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INTRODUCTION

(X, F,un): a probability space
T : X — X: a measure preserving transformation
Call random variables

X > Z f(T'x,..., T),n=1,2,..., (1)

0<ih<n,...,0<ig<n

von Mises statistics (or V-statistics)
constructed against the transformation T and the
kernel f.

The kernel f will be assumed symmetric.

Our task: investigate asymptotic behavior of (1)

as n — oQ.
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INTRODUCTION

A particular case of the above definition:
random variables

X > F(&i(%), ... &, (x), n=1,2,...,

0<ii<n,....,0<ig<n

constructed after a stationary process £ = (£,)nez
and a function F.

If (€5)nez is a sequence of i.i.d. variables one gets
the original definition of von Mises (1947).
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INTRODUCTION

Turn back to measure preserving transformations. For
d = 1 von Mises statistics reduce to well-known

Birkhoff’s sums
Z foTl

0<i<n
Classical ergodic theorems describe the behavior of
normalized Birkhoff’'s sums

for arbitrary measure preserving transformation
T and every function f € Li(u).
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INTRODUCTION

Additional structures: equivariant filtrations

Additional structures are needed for more precise
asymptotical results (like the Central Limit Theorem) to
specify a class of suitable functions and conduct proofs.
An important type of such structures:
T-equivariant filtrations (increasing or decreasing sequences
of o-subfields of the o-field F shifted by T).
A decreasing equivariant filtration for (X, F,pu, T) is a
sequence

fo D) T_lfo D) T_2.F0 s

of o-subfields of F.
For an invertible T it is more natural to consider a bilateral
increasing equivariant filtration

CTYRCFRCT YRC ..
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INTRODUCTION

In presence of such a filtration one can establish limit
theorems for Birkhoff's sums by means of the
martingale-coboundary decomposition, its extensions
and modifications. This approach is widely applied to
Birkhoff's sums (but not to von Mises statistics).

QUESTION: Is it possible to investigate von Mises statistics
for d > 1 by means of the same additional structures
(filtrations) asin case d =17

If so what kind of changes in earlier known methods or
additions to them have to be made in this situation ?

ANSWER: Multiparameter generalization of the
martingale-coboundary decomposition, applied to

suitable spaces of finctions on (X9 F®9,9) and

supplemented by the analysis of the restriction operator,

can be taken as a basis for the asymptotic study of

V-statistics in presence of equivariant filtrations. 7/33



INTRODUCTION

Initial assumptions, notation, facts and remarks |

Results we are going to discuss are established under
the assumptions that T is an exact
transformation that is

(T F=WN,

k>0
where N\ is the trivial o-field of the space (X, F, u).
In the rest of the present talk we assume that T
satifies this condition.
An exact transformation T defines on an nonatomic
(X, F, i) a strictly decreasing filtration
(TH*F)so=F DT 1FD---. o)



INTRODUCTION

Initial assumptions, notation, facts and remarks Il

The dynamical operator V: f— foT, f € L,
acts in every space L, = L,(X, F,u) (p € [1,00]).
The (pre)adjoint operator V* acts in the same scale
of the L,-spaces.
The symbols V/{kkm) (\/#(kikn)) denote operators
acting coordinate-wise as V%, ... VK= (or as
V. V*km) in various spaces of functions on X™
(in particular, in m-th tensor powers of the spaces
Ly).
Example.

(Vk) ) (xy, x0) = F(TRxy, Thexy) = (VERVR)F) (x1, %)



INTRODUCTION

Approach and tools used

@ Restriction to the principal diagonal

©0

The function x +— f(Thx, ..., Tkix) is the restriction of
the function (xq,...,xq) = f(TXxq, ..., Tkxy) to the
principal diagonal of the space (X9, F®9, u?).
Constructing a well-defined restriction looks impossible
within the L, spaces: the diagonal is of product measure
zero.

However: for suitable p n g the restriction operator D,
has a finite norm as an operator whose domain is the
d-th projective tensor degree L, .(u?) of the space L,

and the range is Lq(u)
Hoeffding's decomposntlon

d-parametric extension of the

martingale-coboundary decomposition
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HOEFFDING’S DECOMPOSITION

Hoeffding’'s decomposition of symmetric kernels

Let
o (Xi, Fryp), I=1,...,d, be copies of the space
(X, F, ),
o forevery me {1,...,d} L (™) be the

subspace of symmetric elements of the space

my def m m ,,m
Ly (u™) = Lp(X™ F2m, u™m),

o S be the set of all m-subsets of the set
{1,...,d} and, for every S € S7,
s X9 = X™
be the projection map which only holds
coordinates with indices in S. o



HOEFFDING’S DECOMPOSITION

Symmetric Hoeffding decomposition: there
exist such operators Rn, : L™ (u®) — L™ (™)
that every f € L¥™ (%) can be represented in the

form .
f=> Y (Raf)orms

m=0Sc S}

and, moreover, integrating out with respect to the
measure p any of m arguments of the function R,f
returns 0 (such a function is called canonical).
Analogous decomposition and the same notation will

be applied later to the spaces L, .(u?).
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HOEFFDING’S DECOMPOSITION

Example. Let d =2 and f € LY™( p?). Then
f(x, x) = fo + ilx) + Alxe) + fa(x, x)

where

fo = /xz f(z1, z2)pu(dz1)p1(dz2),

ﬂ(X)Z/Xf(X’Z)M(dZ)—6<=/Xf(2,X)u(dZ)—fo>,

f2(X17X2) = f(Xl,Xz) - fl(Xl) - fl(Xz) — fo.

