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The problem

Let X1,X2, ... be a sequence of identically distributed random variables
(r.v-s). Denote by F (x) the distribution function of X1. Let
X1:n ≤ ... ≤ Xn:n be the corresponding order statistics based on the
sample X1, ...,Xn. Consider the following two empirical distribution
functions (d.f.-s):

Fn(t) :=
1
n

n∑
i=1

I(Xi < t),

En(t) :=
1
n

n∑
i=1

I(EXi :n < t) if E|X1| < ∞,

where I(·) is the indicator of an event (including the nonrandom case).
The nonrandom empirical d.f. En(t) was introduced by W. Hoeffding
(1953). He proved that, in the iid case,

lim
n→∞

∫
g(x)dEn(x) = Eg(X1) (1)

for any continuous function g such that the modulus |g | has a convex
majorant integrable w.r.t. F .
The main goal is to extend (1) to the case of dependent r.v-s {Xi}.
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Preliminaries

For an arbitrary distribution function G (x) we introduce the quantile
transform (generalized inverse function)

G−1(t) := inf{x : G (x) ≥ t}, t ∈ (0, 1).

The values G−1(0) and G−1(1) may be defined as the corresponding
limits.
Recall the main property of the quantile transforms. Hereinafter we
denote by ω a random variable having the (0, 1)-uniform distribution.
Then
1) The random variable G−1(ω) has the distribution function G (x).
2) If Gn

w−→ G then G−1
n (ω) → G−1(ω) a.s.

We study limit behavior of the quantile empirical process F−1
n (t),

t ∈ (0, 1), and its mean function EF−1
n (t) ≡ E−1

n (t) as well as of some
functionals of the processes under consideration.
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Introduce the following notation:

‖g‖p :=

(∫ 1

0
|g(t)|pdt

)1/p

= (E|g(ω)|p)1/p
, p ≥ 1.

Lemma 1 (I.S.Borisov and A.V.Shadrin, 1996).
Given arbitrary d.f.-s G1 and G2,

‖G−1
1 − G−1

2 ‖p
p ≤ C (p)

∫
R
|G1(t)− G2(t)||t|p−1dt, (2)

where
1) C (p) = p2p−1 for any p ≥ 1 (in the case of odd numbers p, inequality
(2) with the same constant was obtained by Sh. Ebralidze, 1970);
2) The value C (p) = p2p−1 is unimprovable in the class of centered
distributions for every p ≥ 1;
3) If p = 1 then the sign “≤” in (2) can be replaced by “=”
(Yu. V. Prohorov, 1956);
4) C (p) = p if there exists t ∈ [0, 1] such that G−1

1 (t) = G−1
2 (t) = 0

(the case of zero medians, i.e., t = 1/2, has been studied by
Sh. Ebralidze, 1970).
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Corollary 1. Let {Xi} be a stationary ergodic sequence and E|X1|p < ∞,
p ≥ 1. Then, as n →∞,

‖F−1
n − F−1‖p → 0 a.s.

Corollary 2. Let {Xi} be a sequence of identically distributed random
variables such that E|Fn(t)− F (t)| → 0 as n →∞ for all t ∈ R. Then,
under the restriction E|X1|p < ∞, p ≥ 1, as n →∞,

‖E−1
n − F−1‖p

p ≤
∫ 1

0
E|F−1

n (t)− F−1(t)|dt

≤ C (p)

∫
R

E|Fn(t)− F (t)||t|p−1dt → 0. (3)
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Corollary 3. Under the restrictions of Corollary 2 for p = 2,

1
n

n∑
i=1

VarXi :n = ‖F−1‖2
2 − ‖E−1

n ‖2
2 → 0 (4)

since ‖F−1‖2
2 = EX 2

1 = 1
n

∑n
i=1 EX 2

i :n and ‖E−1
n ‖2

2 = 1
n

∑n
i=1(EXi :n)

2;
moreover, in view of (3) and the triangle inequality,∣∣‖E−1

n ‖2 − ‖F−1‖2
∣∣ ≤ ‖E−1

n − F−1‖2 → 0.
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Corollary 4. Under the restrictions of Corollary 2 for p = 1, the
convergence En

w−→ F is valid, i.e.,

lim
n→∞

∫
g(x)dEn(x) = Eg(X1)

for all continuous bounded functions g.
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It remains only to verify the uniform integrability condition.

