one asks whether it arises in some natural way as a “decate-
gorification”: a piece of data extracted out of a more geometrical or
categorical invariant, which may carry more information and thus be
a finer and more powerful tool. An answer in the affirmative to this
question is a categorification of that invariant.

Perhaps the most familiar example of categorification at work can
be seen in the reinterpretation of the Euler characteristic as the alter-
nating sum of ranks of homology groups,

(1) χ(M) =
∑
k≥0

(−1)k rankHk(M) .

Thus, the homology of a manifold M can be seen, in a sense, as a cate-
gorification of its Euler characteristic: a more sophisticated and richly
structured bearer of information, from which the Euler characteristic
can be distilled in some natural way. Moreover, homology theories
are a far more powerful tool than the Euler characteristic alone for
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the study and classification of manifolds and topological spaces. This
shows that categorification can be of practical interest: by trying to
categorify invariants, we can hope to construct stronger invariants.

While the idea of categorification is rooted in pure mathematics, it
finds a natural home in the realm of topological quantum field theory
(TQFT) as will be discussed in Section 4. For this, however, we first
need to understand what “quantum” means and to explain the quan-
tization program that originated squarely within physics. Its basic
problem is the study of the transition between classical and quantum
mechanics. The classical and quantum pictures of a physical system
make use of entirely different and seemingly unconnected mathematical
formalisms. In classical mechanics, the space of possible states of the
system is a symplectic manifold, and observable quantities are smooth
functions on this manifold. The quantum mechanical state space, on
the other hand, is described by a Hilbert space H , and observables
are elements of a noncommutative algebra of operators acting on H .
Quantization of a system is the construction of the quantum picture
of that system from a classical description, as is done in a standard
quantum mechanics course for systems such as the harmonic oscillator
and the hydrogen atom. Therefore, in some sense, quantization allows
one to interpret quantum mechanics as “modern symplectic geometry.”
We will give a more full introduction to this idea in Section 3.

One main application of the ideas of quantization and categorifica-
tion is to representation theory, where categorification, or “geometriza-
tion,” leads naturally to the study of geometric representation theory
[7]. Another area of mathematics where these programs bear much
fruit is low-dimensional topology, which indeed is often called “quan-
tum” topology. This is the arena in which we will study the implica-
tions of quantization and categorification, primarily for the reason that
it allows for many concrete and explicit examples and computations.
Specifically, almost all of our discussion will take place in the context of
knot theory. The reader should not, however, be deceived into thinking
of our aims as those of knot theorists! We do not discuss quantization
and categorification for the sake of their applications to knot theory;
rather, we discuss knot theory because it provides a window through
which we can try and understand quantization and categorification.
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1. Why knot homology?

A knot is a smooth embedding of a circle S1 as a submanifold of S3:

(2) k : S1 ↪→ S3, K := im k,

see e.g. Figures 1 and 2 for some simple examples. Likewise, a link is
defined as an embedding of several copies of S1.

In attempting to classify knots, one of the most basic tools is a
knot invariant: some mathematical object that can be associated to
a knot, that is always identical for equivalent knots. In this way, one
can definitively say that two knots are distinct if they possess different
invariants. The converse, however, is not true; certain invariants may
fail to distinguish between knots that are in fact different. Therefore,
the arsenal of a knot theorist should contain a good supply of different
invariants. Moreover, one would like invariants to be as “powerful” as
possible; this just means that they should capture nontrivial informa-
tion about the knot. Obviously, assigning the number 0 to every knot
gives an invariant, albeit an extremely poor one!

Given the goal of constructing knot invariants, it may be possible
to do so most easily by including some extra structure to be used in
the construction. That is, one can imagine starting not simply with
a knot, but with a knot “decorated” with additional information: for
instance, a choice of a Lie algebra g = Lie(G) and a representation R
of g. It turns out that this additional input data from representation
theory does in fact allow one to construct various invariants (numbers,
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vector spaces, and so on), collectively referred to as quantum group
invariants. A large part of these lectures will consist, in essence, of a
highly unorthodox introduction to these quantum group invariants.

The unorthodoxy of our approach is illustrated by the fact that
we fail completely to address a natural question: what on earth do
(for instance) the quantum sl(N) invariants have to do with sl(N)?
Representation theory is almost entirely absent from our discussion; we
opt instead to look at an alternative description of the invariants, using
a concrete combinatorial definition in terms of so-called skein relations.
A more full and traditional introduction to the subject would include
much more group theory, and show the construction of the quantum
group invariants in a way that makes the role of the additional input
data g and R apparent [47, 51]. That construction involves assigning
a so-called “quantum R-matrix” to each crossing in a knot diagram in
some manner, and then taking a trace around the knot in the direction
of its orientation. The connection to representation theory is made
manifest; the resulting invariants, however, are the same.

Example 1. Suppose that we take an oriented knot together with
the Lie algebra g = sl(N) and its fundamental N -dimensional rep-
resentation. With this special choice of extra data, one constructs
the quantum sl(N) invariant, denoted PN(K; q). Although it makes
the connection to representation theory totally obscure, one can com-
pute PN(K; q) directly from the knot diagram using the following skein
relation:

(3) qNPN(
??__

)− q−NPN(
??__

) = (q − q−1)PN(
oo //

).

(Note that we will sometimes write PN(K) for the polynomial PN as-
sociated to the knot or link K, suppressing the variable q; no confusion
should arise.) For now, one can think of q as a formal variable. The
subdiagrams shown in (3) should be thought of as depicting a neigh-
borhood of one particular crossing in a planar diagram of an oriented
knot; to apply the relation, one replaces the chosen crossing with each
of the three shown partial diagrams, leaving the rest of the diagram
unchanged.

To apply this linear relation, one also needs to fix a normalization,
which can be done by specifying PN for the unknot. Here, unfortu-
nately, several natural choices exist. For now, we will choose

(4) PN( �� ) =
qN − q−N

q − q−1
= q−(N−1) + q−(N−3) + · · ·+ qN−1︸ ︷︷ ︸

N terms

.
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This choice gives the so-called unnormalized sl(N) polynomial. Notice
that, given any choice of PN( �� ) with integer coefficients, the form of
the skein relation implies that PN(q) ∈ Z[q, q−1] for every knot.

Notice further that, with the normalization (4), we have

(5) PN( �� ) −−→
q→1

N,

which is the dimension of the representation R with which we decorated
the knot, the fundamental of sl(N). We remark that this leads to a
natural generalization of the notion of dimension, the so-called quan-
tum dimension dimq(R) of a representation R, which arises from the
quantum group invariant constructed from R evaluated on the unknot.

Equipped with the above rules, let us now try to compute PN(q) for
some simple links. Consider the Hopf link, consisting of two interlocked
circles:

oo//

Applying the skein relation to the upper of the two crossings, we obtain:

(6) qNPN

[
oo//

Hopf link

]
− q−NPN

[
oo//

two unknots

]
= (q − q−1)PN

[
oo//

one unknot

]
.

This illustrates a general feature of the skein relation, which occurs
for knots as well as links: In applying the relation to break down any
knot diagram into simpler diagrams, one will in fact generally need to
evaluate PN for links rather than just for knots, since application of the
relation (3) may produce links with more than one component. This
means that the normalization (4) is not quite sufficient; we will need
to specify PN on k unlinked copies of the unknot, for k ≥ 1.

As such, the last of our combinatorial rules for computing PN(q)
concerns its behavior under disjoint union:

(7) PN( �� tK) = PN( �� ) · PN(K),

where K is any knot or link. Here, the disjoint union should be such
that K and the additional unknot are not linked with one another.

Caution: The discerning reader will notice that our final rule (7) is
not linear, while the others are, and so is not respected under rescaling
of PN(q). Therefore, if a different choice of normalization is made,
it will not remain true that PN(k unknots) = [PN( �� )]k. The nice
behavior (7) is particular to our choice of normalization (4). This can
be expressed by saying that, in making a different normalization, one
must remember to normalize only one copy of the unknot.



LECTURES ON KNOT HOMOLOGY AND QUANTUM CURVES 7

Figure 1. The trefoil knot 31. (KnotPlot image from
http://katlas.math.toronto.edu.)

To complete the calculation we began above, let’s specialize to the
case N = 2. Then we have

(8) P2( �� ) = q−1 + q =⇒ P2( oo// ) = (q−1 + q)2 = q−2 + 2 + q2.

Applying the skein relation (6) then gives

(9)
q2P2( oo// ) = q−2(q−2 + 2 + q2) + (q − q−1)(q + q−1)

= q−4 + q−2 + 1 + q2,

so that

(10) P2( oo// ) = q−6 + q−4 + q−2 + 1.

We are now ready to compute the sl(N) invariant for any link.

From the form of the rules that define this invariant, it is apparent
that dependence on the parameter N enters the knot polynomial only
by way of the combination of variables qN . As such, we can define the
new variable a := qN , in terms of which our defining relations become

(11) aPa,q(
??__

)− a−1Pa,q(
??__

) = (q − q−1)Pa,q(
oo //

),

(12) Pa,q( �� ) =
a− a−1

q − q−1
.

Together with the disjoint union property, these rules associate to each
oriented link K a new invariant Pa,q(K) in the variables a and q, called
the (unnormalized) HOMFLY-PT polynomial of the link [21]. This
is something of a misnomer, since with the normalization (12) the
HOMFLY-PT invariant will in general be a rational expression rather
than a polynomial. We have traded the two variables q, N for q and a.

For various special choices of the variables a and q, the HOMFLY-
PT polynomial reduces to other familiar polynomial knot invariants:

http://katlas.math.toronto.edu
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• a = qN , of course, returns the quantum sl(N) invariant PN(q).
• With the particular choice a = q2 (N = 2), the HOMFLY-PT

polynomial becomes the classical Jones polynomial J(L; q) ≡
P2(q),

(13) J(K; q) = Pa=q2,q(K).

