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Broom Bridge

“Here as he walked by on the 16th of October 1843 Sir William Rowan Hamil-

ton in a flash of genius discovered the fundamental formula for quaternion

multiplication

I2 = J2 = K2 = IJK = −1

and cut it on a stone of this bridge.”
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Geometric structures

DEFINITION: A geometric structure (Elie Cartan, Charles Ehresmann) is

an atlas on a manifold, with the differentials of all transition functions in a

given subgroup G ⊂ GL(n,R).

EXAMPLE: GL(n,C) ⊂ GL(2n,R) (“the complex structure”).

EXAMPLE: Sp(n,R) ⊂ GL(2n,R) (“the symplectic structure”).

“Quaternionic structures” in the sense of Elie Cartan don’t exist.

THEOREM: Let f : Hn −→ Hm be a function, defined locally in some open

subset of n-dimensional quaternion space Hn. Suppose that the differential

Df is H-linear. Then f is a linear map.

Proof (a modern one): The graph of f is a hyperkähler (“trianalytic”)

submanifold in Hn × Hm, hence geodesically complete, hence linear.
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Complex manifolds (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

REMARK: The “usual definition”: complex structure is a geometric struc-

ture: an atlas on a manifold with differentials of all transition functions in

GL(n,C).

THEOREM: (Newlander-Nirenberg)

These two definitions are equivalent.
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Kähler manifolds (reminder)

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian
form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if
dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler
class of M , and ω the Kähler form.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is
called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is orthogonal and
torsion-free.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) (M, I, g) is Kähler

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.
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Algebraic geometry over H.

Over C, we have 3 distinct notions of “algebraic geometry”:

1. Scheme over C: locally ringed space with Zariski topology, each ring a

quotient of a polynomical ring.

2. Complex manifold: manifold with holomorphic transition functions.

3. Kähler manifold: complex structure, metric, Levi-Civita connection,

∇I = 0.

The first notion does not work for H, because polynomial functions on Hn

generate all real polynomials on R4. The second version does not work, be-

cause any quaternionic-differentiable function is linear. The third one works!

Hyperkähler manifolds.
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Hyperkähler manifolds

Eugenio Calabi

DEFINITION: (E. Calabi, 1978)
Let (M, g) be a Riemannian manifold equipped with three complex structure
operators I, J,K : TM −→ TM , satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are Kähler. Then (M, I, J,K, g) is called hyperkähler.
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Holomorphic symplectic geometry

CLAIM: A hyperkähler manifold (M, I, J,K) is holomorphically symplectic

(equipped with a holomorphic, non-degenerate 2-form). Recall that M is

equipped with 3 symplectic forms ωI, ωJ, ωK.

LEMMA: The form Ω := ωJ+
√
−1ωK is a holomorphic symplectic 2-form

on (M, I).

Converse is also true, as follows from the famous conjecture, made by Calabi

in 1952.

THEOREM: (S.-T. Yau, 1978) Let M be a compact, holomorphically sym-

plectic Kähler manifold. Then M admits a hyperkähler metric, which is

uniquely determined by the cohomology class of its Kähler form ωI.

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-

ometry
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“Hyperkähler algebraic geometry” is almost as good as the usual one.

Define trianalytic subvarieties as closed subsets which are complex analytic

with respect to I, J, K.

0. Trianalytic subvarieties are singular hyperkähler.

1. Let L be a generic quaternion satisfying L2 = −1. Then all complex

subvarieties of (M,L) are trianalytic.

2. A normalization of a hyperkähler variety is smooth and hyperkähler. This

gives a desingularization (“hyperkähler Hironaka”).

3. A complex deformation of a trianalytic subvariety is again trianalytic, the

corresponding moduli space is (singularly) hyperkähler.

4. Similar results are true for vector bundles which are holomorphic under I,

J, K (“hyperholomorphic bundles”)
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Examples of hyperkähler manifolds (reminder)

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T ∗CPn (Calabi).

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

EXAMPLE: Take a 2-dimensional complex torus T , then the singular locus
of T/±1 is of form (C2/±1) × T . Its resolution T̃/±1 is called a Kummer
surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym2 T , with a natural action of T , and
let T [2] be a blow-up of a singular divisor. Then T [2] is naturally isomorphic
to the Kummer surface ˜T/±1.

DEFINITION: A complex surface is called K3 surface if it a deformation
of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkähler. Then M is either
a torus or a K3 surface.
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Hilbert schemes (reminder)

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-
sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power SymnM .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler sur-
face is hyperkähler.