Lemma 2. For any sequence of identically distributed r.v-s {Xi} with
finite mean, and for any nonnegative convex function h such that
Eh(X1) < ∞, the following upper bound is valid:

∆n :=
1
n

n∑
i=1

h(EXi :n)I(h(EXi :n) > K ) ≤ 3Eh(X1)I(h(X1) > K/2)

for all K > 0.
Proof. Denote

hK (x) := (h(x)− K )I(h(x) > K ) = max{h(x)− K , 0}.

The function hK (x) is convex. Applying Jensen’s inequality twice, we
obtain

∆n =
1
n

n∑
i=1

hK (EXi :n) +
K
n

n∑
i=1

I(h(EXi :n) > K )

≤ EhK (X1) +
K
n

n∑
i=1

I(Eh(Xi :n) > K ).
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Finally,

K
n

n∑
i=1

I(Eh(Xi :n) > K ) ≤ K
n

n∑
i=1

I(Eh(Xi :n)I(h(Xi :n) > K/2) > K/2)

≤ 2
n

n∑
i=1

Eh(Xi :n)I(h(Xi :n) > K/2) = 2Eh(X1)I(h(X1) > K/2)

since I(ζ > N) ≤ ζ/N for all N > 0 and any nonnegative r.v. ζ
(including the case ζ ≡ const).
Thus,

∆n ≤ EhK (X1) + 2Eh(X1)I(h(X1) > K/2) ≤ 3Eh(X1)I(h(X1) > K/2).

The lemma is proved.
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Main result

So, we have proved the Hoeffding’s result under very mild restrictions.

Theorem 1. Let {Xi} be a sequence of identically distributed r.v-s
(arbitrarily correlated) with finite mean. Let h be a nonnegative convex
function and g be a continuous function such that |g(x)| ≤ h(x) and
Eh(X1) < ∞. If E|Fn(t)− F (t)| → 0 as n →∞ for all t ∈ R then

lim
n→∞

∫
g(x)dEn(x) = Eg(X1). (5)

Remark. It is clear that

E|Fn(t)− F (t)| ≤ 1
n

 n∑
i,j=1

[
P(max{Xi ,Xj} < t)− F 2(t)

]1/2

. (6)

In particular, if P(max{Xi ,Xj} < t) → F 2(t) as |i − j | → ∞ for all t ∈ R
then the main restriction of the theorem is fulfilled.
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Rates of convergence

We now study the rate of convergence in the relation (5).
Denote

∆n(g) := |Eg(X1)−
1
n

n∑
i=1

g(EXi :n)|.

We study the case of locally Lipschitz functions g ∈ Lip(Kα), i.e.,

|g(x)− g(y)| ≤ K (x , y)|x − y |,

with the following restriction on the constant:
K (x , y) ≤ B(1 + (|x | ∨ |y |)α), α ≥ 0.
In the sequel, we assume that B = 1 (without loss of generality).
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Theorem 2. Let {Xi} be a sequence of identically distributed r.v-s
(arbitrarily correlated) and |X1| ≤ c with probability 1. Let g ∈ Lip(Kα)
and E|g(X1)| < ∞. Then

∆n(g) ≤ (1 + cα)

∫ c

−c
E|Fn(t)− F (t)|dt. (7)

Remark. For pairwise independent {Xi}, we deduce from (6) that

E|Fn(t)− F (t)| ≤ 1√
n

√
F (t)(1− F (t)).

So, in this case, we can specify the upper bound in (7):

∆n(g) ≤ 1 + cα

√
n

∫ c

−c

√
F (t)(1− F (t))dt. (8)
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Put δ(c) := E|X1|1+αI(|X1| > c).

Theorem 3. Let g ∈ Lip(Kα) and E|X1|1+α < ∞. Then, for pairwise
independent {Xi},

∆n(g) = O(δ(cn))

as n →∞, where cn is a solution to one of the following equations:

c
α+1

2 = δ(c)n1/2 if 0 < α < 1,

c log c = δ(c)n1/2 if α = 1,

cα = δ(c)n1/2 if α > 1.
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Corollary. Under the conditions of Theorem 3, let
E |X1|1+α+r < ∞, r > 0 and α + r > 1. Then

∆n(g) ≤ Cn−
r

2(α+r) .

In particular, if go(x) = x2 (the case α = 1) and E |X1|2+r < ∞, r > 0,
then

n∆n(go) =
n∑

i=1

VarXi :n ≤ Cn1− r
2(1+r) .

Remark. In the iid case, there is a sufficiently large class of marginal
distributions such that the value n∆n(g) is bounded uniformly on n.
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THANK YOU SO MUCH!
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