Discovered in 1984 [32], the Jones polynomial is one of the
best-known polynomial knot invariants, and can be regarded
as the “father” of quantum group invariants; it is associated
to the Lie algebra sl(2) and its fundamental two-dimensional
representation.
• a = 1 returns the Alexander polynomial ∆(K; q), another

classical knot invariant. This shows that the HOMFLY-PT
polynomial generalizes the sl(N) invariant, in some way: the
evaluation a = 1 makes sense, even though taking N = 0 is
somewhat obscure from the standpoint of representation the-
ory.

Now, the attentive reader will point out a problem: if we try and
compute the Alexander polynomial, we immediately run into the prob-
lem that (12) requires P1,q( �� ) = 0. The invariant thus appears to be
zero for every link! However, this does not mean that the Alexander
polynomial is trivial. Remember that, since the skein relations are lin-
ear, we have the freedom to rescale invariants by any multiplicative
constant. We have simply made a choice that corresponds, for the
particular value a = 1, to multiplying everything by zero.

This motivates the introduction of another convention: the so-called
normalized HOMFLY-PT polynomial is defined by performing a rescal-
ing such that

(14) Pa,q( �� ) = 1.

This choice is natural on topological grounds, since it associates 1 to the
unknot independent of how the additional input data, or “decoration,”
is chosen. (By contrast, the unnormalized HOMFLY-PT polynomial
assigns the value 1 to the empty knot diagram.) Taking a = 1 in the
normalized HOMFLY-PT polynomial returns a nontrivial invariant,
the Alexander polynomial.

Exercise 1. Compute the normalized and unnormalized HOMFLY-
PT polynomials for the trefoil knot K = 31 (Fig. 1). Note that one of
these will actually turn out to be polynomial!
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Having done this, specialize to the case a = q2 to obtain the nor-
malized and unnormalized Jones polynomials for the trefoil. Then spe-
cialize to the case a = q. Something nice should occur! Identify what
happens and explain why this is the case.

Solution. Applying the skein relation for the HOMFLY-PT poly-
nomial to one crossing of the trefoil knot gives

aPa,q(31)− a−1Pa,q( �� ) = (q − q−1)Pa,q( oo// ).

Then, applying the relation again to the Hopf link (as in the above
example) gives

aPa,q( oo// )− a−1Pa,q( oo// ) = (q − q−1)Pa,q( �� ).

Therefore, for the unnormalized HOMFLY-PT polynomial,

P (31) = a−2P ( �� ) + a−2(q − q−1)
[
a−1P ( �� )2 + (q − q−1)P ( �� )

]
.

which becomes

P (31) =
a− a−1

q − q−1

[
a−2q2 + a−2q−2 − a−4

]
.

The normalized HOMFLY-PT polynomial is simply the quantity in
brackets. Specializing to a = q2 gives the unnormalized Jones polyno-
mial:

(15) P2(31) =
q2 − q−2

q − q−1

[
q−2 + q−6 − q−8

]
.

Again, the normalized Jones polynomial is the factor in square brackets.
Finally, we specialize to a = q, obtaining P = 1 in both the normalized
and unnormalized cases! This is connected to the fact that a = q
corresponds to constructing the sl(1) invariant, which must be vacuous
since the Lie algebra is trivial. �

Remark 1. The study of this subject is made more difficult by
the preponderance of various conventions in the literature. In particu-
lar, there is no agreement at all about standard usage with regard to
the variables for polynomial invariants. Given ample forewarning, this
should not cause too much confusion, but the reader must always be
aware of the problem. In particular, it is extremely common for papers
to differ from our conventions by the replacement

(16) a 7→ a1/2, q 7→ q1/2,

halving all powers that occur in knot polynomials. Some authors also
make the change

(17) a 7→ a−1, q 7→ q−1,
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Figure 2. The knots 51 and 10132. (KnotPlot images
from http://katlas.math.toronto.edu.)

and some make both.

We have by now seen a rich supply of knot polynomials, which can
be straightforwardly computed by hand for simple enough diagrams,
and are easy to write down and compare. One might then ask about
the value of attempting to categorify at all. Given such simple and
powerful invariants, why would one bother trying to replace them with
much more complicated ones?

The simple answer is that the HOMFLY-PT polynomial and its
relatives, while powerful, are not fully adequate for the job of classify-
ing all knots up to ambient isotopy. Consider the two knot diagrams
shown in Fig. 2, which represent the knots 51 and 10132 in the Rolfsen
classification. While the knots are not equivalent, they have identical
Alexander and Jones polynomials! In fact, we have

(18) Pa,q(51) = Pa,q(10132) .

and, therefore, all specializations — including all sl(N) invariants —
will be identical for these two knots. Thus, even the HOMFLY-PT
polynomial is not a perfect invariant and fails to distinguish between
these two knots. This motivates us to search for a finer invariant. Cat-
egorification, as we shall see, provides one. Specifically, even though
Jones, Alexander and HOMFLY-PT polynomials in this particular ex-
ample fail to distinguish 51 and 10132 knots, their respective categori-
fications do (cf. Figure 8).

Before we step into the categorification era, let us make one more
desperate attempt to gain power through polynomial knot invariants.
To this end, let us introduce not one, but a whole sequence of knot

http://katlas.math.toronto.edu
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polynomials Jn(K; q) ∈ Z[q, q−1] called the colored Jones polynomials.
For each non-negative integer n, the n-colored Jones polynomial of a
knot K is the quantum group invariant associated to the decoration
g = sl(2) with its n-dimensional representation Vn. J2(K; q) is just the
ordinary Jones polynomial. In Chern-Simons theory with gauge group
G = SU(2), we can think of Jn(K; q) as the expectation value of a Wil-
son loop operator on K, colored by the n-dimensional representation
of SU(2) [51].

Moreover, the colored Jones polynomial obeys the following rela-
tions, known as cabling formulas, which follow directly from the rules
of Chern-Simons TQFT:

(19)
J⊕

iRi
(K; q) =

∑
i

JRi
(K; q),

JR(Kn; q) = JR⊗n(K; q).

Here Kn is the n-cabling of the knot K, obtained by taking the path
of K and tracing it with a “cable” of n strands. These equations allow
us to compute the n-colored Jones polynomial, given a way to compute
the ordinary Jones polynomial and a little knowledge of representation
theory. For instance, any knot K has J1(K; q) = 1 and J2(K; q) =
J(K; q), the ordinary Jones polynomial. Furthermore,

(20)
2⊗ 2 = 1⊕ 3 =⇒ J3(K; q) = J(K2; q)− 1,

2⊗ 2⊗ 2 = 2⊕ 2⊕ 4 =⇒ J4(K; q) = J(K3; q)− 2J(K; q),

and so forth. We can switch to representations of lower dimension
at the cost of considering more complicated links; however, the com-
putability of the ordinary Jones polynomial means that this is still a
good strategy for calculating colored Jones polynomials.

Example 2. Using the above formulae, it is easy to find n-colored
Jones polynomial of the trefoil knot K = 31 for the first few values
of n:

(21)

J1 = 1,

J2 = q + q3 − q4,

J3 = q2 + q5 − q7 + q8 − q9 − q10 + q11,

...

where, for balance (and to keep the reader alert), we used the conven-
tions which differ from (15) by the transformations (16) and (17).

Much like the ordinary Jones polynomial is a particular specializa-
tion (13) of the HOMFLY-PT polynomial, its colored version Jn(K; q)
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Figure 3. Mutant knots. (Images from [13].)

can be obtained by the same specialization from the so-called colored
HOMFLY-PT polynomial Pn(K; a, q),

(22) Jn(K; q) = Pn(K; a = q2, q).

labeled by an integer n. More generally, colored HOMFLY-PT polyno-
mials P λ(K; a, q) are labeled by Young diagrams or 2d partitions λ. In
these lectures, we shall consider only Young diagrams that consist of a
single row (or a single column) and by Schur-Weyl duality correspond
to totally symmetric (resp. totally anti-symmetric) representations.
Thus, what we call Pn(K; a, q) is the HOMFLY-PT polynomial of K
colored by λ = Sn−1.

Even though Pn(K; a, q) provide us with an infinite sequence of two-
variable polynomial knot invariants, which can tell apart e.g. the two
knots in (18), they are still not powerful enough to distinguish simple
pairs of knots and links called mutants. The operation of mutation
involves drawing a disc on a knot diagram such that two incoming and
two outgoing strands pass its boundary, and then rotating the portion
of the knot inside the disc by 180 degrees. The Kinoshita-Terasaka
and Conway knots shown in Figure 3 are a famous pair of knots that
are mutants of one another, but are nonetheless distinct; they can be
distinguished by homological knot invariants, but not by any of the
polynomial invariants we have discussed so far!

Theorem 1. The colored Jones polynomial, the colored HOMFLY-
PT polynomial, and the Alexander polynomial cannot distinguish mu-
tants [38], while their categorifications can [43, 49, 45].
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2. The classical A-polynomial

In this section, we take a step back from quantum group invari-
ants to discuss another classical invariant of knots: the so-called A-
polynomial. Our introduction will be rather brief, intended to fa-
miliarize the reader with the general idea behind this invariant and
catalogue some of its properties, rather than attempt a complete con-
struction. For more information, we refer to the pioneering paper of
Cooper et. al. [9], in which the A-polynomial was first defined.

For a knot K, let N(K) ⊂ S3 be an open tubular neighborhood
of K. Then the knot complement is defined to be

(23) M := S3 \N(K).

By construction, M is a 3-manifold with torus boundary, and our goal
here is to explain that to every such manifold (not necessarily a knot
complement) one can associate a planar algebraic curve

(24) C = {(x, y) ∈ C2 : A(x, y) = 0},
defined as follows. The classical invariant of M is its fundamental
group, π1(M), which in the case of knot complements is called the
knot group. It contains a lot of useful information about M and can
distinguish knots much better than any of the polynomial invariants
we saw in section 1.

Example 3. Consider the trefoil knot K = 31. Its knot group is
the simplest example of a braid group:

(25) π1(M) = 〈a, b : aba = bab〉.