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T [n]/T is a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler
manifolds, constructed by K. O’Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.
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Induced complex structures

LEMMA: Let ∇ be a torsion-free connection on a manifold, I ∈ EndTM an

almost complex structure, ∇I = 0. Then I is integrable.

Proof: Let X,Y ∈ T1,0M , then [X,Y ] = ∇XY −∇YX ∈ T1,0M .

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c,

(M,L) has no divisors.

REMARK: Because of the Lemma above, induced complex structure op-

erators are integrable.
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Hodge theory: graded vector spaces and algebras

DEFINITION: A graded vector space is a space V ∗ =
⊕
i∈Z V

i.

REMARK: If V ∗ is graded, the endomorphisms space End(V ∗) =
⊕
i∈Z Endi(V ∗)

is also graded, with Endi(V ∗) =
⊕
j∈Z Hom(V j, V i+j)

DEFINITION: A graded algebra(or “graded associative algebra”) is an as-

sociative algebra A∗ =
⊕
i∈ZA

i, with the product compatible with the grading:

Ai ·Aj ⊂ Ai+j.

REMARK: A bilinear map of graded paces which satisfies Ai · Aj ⊂ Ai+j is

called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of

vector spaces with U(1)-action, with the weight decomposition providing

the grading. Then a graded algebra is an associative algebra in the

category of spaces with U(1)-action.
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Hodge theory: supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.
14
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Hodge theory: Laplacian

DEFINITION: Let M be an oriented Riemannian manifold. The d∗-operator

is a Hermitian adjoint to d with respect to the product α, β −→
∫
M(α, β) VolM .

DEFINITION: The anticommutator ∆ := {d, d∗} = dd∗ + d∗d is called the

Laplacian of M . It is self-adjoint and positive definite: (∆x, x) = (dx, dx) +

(d∗x, d∗x). Also, ∆ commutes with d and d∗ (Lemma 1).

THEOREM: (The main theorem of Hodge theory)

There is a basis in the Hilbert space L2(Λ∗(M)) consisting of eigenvec-

tors of ∆.

THEOREM: (“Elliptic regularity for ∆”) Let α ∈ L2(Λk(M)) be an eigen-

vector of ∆. Then α is a smooth k-form.
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Hodge theory: harmonic forms

DEFINITION: The space Hi(M) :=
ker d

∣∣
ΛiM

d(Λi−1M)
is called the de Rham coho-

mology of M .

DEFINITION: A form α is called harmonic if ∆(α) = 0.

REMARK: Let α be a harmonic form. Then (∆x, x) = (dx, dx) + (d∗x, d∗x),

hence α ∈ ker d ∩ ker d∗

REMARK: The projection Hi(M)−→Hi(M) from harmonic forms to

cohomology is injective. Indeed, a form α lies in the kernel of such projection

if α = dβ, but then (α, α) = (α, dβ) = (d∗α, β) = 0.

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism

(see the next page).
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Hodge theory and the cohomology

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d∗)2 = 0, one has {d,∆} = 0. This means

that ∆ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition Λ∗(M)=̃
⊕
αH∗α(M), where α

runs through all eigenvalues of ∆, and H∗α(M) is the corresponding eigenspace.

For each α, de Rham differential defines a complex

H0
α(M)

d−→ H1
α(M)

d−→ H2
α(M)

d−→ ...

Step 3: On H∗α(M), one has dd∗+ d∗d = α. When α 6= 0, and η closed, this

implies dd∗(η) + d∗d(η) = dd∗η = αη, hence η = dξ, with ξ := α−1d∗η. This

implies that the complexes (H∗α(M), d) don’t contribute to cohomology.

Step 4: We have proven that

H∗(Λ∗M,d) =
⊕
α
H∗(H∗α(M), d) = H∗(H∗0(M), d) = H∗(M).
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The Hodge decomposition in linear algebra (reminder)

DEFINITION: The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is de-

fined in such a way that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -

eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.

REMARK: The operator I induces U(1)-action on V by the formula ρ(t)(v) =

cos t · v + sin t · I(v). We extend this action on the tensor spaces by mupti-

plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum

of 1-dimensional representations Wi(p), with U(1) acting on each Wi(p)

as ρ(t)(v) = e
√
−1 pt(v). The 1-dimensional representations are called weight

p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-

composition W = ⊕W p, where each W p = ⊕iWi(p) is a sum of 1-dimensional

representations of weight p.

REMARK: The Hodge decomposition ΛnVC =
⊕
p+q=nΛp,qV is a weight

decomposition, with Λp,qV being a weight p− q-component of ΛnVC.