Although the knot group is a very good invariant, it is not easy
to deal with due to its non-abelian nature. To make life easier, while
hopefully not giving up too much power, one can imagine considering
representations of the knot group rather than the group itself. Thus,
one can consider representations of π1(M) into a simple non-abelian
group, such as the group of 2× 2 complex matrices,

(26) ρ : π1(M)→ SL2C.
Associated to this construction is a polynomial invariant A(x, y), whose
zero locus (24) parameterizes in some sense the “space” of all such
representations. Indeed, as we noted earlier, M is a 3-manifold with
torus boundary,

(27) ∂M = ∂N(K) =̃ T 2.

Therefore, the fundamental group of ∂M is

(28) π1(∂M) = π1(T 2) = Z× Z.
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m

`

Figure 4. The torus T 2 = ∂N(K) for K = unknot,
with cycles m and `.

The generators of π1(∂M) are the two basic cycles, which we will de-
note by m and ` (standing for meridian and longitude, respectively—
see Fig. 4). m is the cycle that is contractible when considered as a
loop in N(K), and ` is the non-contractible cycle that follows the knot
in N(K). Of course, any representation π1(M) → SL2C restricts to a
representation of π1(T 2 = ∂M); this gives a natural map of represen-
tations of π1(M) into the space of representations of π1(∂M).

These cycles are represented in SL2C by 2 × 2 complex matrices
ρ(m) and ρ(`) with determinant 1. Since the fundamental group of
the torus is just Z× Z, the matrices ρ(m) and ρ(`) commute, and can
therefore be simultaneously brought to Jordan normal form by some
change of basis, i.e., conjugacy by an element of SL2C:

(29) ρ(m) =

(
x ?
0 x−1

)
, ρ(`) =

(
y ?
0 y−1

)
.

Therefore, we have a map that assigns two complex numbers to each
representation of the knot group:

(30)
Hom(π1(M), SL2C)/conj. → C? × C?,

ρ 7→ (x, y),

where x and y are the eigenvalues of ρ(m) and ρ(`), respectively. The
image of this map is the representation variety C ⊂ C? × C?, whose
defining polynomial is the A-polynomial of K. Note, this definition of
the A-polynomial does not fix the overall numerical coefficient, which
is usually chosen in such a way that A(x, y) has integer coefficients (we
return to this property below). For the same reason, the A-polynomial
is only defined up to multiplication by arbitrary powers of x and y. Let
us illustrate the idea of this construction with some specific examples.



LECTURES ON KNOT HOMOLOGY AND QUANTUM CURVES 15

Example 4. Let K ⊂ S3 be the unknot. Then N(K) and M
are both homeomorphic to the solid torus S1 × D2. Notice that m is
contractible as a loop in N(K) and ` is not, while the opposite is true
in M : ` is contractible and m is not. Since ` is contractible in M , ρ(`)
must be the identity, and therefore we have y = 1 for all (x, y) ∈ C .
There is no restriction on x. Hence,

(31) C ( �� ) = {(x, y) ∈ C? × C? : y = 1},
and the A-polynomial of the unknot is therefore

(32) A(x, y) = y − 1.

Example 5. LetK ⊂ S3 be the trefoil knot 31. Then, as mentioned
in (25), the knot group is given by

(33) π1(M) = 〈a, b : aba = bab〉,
where the meridian and longitude cycles can be identified as follows:

(34)

{
m = a,

` = ba2ba−4.

Let us see what information we can get about the A-polynomial just by
considering abelian representations of π1(M), i.e. representations such
that ρ(a) and ρ(b) commute. For such representations, the defining
relations reduce to a2b = ab2 and therefore imply a = b. (Here, in
a slight abuse of notation, we are simply writing a to refer to ρ(a)
and so forth.) Eq. (34) then implies that ` = 1 and m = a, so that
y = 1 and x is unrestricted exactly as in Example 4. It follows that
the A-polynomial contains (y − 1) as a factor.

This example illustrates a more general phenomenon. Whenever M
is a knot complement in S3, it is true that the abelianization

(35) π1(M)ab = H1(M) =̃ Z.
Therefore, the A-polynomial always contains y − 1 as a factor,

(36) A(x, y) = (y − 1)(· · · ),
where the first piece carries information about abelian representations,
and any additional factors that occur arise from the non-abelian rep-
resentations. In the particular case K = 31, a similar analysis of non-
abelian representations of (25) into SL2C yields

(37) A(x, y) = (y − 1)(y + x6).

To summarize, the algebraic curve C is (the closure of) the image of
the representation variety of M in the representation variety C? × C?

of its boundary torus ∂M . This image is always an affine algebraic
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variety of complex dimension 1, whose defining equation is precisely
the A-polynomial [9].

This construction defines the A-polynomial as an invariant asso-
ciated to any knot. However, extension to links requires extra care,
since in that case ∂N(L) 6=̃ T 2. Rather, the boundary of the link com-
plement consists of several components, each of which is separately
homeomorphic to a torus. Therefore, there will be more than two
fundamental cycles to consider, and the analogous construction will
generally produce a higher-dimensional character variety rather than a
plane algebraic curve. One important consequence of this is that the
A-polynomial cannot be computed by any known set of skein relations;
as was made clear in Exercise 1, computations with skein relations
require one to consider general links rather than just knots.

To conclude this brief introduction to the A-polynomial, we will list
without proof several of its interesting properties:

• For any hyperbolic knot K,

(38) AK(x, y) 6= y − 1.

That is, the A-polynomial carries nontrivial information about
non-abelian representations of the knot group.
• Whenever K is a knot in a homology sphere, AK(x, y) con-

tains only even powers of the variable x. Since in these lec-
tures we shall only consider examples of this kind, we simplify
expressions a bit by replacing x2 with x. For instance, in these
conventions the A-polynomial (37) of the trefoil knot looks like

(39) A(x, y) = (y − 1)(y + x3).

• The A-polynomial is reciprocal: that is,

(40) A(x, y) ∼ A(x−1, y−1),

where the equivalence is up to multiplication by powers of x
and y. Such multiplications are irrelevant, because they don’t
change the zero locus of the A-polynomial in C? × C?. This
property can be also expressed by saying that the curve C lies
in (C?×C?)/Z2, where Z2 acts by (x, y) 7→ (x−1, y−1) and can
be interpreted as the Weyl group of SL2C.
• A(x, y) is invariant under orientation reversal of the knot, but

not under reversal of orientation in the ambient space. There-
fore, it can distinguish mirror knots (knots related by the par-
ity operation), such as the left- and right-handed versions of
the trefoil. To be precise, if K ′ is the mirror of K, then

(41) AK(x, y) = 0 ⇐⇒ AK′(x
−1, y) = 0.



LECTURES ON KNOT HOMOLOGY AND QUANTUM CURVES 17

• After multiplication by a constant, the A-polynomial can al-
ways be taken to have integer coefficients. It is then natural
to ask: are these integers counting something, and if so, what?
The integrality of the coefficients of A(x, y) is a first hint of the
deep connections with number theory. For instance, the follow-
ing two properties, based on the Newton polygon of A(x, y),
illustrate this connection further.
• The A-polynomial is tempered: that is, the faces of the New-

ton polygon of A(x, y) define cyclotomic polynomials in one
variable. Examine, for example, theA-polynomial of the figure-
8 knot:

(42) A(x, y) = (y − 1)
(
y2 − (x−2 − x−1 − 2− x+ x2)y + y2

)
.

• Furthermore, the slopes of the sides of the Newton polygon of
A(x, y) are boundary slopes of incompressible surfaces∗ in M .

While all of the above properties are interesting, and deserve to be
explored much more fully, our next goal is to review the connection to
physics [26], which explains known facts about the A-polynomial and
leads to many new ones:

• The A-polynomial curve (24), though constructed as an alge-
braic curve, is most properly viewed as an object of symplec-
tic geometry: specifically, a holomorphic Lagrangian subman-
ifold.
• Its quantization with the symplectic form

(43) ω =
dy

y
∧ dx
x

leads to interesting wavefunctions.
• The curve C has all the necessary attributes to be an analogue

of the Seiberg-Witten curve for knots and 3-manifolds [15, 22].

As an appetizer and a simple example of what the physical inter-
pretation of the A-polynomial has to offer, here we describe a curious
property of the A-polynomial curve (24) that follows from this physical
interpretation. For any closed cycle in the algebraic curve C , the in-
tegral of the Liouville one-form associated to the symplectic form (43)

∗A proper embedding of a connected orientable surface F → M is called incom-
pressible if the induced map π1(F ) → π1(M) is injective. Its boundary slope is
defined as follows. An incompressible surface (F, ∂F ) gives rise to a collection of
parallel simple closed loops in ∂M . Choose one such loop and write its homology
class as `pmq. Then, the boundary slope of (F, ∂F ) is defined as a rational number
p/q.
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should be quantized [26]. Schematically,†

(44)

∮
Γ

log y
dx

x
∈ 2π2 ·Q.

This condition has an elegant interpretation in terms of algebraic K-
theory and the Bloch group of Q̄. Moreover, it was conjectured in
[30] that every curve of the form (24) — not necessarily describing
the moduli of flat connections — is quantizable if and only if {x, y} ∈
K2(C(C )) is a torsion class. This generalization will be useful to us
later, when we consider a refinement of the A-polynomial that has to
do with categorification and homological knot invariants.

To see how stringent the condition (44) is, let us compare, for in-
stance, the A-polynomial of the figure-eight knot (42):

(45) A(x, y) = 1− (x−4 − x−2 − 2− x2 + x4)y + y2

and a similar polynomial

(46) B(x, y) = 1− (x−6 − x−2 − 2− x2 + x6)y + y2 .

(Here the irreducible factor (y− 1), corresponding to abelian represen-
tations, has been suppressed in both cases.) The second polynomial
has all of the required symmetries of the A-polynomial, and is obtained
from the A-polynomial of the figure-eight knot by a hardly noticeable
modification. But B(x, y) cannot occur as the A-polynomial of any
knot since it violates the condition (44).

3. Quantization

Our next goal is to explain, following [26], how physical interpreta-
tion of the A-polynomial in Chern-Simons theory can be used to pro-
vide a bridge between quantum group invariants of knots and algebraic
curves that we discussed in sections 1 and 2, respectively. In particular,
we shall see how quantization of Chern-Simons theory naturally leads
to a quantization of the classical curve (24),

(47) A(x, y)  Â(x̂, ŷ; q) ,

i.e. a q-difference operator Â(x̂, ŷ; q) with many interesting proper-
ties. While this will require a crash course on basic tools of Quantum

†To be more precise, all periods of the “real” and “imaginary” part of the Liouville
one-form θ must obey∮

Γ

(
log |x|d(arg y)− log |y|d(arg x)

)
= 0 ,

1

4π2

∮
Γ

(
log |x|d log |y|+ (arg y)d(arg x)

)
∈ Q .
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Mechanics, the payoff will be enormous and will lead to many general-
izations and ramifications of the intriguing relations between quantum
group invariants of knots, on the one hand, and algebraic curves, on
the other. Thus, one such generalization will be the subject of section
4, where we will discuss categorification and formulate a similar bridge
between algebraic curves and knot homologies, finally explaining the
title of these lecture notes.

We begin our discussion of the quantization problem with a light-
ning review of some mathematical aspects of classical mechanics. Part
of our exposition here follows the earlier lecture notes [14] that we
recommend as a complementary introduction to the subject. When it
comes to Chern-Simons theory, besides the seminal paper [51], mathe-
matically oriented readers may also want to consult excellent books [4,
36].

As we discussed briefly in the introduction, the description of a sys-
tem in classical mechanics is most naturally formulated in the language
of symplectic geometry. In the classical world, the state of a system at a
particular instant in time is completely specified by giving 2N pieces of
data: the values of the coordinates xi and their conjugate momenta pi,
where 1 ≤ i ≤ N . The 2N -dimensional space parameterized by the xi
and pi is the phase space M of the system. (For many typical systems,
the space of possible configurations of the system is some manifold X,
on which the xi are coordinates, and the phase space is the cotangent
bundle M = T ∗X.) Notice that, independent of the number N of gen-
eralized coordinates needed to specify the configuration of a system,
the associated phase space is always of even dimension. In fact, phase
space is always naturally equipped with the structure of a symplectic
manifold, with a canonical symplectic form given by

(48) ω = dp ∧ dx.

(When the phase space is a cotangent bundle, (48) is just the canon-
ical symplectic structure on any cotangent bundle, expressed in co-
ordinates.) Recall that a symplectic form on a manifold is a closed,
nondegenerate two-form, and that nondegeneracy immediately implies
that any symplectic manifold must be of even dimension.

Since ω is closed, locally it admits a primitive form, the so-called
Liouville one-form

(49) θ = p dx.

It should be apparent that ω = dθ, so that θ is indeed a primitive.
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Figure 5. On the left, the potential and lowest-energy
wavefunction for the simple harmonic oscillator. On the
right, the phase space of this system, with a typical clas-
sical trajectory.

Let us now explore these ideas more concretely in the context of
a simple example. As a model system, consider the one-dimensional
simple harmonic oscillator. The configuration space of this system is
just R (with coordinate x), and the Hamiltonian is given by

(50) H =
1

2
p2 +

1

2
x2.

Since dH/dt = 0, the energy is a conserved quantity, and since N = 1,
this one conserved quantity serves to completely specify the classical
trajectories of the system. They are curves in phase space of the form

(51) C :
1

2
(x2 + p2)− E = 0,

for E ∈ R+; these are concentric circles about the origin, with radius
determined by the energy. Figure 5 shows the potential of this system,
together with a typical trajectory in the phase space. The dashed line
represents the lowest-energy wavefunction of the system, to which we
will come in a moment.

Now, recall that a Lagrangian submanifold C ⊂ (M , ω) is a sub-
manifold such that ω|C = 0, having the maximal possible dimension,
i.e., dim C = 1

2
dim M . (If C has dimension larger than half the di-

mension of M , the symplectic form cannot be identically zero when
restricted to C , since it is nondegenerate on M .) It should be clear
that, in the above example, the classical trajectories (51) are Lagran-
gian submanifolds of the phase space.

Moreover, since in this example the degree of the symplectic form ω
is equal to the dimension of the phase space, ω is a volume form — in
fact, the standard volume form on R2. We can therefore compute the
area encompassed by a trajectory of energy E by integrating ω over
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the region x2 + p2 < 2E , obtaining

(52) 2πE =

∫
D

dp ∧ dx,

where D is the disc enclosed by the trajectory C . Therefore, classically,
the energy of a trajectory is proportional to the area in phase space it
encompasses.

How do these considerations relate to quantization of the system?
It is well known that the energy levels of the simple harmonic oscillator
are given by

(53) E =
1

2π

∫
D

dp ∧ dx = ~
(
n+

1

2

)
when the system is quantized. Thus, we expect that, in quantizing
a system, the number of quantum states contained in some region of
phase space will be directly proportional to its area. Moreover, we
interpret ~, which has the same units as area in phase space, as the
amount of classical phase space per quantum state. Schematically,

(54) # states ∼ area/~.
This relation has a long history in quantum physics; it is none other
than the Bohr-Sommerfeld quantization condition.

Moreover, since ω admits a primitive, we can use the Stokes theorem
to write

(55) E =
1

2π

∫
D

ω =
1

2π

∮
C

θ,

since C = ∂D and dθ = ω.
We have discussed counting quantum states; what about actually

constructing them? In quantum mechanics, we expect the state to
be a vector in a Hilbert space, which can be represented as a square-
integrable wavefunction Z(x). It turns out that, in the limit where ~ is
small, the wavefunction can be constructed to lowest order in a manner
that bears a striking resemblance to (55):

(56)

Z(x) −−→
~→0

exp

[
i

~

∫ x

0

θ + · · ·
]

= exp

[
i

~

∫ x

0

√
2E − x2 dx+ · · ·

]
Evaluating the wavefunction in this manner for the lowest-energy state
of our system (E = ~/2) yields

(57) Z(x) ≈ exp

[
− 1

2~
x2 + · · ·

]
.
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Indeed, exp(−x2

2~ ) is the exact expression for the n = 0 wavefunction.
We are slowly making progress towards understanding the quan-

tization of our model system. The next step is to understand the
transition between the classical and quantum notions of an observable.
In the classical world, the observables x and p are coordinates in phase
space — in other words, functions on the phase space:

(58) x : M → R, (x, p) 7→ x,

and so forth. General observables are functions of x and p, i.e., general
elements of C∞(M ,R).

In the quantum world, as is well known, x and p should be replaced
by operators x̂ and p̂, obeying the canonical commutation relation

(59) [p̂, x̂] = −i~.

These operators now live in some noncommutative algebra, which is
equipped with an action on the Hilbert space of states. In the position
representation, for instance,

(60) x̂f(x) = xf(x), p̂f(x) = −i~ d
dx
f(x),

where f ∈ L2(R). The constraint equation (51) that defines a classical
trajectory is then replaced by the operator equation

(61)

[
1

2
(x̂2 + p̂2)− E

]
Z(x) = 0,

which is just the familiar Schrödinger eigenvalue equation ĤZ = EZ.
Now, unlike in the classical case, the solutions of (61) in the position
representation will only be square-integrable (and therefore physically
acceptable) for certain values of E . These are precisely the familiar
eigenvalues or allowed energy levels

(62) E = ~
(
n+

1

2

)
.

Taking n = 0, for example, the exact solution is Z(x) = exp(−x2/2~),
just as we claimed above, as the reader may easily verify.

All of this discussion should be taken as illustrating our above claim
that quantum mechanics should properly be understood as a “modern
symplectic geometry,” in which classical constraints are promoted to
operator relations. We have constructed the following correspondence
or dictionary between the elements of the classical and quantum de-
scriptions of a system:
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Classical Quantum
state space symplectic manifold (M , ω) Hilbert space H
states Lagrangian submanifolds vectors (wave functions)

C ⊂M Z ∈H
observables algebra of functions algebra of operators

f ∈ C∞(M) f̂ , acting on H

constraints fi = 0 f̂iZ = 0

We now have a benchmark for what a successful quantization should ac-
complish: for a given classical system, it should construct the quantum
counterpart for each element in the classical description, as summa-
rized above. Of course, we would also like the correspondence principle
to hold: that is, the quantum description should dovetail nicely with
the classical one in some way when we take ~→ 0.

The correspondence between the classical and quantum descrip-
tions is not quite as cut-and-dried as we have made it appear, and
there are a few points that deserve further mention. Firstly, it should
be apparent from our discussion of the harmonic oscillator that not
every Lagrangian submanifold will have a quantum state associated to
it; in particular, only a particular subset of these (obeying the Bohr-
Sommerfeld quantization condition, or equivalently, corresponding to
eigenvalues of the operator Ĥ) will allow us to construct a square-
integrable wavefunction Z(x). There can be further constraints on
quantizable Lagrangian submanifolds [31].

Secondly, let us briefly clarify why quantum state vectors corre-
spond to Lagrangian submanifolds of the classical phase space and
not to classical 1-dimensional trajectories, as one might naively think.
(In our example of the harmonic oscillator we have N = 1 and, as a
result, both Lagrangian submanifolds and classical trajectories are one-
dimensional.) The basic reason why Lagrangian submanifolds, rather
than dimension-1 trajectories, are the correct objects to consider in
attempting a quantization is the following. In quantum mechanics, we
specify a state by giving the results of measurements of observables
performed on that state. For this kind of information to be mean-
ingful, the state must be a simultaneous eigenstate of all observables
whose values we specify, which is only possible if all such observables
mutually commute. As such, to describe the state space in quantum
mechanics, we choose a “complete set of commuting observables” that
gives a decomposition of H into one-dimensional eigenspaces of these
operators. For time-independent Hamiltonians, one of these operators
will always be Ĥ.
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However, to the leading order in ~ the commutator of two quantum
observables must be proportional to the Poisson bracket of the corre-
sponding classical observables. Therefore, if Ĥ, f̂i form a complete set
of commuting quantum-mechanical observables, we must have

(63) {H, fi}P.B. = 0,

where {· , ·}P.B. is the Poisson bracket. But we know that the classical
time-evolution of the quantity fi is determined by the equation

(64)
dfi
dt

+ {H, fi}P.B. = 0.