REMARK: V p,p is the space of U(1)-invariant vectors in Λ2pV .
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Hodge decomposition on cohomology

THEOREM: (Bott)

Let M be a Riemannian manifold, and V : TM −→ TM an endomorphism

satisfying ∇V = 0. Then [V,∆] = 0. In particular, if M is compact, V acts

on cohomology of M .

COROLLARY: The Weil operator W
∣∣∣Λp,q(M) =

√
−1 (p − q) acts on coho-

mology of a compact Kähler manifold, giving the Hodge decomposition:

H∗(M) =
⊕
Hp,q(M).

COROLLARY: For any hyperkähler manifold, the group SU(2) of unitary

quaternions defines SU(2)-action on cohomology.

REMARK: For each induced complex structure L, we have an embedding

U(1) ⊂ SU(2). Therefore, the Hodge decomposition for L = aI + bJ + cK

is induced by the SU(2)-action.

20



Hyperkähler manifolds, lecture 3 M. Verbitsky

SU(2)-action on the cohomology and its applications

DEFINITION: Trianalytic subvarieties are closed subsets which are com-

plex analytic with respect to I, J, K.

REMARK: Trianalytic subvarieties are hyperkähler submanifolds out-

side of their singularities.

REMARK: Let [Z] be a fundamental class of a complex subvariety Z on a

Kähler manifold. Then Z is U(1)-invariant.

COROLLARY: A fundamental class of a trianalytic subvariety is SU(2)-

invariant.

THEOREM: Let M be a hyperkähler manifold. Then there exists a count-

able subset S ⊂ CP1, such that for any induced complex structure L ∈ CP1\S,

all compact complex subvarieties of (M,L) are trianalytic.

Its proof is based on Wirtinger’s inequality.
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Wirtinger’s inequality

PROPOSITION: (Wirtinger’s inequality)

Let V ⊂W be a real 2d-dimensional subspace in a complex Hermitian vector

space (W, I, g), and ω its Hermitian form. Then Volg V > 1
2dd!

ωd|V , and the

equality is reached only if V is a complex subspace.

COROLLARY: Let (M, I, ω, g) be a Kähler manifold, and Z ⊂ M its real

subvariety of dimension 2d. Then
∫
Z VolZ > 1

2dd!

∫
Z ω

d, and the equality is

reached only if Z is a complex subvariety.

REMARK: Notice that
∫
Z ω

d is a (co)homology invariant of Z, and stays

constant if we deform Z. Therefore, complex subvarieties minimize the

Riemannian volume in its deformation class.
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Wirtinger’s inequality for hyperkähler manifolds

DEFINITION: Let (M, I, J,K, g) be a hyperkähler manifold, and Z ⊂ M a

real 2d-dimensional subvariety. Given an induced complex structure L = aI +

bJ + cK, define the degree degL(Z) := 1
2dd!

∫
Z ω

d
L, where ωL(x, y) = g(x, Ly),

which gives ωL = aωI + bωJ + cωK.

Proposition 1: Let Z ⊂ (M,L) be a complex analytic subvariety of (M,L).

(a) Then degL(Z) has maximum at L. (b) Moreover, this maximum is

absolute and strict, unless degL(Z) is constant as a function of L. (c) In

the latter case, Z is trianalytic.

Proof. Step 1: By Wirtinger’s inequality, Volg Z > degL(Z), and the equality

is reached if and only if Z is complex analytic in (M,L). This proves (a).

Step 2: If the maximum is not strict, there are two quaternions L and L′

such that Z is complex analytic with respect to L and L′. This means that

TZ is preserved by the algebra of quaternions generated by L and L′,
hence Z is trianalytic, and degL(Z) constant. This proves (b) and (c).
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Trianalytic subvarieties in generic induced complex structures

THEOREM: Let M be a hyperkähler manifold. Then there exists a count-

able subset S ⊂ CP1, such that for any induced complex structure L ∈ CP1\S,

all compact complex subvarieties of (M,L) are trianalytic.

Proof. Step 1: Let R ⊂ H2(M,Z) be the set of all integer cohomology

classes [Z], for which the function degL([Z]) =
∫
[Z] ω

d
L is not constant, and S

the set of all strict maxima of the function degL([Z]) for all [Z] ∈ R. Then

S is countable. Indeed, degL([Z]) is a polynomial function.

Step 2: Now, let L ∈ CP1\S. For all complex subvarieties Z ⊂ (M,L),

degL([Z]) cannot have strict maximum in L. By Proposition 1 (c), this

implies that Z is trianalytic.

DEFINITION: A divisor on a complex manifold is a complex subvariety of

codimension 1.

COROLLARY: For M compact and hyperkähler, and L ∈ CP1 generic, the

manifold (M,L) has no complex divisors. In particular, it is non-algebraic.
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