As such, the quantum-mechanical observables used in specifying the
state must correspond to classically conserved quantities: constants of
the motion. And it is well-known that the maximal possible number
of classically conserved quantities is N = 1

2
dim M , corresponding to a

completely integrable system; this follows from the nondegeneracy of
the symplectic form on the classical phase space. For N > 1, then,
specifying all of the constants of the motion does not completely pin
down the classical trajectory; it specifies anN -dimensional submanifold
C ⊂M . However, it does give all the information it is possible for one
to have about the quantum state. This is why Lagrangian submanifolds
are the classical objects to which one attempts to associate quantum
states.

We should also remark that it is still generically true that wave-
functions will be given to lowest order by

(65) Z(x) = exp

[
i

~

∫ x

x0

θ + · · ·
]
.

This form fits all of the local requirements for Z(x), although it may
or may not produce a globally square-integrable wavefunction.

Finally, the quantum-mechanical algebra of operators is a non-
commutative deformation or q-deformation of the algebra of functions
C∞(M ), where the deformation is parameterized by

(66) q := e~.

In the classical limit, q → 1.
How does the idea of quantization bear any relation to the ostensible

subject of this lecture series, topological quantum field theories? To
illustrate the connection, we will consider a specific example of a TQFT:
the Chern-Simons gauge theory.

As in any gauge theory, the starting point of this theory is the choice
of a gauge group G and the action functional, which in the present case
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ΣM

Figure 6. The setup for Chern-Simons theory: an ori-
ented 3-manifold M with boundary a 2-manifold Σ.

is the Chern-Simons functional:

(67)
1

~

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A).

Here M is a 3-manifold, and the gauge field A is a connection on
a principal G-bundle E → M . The action functional (67) can be
interpreted roughly as a Morse function on the space of gauge fields.
We search for critical points of this functional by solving the equation
of motion, which is the PDE

(68) dA+ A ∧ A = 0.

This equation says that A is a flat connection. How is this gauge
theory formulation related to the picture of a TQFT as a functor, in
the axiomatic language of Atiyah and Segal [4]?

The answer to this question is summarized in the below table, and
illustrates the way in which quantization plays a role. The action func-
tional (67) defines a classical gauge theory; the classical phase space of
this theory is the moduli space of flat connections M = Mflat(G,Σ),
where Σ = ∂M .

Now, let Mflat(G,M) be the moduli space of flat connections on M .
There is a natural mapping

(69) Mflat(G,M) ↪→Mflat(G,Σ)

induced by restriction to Σ = ∂M . The image of this map is the
subspace of M consisting of flat connections on Σ that can be extended
to M ; this is a Lagrangian submanifold C ⊂M .

We are now equipped with precisely the classical data referred to in
our earlier discussion of the quantization problem. If we now quantize
the classical Chern-Simons theory, the classical phase space M and the
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Lagrangian submanifold C ⊂ M will be respectively replaced with a
Hilbert space and a state vector in that Hilbert space. But these are
precisely the objects that we expect a TQFT functor to associate to Σ
and M !

To sum up, our situation is as follows:

Geometry Classical CS Quantum CS
2-manifold symplectic manifold vector space
Σ M = Mflat(G,Σ) HΣ

3-manifold Lagrangian submanifold: vector
M (∂M = Σ) connections extendible to M Z(M) ∈HΣ

To move from the first column to the second, we define the classical
Chern-Simons theory. Moving from the second column to the third
consists of a quantization of this theory. The usual picture of a TQFT
as a functor is the composition of these two: it moves directly from the
first to the third column, ignoring the second.

Let us discuss the phase space of classical Chern-Simons theory a
little further. It is known that all flat connections on Riemann surfaces
are described by their holonomies; that is, the moduli space consists of
maps

(70) M = Hom(π1(Σ)→ G)/conjugation.

As emphasized in the work of Atiyah and Bott [3], this space comes
equipped with a natural symplectic form,

(71) ω =
1

4π2

∫
Σ

Tr δA ∧ δA,

where δ denotes the exterior derivative on M , so that δA is a 1-form
on Σ as well as on M . The Lagrangian submanifold we are considering
is then given by

(72) C = Hom(π1(M)→ G)/conjugation,

and the inclusion map is induced by the natural map π1(Σ)→ π1(M).
This Lagrangian submanifold can be defined by classical constraint
equations of the form

(73) Ai = 0.

Quantization will then replace these with quantum constraints; that is,
operator relations

(74) ÂiZ = 0

much like the classical constraint (51) was replaced by the operator
equation (61) in our previous example.
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Exercise 2. Verify that C is indeed Lagrangian with respect to
the symplectic form (71). That is, show that

(75) ω|C⊂M = 0.

Exercise 3. Let g be the genus of Σ. Show that, for g > 1,

(76) dim M = (2g − 2) dimG.

Solution. Consider the case where G is a simple group. The
fundamental group π1(Σ) is generated by 2g elements Ai and Bi, 1 ≤
i ≤ g, subject to the one relation

(77) A1B1A
−1
1 B−1

1 · · ·AgBgA
−1
g B−1

g = 1.

After applying an element of Hom(π1(Σ) → G), the generators are
mapped to group-valued matrices, and so we need 2g · dimG parame-
ters to specify them all independently. However, there are constraints:
the matrices must obey (77), one matrix equation which eliminates
dimG degrees of freedom. Taking the quotient by conjugacy elimi-
nates another dimG degrees of freedom, leaving

(78) dim M = (2g − 2) dimG,

as we expected. �

Let us now specialize this general discussion and consider the theory
with gauge group G = SL2C on a 3-manifold that is a knot comple-
ment, M = S3 \ N(K). Then, of course, ∂M = Σ =̃ T 2. It follows
immediately that π1(Σ) = Z× Z, so that

(79)
M = Hom(Z× Z→ SL2C)/conjugacy

= (C? × C?)/Z2.

This is exactly the space we considered in section 2 in our discussion
of the A-polynomial: it is the representation variety of the boundary
torus of M ! Moreover, the Lagrangian submanifold is in this case given
by

(80)
C = Hom(π1(M)→ SL2C)/conjugacy

= {(x, y) ∈ (C? × C?)/Z2 : A(x, y) = 0},
where A(x, y) is a familiar polynomial in x and y, interpreted now as a
classical observable giving the classical constraint relation that defines
the submanifold C ⊂M .

The appearance of the A-polynomial in this context clarifies two
mysterious statements that were made in the previous section. Firstly,
it makes apparent in what sense the zero locus of the A-polynomial is
a natural object in symplectic geometry. Secondly, we can now make
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sense of the statement that one can “quantize” the A-polynomial. Hav-
ing interpreted it as a classical constraint equation defining a Lagran-
gian submanifold of a classical phase space, it becomes obvious that
quantization replaces the A-polynomial by an operator in a quantum
constraint equation of the form (74).

What happens when we try to quantize the A-polynomial? The
natural symplectic form (71) on the classical phase space takes the
simple form [26]:

(81) ω =
dy

y
∧ dx
x

= d ln y ∧ d lnx.

The canonical commutation relation is therefore

(82)
[
l̂n y, l̂nx

]
= ~,

which can be rewritten in the form

(83) ŷx̂ = qx̂ŷ.

with q = e~. Given this relation, what form do the operators x̂ and ŷ
take in the position representation? Of course, we must have x̂f(x) =
xf(x). Then the commutation relation becomes

(84) qx̂(ŷf(x)) = ŷ(x̂f(x)),

and implies that ŷ should act as a shift operator ŷf(x) = f(qx). The
reason for this name is the following. Notice, that the symplectic form
(81) has the canonical form in logarithms of x and y, rather than x
and y themselves. Therefore, it is natural to introduce the logarithmic
variable n by the relation x = qn. Then, in terms of n the action of
the operators x̂ and ŷ looks like

(85) x̂f(n) = qnf(n), ŷf(n) = f(n+ 1).

The quantization of the polynomial A(x, y) =
∑

k ak(x)yk will then be
an operator of the form

(86) Â(x̂, ŷ; q) =
∑
k

ak(x̂; q)ŷk.

In general, quantization is a rather delicate and mysterious pro-
cedure [55] (see [31] for a recent discussion). However, for algebraic
curves defined by classical constraint equations of the form A(x, y) = 0,
recent progress in mathematical physics [2, 37, 19, 6, 11] has led to a
systematic way of constructing the coefficients ak(x̂; q) of the quantum
operator (86) entirely from the data of the classical A-polynomial [30]
(see also [5]):

(87) A(x, y)  Â(x̂, ŷ; q).
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In addition, in some cases the curve A(x, y) = 0 comes from extra
data that may be very helpful in constructing its quantum analog.
For instance, the construction [40] of the ordinary A-polynomial based
on the triangulation data of a 3-manifold M admits a beautiful non-
commutative lift [12]. However, since in what follows we need to apply
the procedure (87) to arbitrary curves for which the extra data is not
always available, we shall mainly focus on the so-called topological
recursion approach that involves complex analysis and noncommutative
algebra on C .

In complex analysis, one of the basic ingredients associated to the
curve C : A(x, y) = 0 is the so-called Bergman kernel. It becomes
the first brick in the foundation of the construction (87) based on the
topological recursion, which after a few more systematic and completely
rigorous steps builds the q-difference operator as a power series in ~:

(88) A(x, y)  Â(x̂, ŷ; q) = A(x̂, ŷ) + ~A1(x̂, ŷ) + · · · .

Even though we omit the intermediate steps due to constraints of space,
the reader should simply be aware that a well-defined, systematic pro-
cedure exists. The existence and uniqueness of this procedure are well-
motivated based on physical considerations; in fact, these form one of
the basic premises of quantum mechanics.

By looking at (88) it would seem that we would therefore have to
compute terms to arbitrarily high order in this series to write down the
operator Â. However, in practice, this is not the case; we usually need
to compute only one or sometimes two terms in the series to know Â
exactly! The trick is as follows: if we know, a priori, that the operator
we construct can be written as a rational function of q = e~, then the
higher order terms in the expansion in ~ must resum nicely into an
expression of this form. We also have information about the classical
limit (q → 1) of this expression. Armed with this information, it is
usually pretty straightforward to construct the quantization of A(x, y)
in closed form.

For example, if we know both the classical term and the first quan-
tum correction ~A1(x̂, ŷ) in the expansion (88), there is a good chance
we can reconstruct the quantum operator

(89) Â(x̂, ŷ; q) =
∑
m,n

am,n q
cm,n x̂m ŷn

simply from the data {am,n} of the original polynomial A(x, y) =∑
am,nx

myn and from the exponents {cm,n} determined by ~A1(x̂, ŷ).
This trick becomes especially useful for curves that come from knots
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and 3-manifolds. Indeed, in such examples the leading quantum cor-
rection is determined by the “classical” knot invariant ∆(q) called the
twisted Alexander polynomial. Therefore, a simple mnemonic rule to
remember what goes into the construction of the operator Â(x̂, ŷ; q) in
such situations can be schematically expressed as [30]:

(90) “ A(x, y) + ∆(q) ⇒ Â(x̂, ŷ; q) ”

Concretely, the exponents cm,n in (89) can be determined by requiring
that the relation
(91)

2
∑
m,n

am,n cm,n x
myn =

∂A

∂ lnx

(
∂A

∂ ln y

)−1
∂2A

(∂ ln y)2
+ x

∂∆(x)

∂x

∂A

∂ ln y

holds for all values of x and y (along with A(x, y) = 0).

Example 6. Consider once more the trefoil knot K = 31, which
has A-polynomial A(x, y) = (y−1− 1)(y+x3) and where, following our
earlier agreement, we replaced x2 by x to simplify the expressions, cf.
(39). Notice, that A(x, y) in this example is a degree-2 polynomial in
y. Quantization (88) then gives an operator which is also of degree 2
in ŷ

(92) Â(x̂, ŷ; q) = αŷ−1 + β + γŷ,

where

(93)


α = x2(x−q)

x2−q ;

β = q
(

1 + x−1 − x+ q−x
x2−q −

x−1
x2q−1

)
;

γ = q−x−1

1−qx2 .

In the representation (85), our quantized constraint (74) then gives an
operator relation that takes the form of a recurrence in the variable n:

(94) ÂZ = 0 =⇒ α(qn; q)Zn−1 + β(qn; q)Zn + γ(qn; q)Zn+1 = 0,

where we recall that n was defined so that x = qn.

Exercise 4. Solve this recurrence with the initial conditions

(95) Zn = 0 for n ≤ 0; Z1 = 1.

That is, find the first few terms of the sequence Zn(q) for n = 2, 3, . . .
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Solution. Straightforward computation gives

(96)

Z2(q) = −β(q; q)/γ(q; q)

= − 1− q3

q − q−1
· q
(

1 + q−1 − q − q − 1

q3 − 1

)
= −(1− q3)(1 + q − q2) + q(q − 1)

q − q−1

=
−1 + q3 + q4 − q5

q − q−1

= q + q3 − q4,

as well as

(97)
Z3(q) = −(α(q2; q) + β(q2; q)Z2(q))/γ(q2; q)

= q2 + q5 − q7 + q8 − q9 − q10 + q11,

after a little manipulation. Notice that the Zn all turn out to be poly-
nomials! �

Now, we come to one of the punch lines of these lectures. The reader
who has completed Exercise 1 and followed through the derivation of
(21) may have noticed a startling coincidence: Zn produced by our
our recurrence relation (94) is none other than the n-colored Jones
polynomial; that is, the quantum group invariant of the knot decorated
with extra data consisting of the Lie algebra g = sl(2) and its n-
dimensional representation R = Vn.

This is no coincidence, of course. As we reviewed in section 1, the
n-colored Jones polynomial is simply the partition function of Chern-
Simons TQFT with gauge groupG = SU(2). On the other hand, in this
section we explained that the classical A-polynomial and its quantum,
non-commutative version have a natural home in Chern-Simons TQFT
with complex gauge group GC = SL2C. In particular, we saw how the
usual rules of quantum mechanics replace the classical constraint (80)
with an operator relation (74),

(98) C : A(x, y) = 0  Â(x̂, ŷ; q)ZCS(M) = 0 ,

where ZCS(M) is the state vector associated by quantization to the
Lagrangian submanifold C (or, equivalently, associated by the Chern-
Simons TQFT functor to the 3-manifold M). Since GC = SL2C is a
complexification of G = SU(2), the partition functions in these two
theories are closely related [16, 53]. In particular, it was argued in
[26] that both SU(2) and SL2C partition functions must satisfy the
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quantum constraint equation (98). In the n-representation (85) it takes
the form of a recurrence relation

(99) A(x, y) =
∑
k

ak(x)yk  
∑
k

ak(q
n; q)Jn+k(K; q) = 0 ,

which is precisely our q-difference equation (94) in the above exam-
ple, where K was taken to be the trefoil knot. More generally, the
equation (99) is a q-difference equation, describing the behavior with
respect to n, or “color dependence,” of the n-colored Jones polynomial
that is computed by Wilson loop operators in the SU(2) Chern-Simons
theory.

The relation between the quantization of the A-polynomial and
the quantum group invariants (99) that follows from Chern-Simons
theory is the statement of the quantum volume conjecture [26] (see
[14] for a review of earlier developments that led to it). This conjecture
was independently proposed in [25] around the same time and is also
know as the AJ-conjecture. It provides a bridge between two seemingly
distant areas of knot theory, the classical A-polynomial and the study of
quantum group invariants. Before the discovery of this connection, the
separate communities of knot theorists working on these two different
types of invariants had very little contact with one another.

Do two knots having the same A-polynomial always have all the
same n-colored Jones polynomials? Based on the above connection,
we would expect an affirmative answer, given that the quantization
procedure for the A-polynomial is essentially unique. This has been
checked for knots up to large number of crossings, although there is
as yet no formal proof. If it is true, then a single algebraic curve
constructed without any reference to quantum groups encodes all the
information about the whole tower of n-colored Jones polynomials:

(100) A(x, y)  Â(x̂, ŷ; q)  Jn(K; q) .

Nonetheless, even if all the n-colored Jones polynomials together carry
no more information than the A-polynomial, their relation to quantum
groups still makes them interesting objects of study in their own right.
(It is also worth noting that the study of the colored Jones polynomial
predates the discovery of the A-polynomial.)

Once we explained how to go, via quantization, from the classical
A-polynomial to quantum group invariants (100) it is natural to ask
whether there is a simple way to go back. The generalized volume
conjecture [26] proposes an affirmative answer to this question and is
also based on the fact that the analytic continuation of SU(2) is SL2C.
It states that, in the classical limit q → 1 accompanied by the “large
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color” limit n → ∞, the n-colored Jones polynomial, as a Wilson line
in SU(2) Chern-Simons theory [51], exhibits the exponential behavior

(101) Jn(K; q = e~) ∼
n→∞
~→0

exp

(
1

~
S0(x) + · · ·

)
,

where the limits are taken with qn = x held fixed. Here S0(x) is the
classical action of SL2C Chern-Simons theory, which is

(102) S0(x) =

∫
log y

dx

x

evaluated on a path within the curve C : A(x, y) = 0. Here, by an
abuse of notation, the variable x stands in for a point on the Riemann
surface; S0 is actually a function on C , and the integral in (102) is taken
along a path in C from some fixed base point to the point at which
S0 is evaluated. Moreover, (102) is only well defined if the integrality
condition (44) holds! The change ∆S0 that comes from composing
the path used in our evaluation with an arbitrary closed cycle must be
valued in 2πZ, so that the quantity eiS0 is well-defined and independent
of path; the integrality condition ensures that this is so.

To summarize, the generalized volume conjecture gives us two im-
portant ways of thinking about the A-polynomial: firstly, as a charac-
teristic variety encoding information about SL2C flat connections, and
secondly, as a limit shape in the limit of large color.

We have now begun to see how the seemingly disparate topics we
have been discussing are connected to one another. Roughly speak-
ing, there are four major themes in these lectures: quantum group
invariants, the A-polynomial, quantization, and categorification. We
have now seen how quantization relates the A-polynomial and quan-
tum group invariants, providing a bridge between seemingly unrelated
knot polynomials. In what remains, we will return to ideas of cate-
gorification, hoping to give at least a glimpse of how knot polynomials
arise from deeper and more powerful homological invariants.

4. Categorification

Categorification is a powerful and flexible idea; it can mean different
things in different contexts, and a given mathematical construction may
admit more than one categorification depending on how one chooses to
look at its structure. In the context of topological quantum field theo-
ries, however, categorification is manifested in a very natural way. The
categorification of a 3-dimensional TQFT should be a 4-dimensional
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TQFT, from which the 3D theory is recovered by dimensional reduc-
tion, see e.g. [10, 27]. That is,

3D TQFT
categorification

..
4D TQFT

dimensional reduction

nn

We can tabulate the information that each of these TQFTs should
associate to geometrical objects in the below table:

Geometry 3D TQFT 4D TQFT
3-manifold M , number Z(M), vector space HK

knot K ⊂M polynomial invariant P (K)
2-manifold Σ vector space HΣ category CatΣ

Thus, to a geometrical object of given dimension, a categorified TQFT
associates objects of one higher categorical level than its decategorified
counterpart. (The categorical level of the object associated by a TQFT
to something in geometry corresponds to its codimension, so that a 4D
TQFT assigns numerical invariants to 4-manifolds. Famous examples
of these are given by Donaldson theory [50] and Seiberg-Witten theory
[52].)

In 2000, Mikhail Khovanov [33] succeeded in constructing a cate-
gorification of the Jones polynomial. Like the Jones polynomial, it is
associated to the extra data g = sl(2) and its fundamental representa-
tion R = V2. To give the barest outline, his construction associates a
chain complex to a diagram of a link K. The homology of this chain
complex can be shown to be invariant under the Reidemeister moves,
and therefore to be an invariant of K. Khovanov homology Hi,j(K) is
doubly graded, and the Jones polynomial is its graded Euler charac-
teristic, cf. (1),

(103) J(q) =
∑
i,j

(−1)iqj dimHi,j(K) .

Sometimes it is convenient to encode information about the Khovanov
homology in its Poincaré polynomial:

(104) Kh(q, t) = Psl(2),V2(q, t) =
∑
i,j

tiqj dimHi,j(K).

The Jones polynomial is then recovered by making the evaluation at
t = −1. As an example, the Poincaré polynomial of the trefoil knot is

(105) Kh(q, t;K = 31) = q + q3t2 + q4t3 .

It is easy to see that the evaluation at t = −1 indeed returns the
normalized Jones polynomial of the trefoil knot (21) that we saw in
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Figure 7. The Khovanov homology Hi,j(K = 31) of the
trefoil knot.

section 1. By definition, this version of the homology is called re-
duced. Its close cousin, the unreduced knot homology categorifies the
unnormalized polynomial invariant. Thus, for the unnormalized Jones
polynomial (15) of K = 31 the corresponding categorification is given
by the unreduced Khovanov homology shown in Figure 7.

Much like the Khovanov homology of a knot is a categorification of
its Jones polynomial or quantum sl(2) invariant, there exist general-
izations [57, 56, 48, 8, 20] of the Khovanov homology categorifying
the n-colored Jones polynomials for all n:

(106) Jn(K; q) = Pn(K; q, t)|t=−1 =
∑
i,j

qitj dimH
sl(2),Vn
i,j (K)

∣∣∣∣∣
t=−1

.

The n-colored sl(2) knot homologies satisfy recursion relations, just like
their decategorified versions, and exhibit beautiful asymptotic behavior
in the limit of large n. Both of these behaviors are controlled by a
refined algebraic curve, which is an analogue of the A-polynomial [24]:

(107) C ref : Aref(x, y; t) = 0 .

This curve is a t-deformation of (the image of) the representation vari-
ety of a knot complement M in the classical phase space of the Chern-
Simons theory, which is the moduli space Mflat(SL2C,Σ) of flat connec-
tions. Here Σ = ∂M . Much like the representation variety (80) of M ,
its t-deformation (107) is a holomorphic Lagrangian submanifold with
respect to the symplectic form (81).

Example 7. In section 2 we derived the A-polynomial of the trefoil
knot (39). Then, in section 3 we discussed its quantization, or non-
commutative q-deformation. In both cases, the result is a quadratic
polynomial in y. Similarly, the commutative t-deformation of the A-
polynomial for the trefoil knot is a quadratic polynomial in y,
(108)

Aref(x, y; t) = y2 − 1− xt2 + x3t5 + x4t6 + 2x2t2(t+ 1)

1 + xt3
y +

(x− 1)x3t4

1 + xt3
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which reduces to the ordinary A-polynomial (39) in the limit t = −1.

As in section 3, quantization of Mflat(SL2C,Σ) with its natural sym-
plectic form promotes x and y to operators obeying the commutation
relation

(109) ŷx̂ = qx̂ŷ

and turns the planar algebraic curve (107) into a q-difference recursion
relation, cf. (99),

(110) ÂrefP?(K; q, t) ' 0 ,

where x̂Pn = qnPn and ŷPn = Pn+1. This recursion relation, called
the homological volume conjecture in [24], provides a natural categori-
fication of the generalized volume conjecture that was the subject of
section 3. Unlike the generalized volume conjecture, its homological
version (110) is based on a much more sophisticated physics that in-
volves a physical interpretation of knot homologies in terms of refined
BPS invariants [28, 27] and dynamics of supersymmetric gauge theo-
ries [15, 54, 13, 22]. The details of this physical framework go way
beyond the scope of these lectures and we simply refer the interested
reader to the original papers.

There also exists a homology theory categorifying the HOMFLY-
PT polynomial [34, 35]. As should be obvious, this theory must be
triply graded; the HOMFLY-PT polynomial is recovered by taking the
graded Euler characteristic, cf. (103),

(111) Pa,q(K) =
∑
ijk

(−1)iqjak dim Hijk(K) .

Just as we did for Khovanov homology , we can construct the Poincaré
polynomial associated to the HOMFLY homology , which will encode
information about the dimensions of its groups at each level:

(112) P(a, q, t) =
∑
ijk

tiqjak dim Hijk(K) .

Then decategorification corresponds once more to evaluation at the
value t = −1. It turns out that even the HOMFLY homology is not a
complete invariant of knots; nonetheless, these homological invariants
are strictly finer and stronger than their decategorified counterparts.
For instance, HOMFLY homology can distinguish between the knots
51 and 10132, discussed earlier, that have identical Jones, Alexander,
and HOMFLY-PT polynomials (18).
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Figure 8. The HOMFLY homology for knots 51 and
10132. (Images from [17].)

We should remark also that n-colored generalizations of HOMFLY
homology can be constructed, and that the color dependence can be
encoded in an algebraic curve, just as the zero locus of theA-polynomial
encodes the information about color dependence of the n-colored Jones
polynomial. We will return to this point and discuss the corresponding
algebraic curve in much more detail in the final section of these lectures.
Meanwhile, in the rest of this section we mostly focus on the ordinary,
uncolored HOMFLY homology aiming to explain its structure and how
to compute it in practice.

As we shall see, the structure of the homological knot invariants
turns out to be so rich and so powerful that, once we learn enough
about it, we will be able to compute, say, the Khovanov homology and
the HOMFLY homology of the trefoil knot solely from the data of its
Jones polynomial. In other words, in a moment we will learn powerful
techniques that will allow us to reproduce (105) without even learning
the definition of Khovanov homology. And, much of this structure
is present — in fact, in a richer form! — in the colored HOMFLY
homology as well [29].

Let us start by summarizing the familiar relations (13), (103),
(111) between homological and polynomial invariants diagramatically,
as shown in Figure 9. We would like to be able to fill in the missing
fourth arrow, i.e., to have a way of recovering Khovanov homology di-
rectly from the HOMFLY homology. This, however, is rather delicate
for a number of reasons. First, the specialization a = q2 does not make
sense in the context of the homology theories. At best one could try
to complete the diagram by working with the Poincaré polynomials
associated to these theories:

(113) P(a, q, t)
t=−1

vv

a=q2

))

P (a, q)
a=q2

((

Kh(q, t)
t=−1

uu

J(q)
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HOMFLY homology

Hijk(K)

Euler char.

ww

HOMFLY polynomial

Pa,q(K)

a=q2

''

Khovanov homology

Hi,j(K)

Euler char.

ww

Jones polynomial

J(q)

Figure 9. A summary of relations between homological
and polynomial invariants.

As we explain shortly, even this is too naive due to a simple, yet con-
ceptual reason. Nevertheless, for a moment let us ignore this issue and
proceed as if (113) were actually correct.

Example 8. Let us see if we can use the information in (113) to
reconstruct P(a, q, t) for the trefoil knot. We know already that

(114)

{
P (a, q) = aq−1 + aq − a2,

Kh(q, t) = q + q3t2 + q4t3.

We can attempt to guess P(a, q, t) just by comparing terms; this gives

(115) P(a, q, t) = aq−1 + aqt2 + a2t3.

This naive guess turns out to be correct! Using only information from
the HOMFLY-PT polynomial and Khovanov homology (both of which
are easily computable), we have obtained information about the triply-
graded HOMFLY homology theory, which encodes information about
the sl(N) homological invariants for all N .

In fact, one can even get to (115) without knowing the Khovanov ho-
mology! Our task is to assign a t-degree to each term in the HOMFLY-
PT polynomial. We can do this using the following trick: From Exer-
cise 1, the reader should know that evaluating P (a, q) at a = q yields
a monomial (exactly which monomial depends on a simple knot in-
variant and a choice of normalization). This turns out to be true for
any knot: the HOMFLY-PT polynomial will always become trivial,
i.e., monomial, when evaluated at a = q. Therefore, to ensure the
needed cancellation when the specialization a = q is made, the normal-
ized HOMFLY-PT polynomial for any knot must have the following
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schematic form:

(116) Pa,q = 1 + (1− a−1q)Q(a, q),

where Q is some polynomial factor. The basic reason for this is that
taking a = q corresponds to asking about the sl(1) polynomial invari-
ant, which must always be trivial. A similar simplification happens in
the case a = q−1.

What about the sl(1) homological invariant? Since P(a, q, t) has
only positive coefficients, P(q, q, t) can’t be trivial — it must reduce to
a monomial only because of cancellations that occur for t = −1. But
we would not expect to be able to construct any nontrivial invariants
with sl(1), homological or otherwise. This is a clue that something
more sophisticated must be happening in the way that one extracts
Khovanov homology (generally, sl(N) homology) from the HOMFLY
homology.

The reason, to which we alluded earlier, is that when polynomial
knot invariants are categorified one correspondingly needs to upgrade
the specialization a = qN of section 1 to homological level. In other
words, trying to use the specialization a = qN as we did in diagram
(113) is too naive and the suitable operation should also be from the
world of homological algebra.

It turns out that the correct homological lift of the specialization
a = qN involves a conceptually new ingredient, which has no analog
at the (decategorified) polynomial level: a family of differentials {dN}
on the HOMFLY homology, indexed by N ∈ Z. These differentials
endow HOMFLY homology with a structure that is much richer than
what can be seen at the polynomial level and that is responsible for
our claim that (115) can be derived even without the knowledge of
the Khovanov homology. By viewing the triply-graded homology as a
complex and taking its homology with respect to this differential, one
recovers the doubly-graded Khovanov homology. Specifically, in the
grading conventions of [29], the differentials have degree

(117)
dN>0 :(−1, N,−1),

dN≤0 :(−1, N,−3)

with respect to (a, q, t) grading. The homology of H?, viewed as a com-
plex with differential dN , returns the doubly-graded sl(|N |) homology
theory [34] or the knot Floer homology [44, 46] in the special case
N = 0, see [17] for details. In particular, its homology with respect to
the differentials d1 and d−1 must be trivial.
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For instance, in considering the reduction of HOMFLY homology
to the sl(1) homological invariant, almost all of the terms in the triply-
graded HOMFLY homology will be killed by the differential d1, leaving
behind a “trivial” one-dimensional space,

(118) dim (H?, d1) = 1 .

Because the differential d1 has definite grading (117), the Poincaré
polynomial of HOMFLY homology therefore must be of the following
general form

(119) P(a, q, t) = 1 + (1 + a−1qt−1)Q+(a, q, t) ,

where the first term represents a contribution of the (trivial) sl(1) knot
homology, and Q+(a, q, t) is some polynomial with positive coefficients.
Note, that the Poincaré polynomial (119) necessarily has all of its co-
efficients nonnegative. Similar structure follows from the existence of
another canceling differential d−1 that also kills all but one generators
of the HOMFLY homology. The physical interpretation of the differ-
entials {dN} can be found in [29].

Now, just from the little we learned about the differentials d1 and
d−1, we can reconstruct the HOMFLY homology of the trefoil knot.
First, we can get information about the a- and q-degrees of nontrivial
HOMFLY homology groups just from the HOMFLY-PT polynomial.
For the trefoil knot, these are depicted below:

−1 0 1

1

2

q

a

d−1 d1

It is clear that each of the differentials d±1 can only act nontrivially in
one place. From the condition that they give rise to trivial homology,
each must be surjective; this determines the relative t-degree of each
group. Taking the point with (a, q)-degree (1,−1) to have t = 0, it
immediately follows that the degrees of the other groups with respect
to (a, q, t) degree are (2, 0, 3) and (1, 1, 2). We have now managed to
extract this information without even computing Khovanov homology;
the results of Exercise 1 and the above trick are all we need.

5. Epilogue: super-A-polynomial

In this section, we give a somewhat deeper discussion of the connec-
tion between physics, homological knot invariants, and the quantization
of the A-polynomial, constructing one final bridge between the ideas of
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quantization and categorification. This final section of the lectures can
be seen as an addendum; based on recent progress [1, 23, 39, 22] it
summarizes material that was covered in a talk given at the conference
following the summer school, and so is somewhat more technical.

In these lectures, we saw several deformations of the classical A-
polynomial A(x, y) introduced in section 2. Thus, in section 3 we
saw how quantization of SL2C Chern-Simons theory leads to a non-
commutative q-deformation (47). Then, in section 4 we saw how more
sophisticated physics based on refined BPS invariants leads to a cat-
egorification of the generalized volume conjecture and a commutative
t-deformation (107).

These turn out to be special cases of a more general three-parameter
“super-deformation” of the A-polynomial introduced in [23]. Two out
of these three deformations are commutative and will be parametrized
by a and t, while the third non-commutative deformation is produced
essentially by the quantization procedure (88) of section 3:

(120) Asuper(x, y; a, t)  Âsuper(x̂, ŷ; a, q, t) .

What is the meaning of this super-A-polynomial?
The best way to answer this question is to consider an example. In

fact, let us repeat the analogs of Example 6 and Exercise 4:

Example 9. For our favorite example, the trefoil knot K = 31,
we know from our earlier discussion that the classical A-polynomial
A(x, y) = (y− 1)(y+x3) is quadratic in y, and so are its t-deformation
(108) and q-deformation (92). The same is true of the super-A-polynomial
of K = 31,

Asuper(x, y; a, t) = y2 − a (1− t2x+ 2t2(1 + at)x2 + at5x3 + a2t6x4)

1 + at3x
y

+
a2t4(x− 1)x3

1 + at3x
.

(121)

which clearly reduces to (108) upon setting a = 1 and to the ordinary
A-polynomial (39) upon further specialization to t = −1. Moreover,
the quantization procedure of section 3 turns super-A-polynomial (121)
into a q-difference operator, which can be interpreted as a recurrence
relation, similar to (120),

(122) Âsuper(x̂, ŷ; a, q, t) = α + βŷ + γŷ2

=⇒ αPn + βPn+1 + γPn+2 = 0 .
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Here, the coefficients α, β, and γ are certain rational functions of the
variables a, q, x ≡ qn, and t, whose explicit form can be found in [23].

Exercise 5. As in Exercise 4, solve the recurrence (122) with the
initial conditions

(123) Pn = 0 for n ≤ 0; P1 = 1.

That is, find the first few terms of the sequence Pn(q) for n = 2, 3, . . .

Solution. Straightforward computation gives:

n Pn(a, q, t)
1 1
2 aq−1 + aqt2 + a2t3

3 a2q−2 + a2q(1 + q)t2 + a3(1 + q)t3 + a2q4t4 + a3q3(1 + q)t5 + a4q3t6

4 a3q−3 + a3q(1 + q + q2)t2 + a4(1 + q + q2)t3 + a3q5(1 + q + q2)t4 +
+ a4q4(1 + q)(1 + q + q2)t5 + a3q4(a2 + a2q + a2q2 + q5)t6 +
+ a4q8(1 + q + q2)t7 + a5q8(1 + q + q2)t8 + a6q9t9

How should we interpret these polynomial invariants? The answer
can be guessed from a couple of clues in the above table: firstly, all
Pn(a, q, t) involve only positive integer coefficients. Secondly, we have
seen P2(a, q, t) before; it is the Poincaré polynomial (115) of the triply-
graded HOMFLY homology of the trefoil knot! �

These considerations lead one to guess, correctly, that Pn(a, q, t) is
the Poincaré polynomial of the n-colored generalization of the HOM-
FLY homology:

(124) Pn(a, q, t) =
∑
ijk

tiqjak dim H (n)
ijk (K) .

Naively, one might expect that the specialization a = q2 in the polyno-
mial Pn(a, q, t) should return the n-colored sl(2) homology in (106),
and so forth. However, in the homological world, this specialization
is a little bit more subtle. It turns out that, just as we saw earlier
in section 4, the colored homology H (n)

ijk (K) comes naturally equipped
with a family of differentials dN ; viewing H (n)

ijk (K) as a complex and
taking its homology with respect to the differential d2 allows one to
pass directly from the n-colored HOMFLY homology to the n-colored
analog of the Khovanov homology.

To summarize, the super-A-polynomial encodes the “color depen-
dence” of the colored HOMFLY homology , much like the ordinary A-
polynomial and its t-deformation do for the colored Jones polynomial
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(99) and the colored sl(2) homology (110), respectively:

(125) ÂsuperP?(a, q, t) ' 0 .

Moreover, setting q = 1 gives the classical super-A-polynomial with two
commutative parameters a and t. Its zero locus defines an algebraic
curve

(126) C super : Asuper(x, y; a, t) = 0 .

which in various limits reduces to the A-polynomial curve (24) and
its “refined” version (107). This curve plays the same role for colored
HOMFLY homology as the ordinary A-polynomial does for the colored
Jones invariants. Specifically, there is an obvious analog of the gen-
eralized volume conjecture (101), which states that (126) is the limit
shape for the Sn-colored HOMFLY homology in the large color limit
n→∞ accompanied by q → 1 [23].

A simple way to remember different specializations of the two-
parameter “super-deformation” of the A-polynomial is via the following
diagram:

(127) Asuper(x, y; a, t)

a=1

ww

t=−1

((

Aref(x, y; t)
t=−1

''

AQ-def(x, y; a)

a=1

vv

A(x, y)

which should remind the reader of the diagram (113) expressing a sim-
ilar relation between various polynomial and homological invariants
discussed here. Indeed, each of the invariants in (113) has a n-colored
analog, whose color dependence is controlled by the corresponding de-
formation of the A-polynomial in (127). In this diagram, we included
yet another deformation of the A-polynomial, which can be obtained
from the super-A-polynomial by setting t = −1. This so-called Q-
deformation of the A-polynomial was recently studied in [1], where
it was conjectured that AQ-def(x, y; a) agrees with the augmentation
polynomial of knot contact homology [41, 18, 42].

As a closing remark, we should mention that the colored homologi-
cal invariants have even more structure than we have so far discussed.
One can also construct a family of colored differentials, which act by
removing boxes from Young tableaux or reducing the dimension of the
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representation in the decoration of a link diagram [29]. For example,

(128) (H ��, dcolored) 'H �,

where (H ��, dcolored) denotes the homology of the complex with respect
to the indicated differential. This can be expressed for the respective
Poincaré polynomials by a relation of the form (119):

(129) P ��(a, q, t) = asP�(a, q2, t) + (1 + at)Q+(a, q, t),

showing the color dependence of these invariants in the form that nicely
integrates with the recursion (125).

In general, there are many more colored differentials, which alto-
gether form a very rich and rigid structure [29]. To fully appreciate
the beauty and the power of this structure one needs to consider ho-
mologically thick knots. Roughly speaking, these are the knots whose
homological invariants contain a lot more new information compared
to their polynomial predecessors. The knot 819 = T (3,4) — that can be
equivalently viewed as a (3, 4) torus knot — is the first example of a
homologically thick knot. Other examples of homologically thick knots
and links include mutants.

In the case of n-colored HOMFLY homology that we discussed ear-
lier, the colored differentials include the differentials dN of section 4 for
special values of N in the range −2n+ 3, . . . , 1. Note, in the uncolored
theory (n = 2) this range contains only three differentials, d±1 and d0,
which play a very special role. Namely, the first two are canceling differ-
entials, whereas d0 is the differential that relates HOMFLY homology
to knot Floer homology [17]. We emphasize that the last relation really
requires the knowledge of how d0 acts on HOMFLY homology, which
is an extra data not contained in the Poincaré polynomial P(a, q, t).
Curiously, this extra data is automatically contained in the colored ver-
sion of the HOMFLY homology, so that knot Floer homology can be
recovered directly from Pn(a, q, t), even for homologically thick knots!

The reason for this is that all three special differentials d1, d−1, and
d0, have analogs in the n-colored theory. Moreover, they are part of the
colored differentials dN , with N = −2n+3, . . . , 1. Specifically, in the n-
colored HOMFLY homology the differentials d1 and d1−n are canceling,
whereas d2−n provides the relation to knot Floer homology [29, 45].
And the virtue of the colored theory is that the action of this latter
differential can be deduced from the data of Pn(a, q, t) alone. In other
words, what in the uncolored theory appears as a somewhat bizarre
and irregular behavior at N = −1, 0,+1 becomes a natural and simple
structure in the colored theory.
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