Here [y fi(z)u(dz) =0, f, € LY™(14*) and for almost all
xeX

/X ble utde) = [ Bl utde) =
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TWO THEOREMS

Limit distributions of "nondegenerate" V-statistics

Teopema 2. Let f € LY™(u9) be a real-valued kernel. Let
forevery m=1,....d Rnfely, (u™) and the series

2m,

#(K1y ooy kim) def . #(Kty ooy kim)
Z 1% Rmf< lim Z v Rmf>

0< Ky .o ki < 00 0< Ki,... km<n

converges in Ly (™). Then the sequence

e 1
Vrsd)fd:f nd—1/2 Z Dy V- )(f — Rof)

0< ki, kg <

tends in distribution, along with its second moments, to the
centered Gaussian random variable with the variance
d?>0?(f) > 0 where

00 2 o'} 2
() =D V*Rif| =D V*Rif| >0.
k=0 2 k=1 2 14/33




TWO THEOREMS

Limit distributions of canonical kernels of degree 2

Theorem 4. Let f € L3"7(11°) be such a real-valued
canonical kernel that in L, ,(1?) there exists the limit

lim § A3
ny, np—o0
0<ih<n—1
0<ih< m—1

Then as n — oo the sequence of random variables

1 .
=) DV®RRf a1,
n

0< i, 2< n—1

converges in distribution, along with its first moments, to

¢ def S Amm2, where (nm)%o_y is a sequence of

independent standard Gaussian random variables and (\,) are
the eigenvalues of the kernel g” (see the next slide).
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MARTINGALE-COBOUNDARY DECOMPOSITION

Martingale-coboundary decomposition (d=2)

Proposition. Let f(= 1) € L;{':(/ﬂ) be a canonical kertnel of
degree 2. If the limit
e im Y vy

ny, np—o0 A
0<in<m-1
0<ih< m-1

there exists in Ly -(u?), then f admits a unique representation of

the form

f:g®+(V(170) _ /)g{l}_|_ (\/(071) _ /)g{2}+ (\/(LO) _/)(\/(071) _ /)g{1’2}

where

E@(TiF) e F@) =0, E(g"rW e T71F®) =0,
E(gFW @ T-1F@) =0, E(g@)(T1FW) e F®) =0

and g@, g{l}, g{z}, g{1’2} are canonical. Moreover,

g’ gt e 7T (1), gt gt e Lo (1?), g1 0 0=} and

g @ o0 =g (here 0(x1,x2) = (x2,x1),x1, %0 € X)). 16/33



PROJECTIVE PRODUCTS AND RESTRICTIONS

Projective tensor products of Banach spaces

Let By,..., B4 be Banach spaces with norms | - |g,,..., |- |g,, and
let By ® - - - ® By be their algebraic tensor prpduct. Elements of
Bi1 ® - -+ ® By representable in the form 1 ® - - - ® fy are called
elementary tensors. The projective tensor product

Bi& - - - & By of Banach spaces By, ..., By is defined as the
completion of By ® - -+ ® By relative to the projective norm. The
latter is defined as the supremum of all norms on By ® - -- ® By,
which are equal to H7:1 |fi| g, for every elementary tensor

fl R R fd-

Example. The space Ly (1?) can be identified with the space of
nuclear opeartors from Lp(u)* to Lo(p).
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PROJECTIVE PRODUCTS AND RESTRICTIONS

Embedding of the projective product L, .(u?) to
Ly(11%)

Let (Xi, Fi, i) (i=1,...,d) be copies of (X, F,u). Set for
p € [1,00]
def

Lp () = Lp(X1, F1, 11)&r - - @ nLp(Xas Fay f1d)-

Let | - | p, 4.~ be the norm of the space L, »(u?). It is shown in the
following lemma that L, (%) can be regarded as a subspace of
Lp(u?).

Lemma. For every p € [1,00] there exists a unique linear mapping
Ja i Lp(p9) — Lp(19) of norm 1 which sends every elementary
tensor fi ® - - - @ fy to the function (xi,...,xq) — fi(x1) - fg(xq).
Furthermore, Jy maps L, =(n9) to L,(u9) injectively. For every

p € [1,00) the subspace Jy(Lp, (1)) is dense in L, (u?).
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PROJECTIVE PRODUCTS AND RESTRICTIONS

Restriction to the diagonal

Proposition. Let p € [1,00] and r = p/d. Then

@ the mapping D which sends every d-tuple
(fi,....fq) € Lp(p) x ... xLy(n) to the function
x +— f(x) - fy(x) is a d-linear mapping of norm 1 from
Lp(p) x -+ x Lp(p) to Ly(p);
@ there exists such a unique linear mapping (of norm 1)
Dy : Ly (1) — L, (1) that for every d-tuple
(fi, s fa) € Ly (p) X - X Lp, (1)
Dyfi®---®fy)=D(h,...,f).
The existence of embedding of L, .(u) to L (1) allows us
to interpret elements of L, .(u?) as functions defined on X?.
Then Dyf plays the role of the restriction of f to the principal
diagonal {(x1,...,x4) : x1 = -+ = x4)} C X9.
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

On the proof of Theorem 4. |

We will use the above martingale-coboundary decomposition
(propositition following Theorem 4). It follows from inequalites

3 Do) (VO gl (0142 ‘ <2Cs2,1Vn|gl2,2,:

0< iy, < n—1
Z D> V(il’i2)((V(l’o)—/)(V(O’l)—/)g{1’2})‘ < C2,22(8l2,2,7
0< iy, h< n—1 !

and the proposition on martingale-coboundary decomposition that

‘% 3 D2V(i1’i2)(f—g@)‘ = 0.

. 1 n—oo
0< iy, i< n—1

This reduces the proof to the special case of the "orthomartingale
kernel" g?
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

On the proof of Theorem 4. Il

The real-valued symmetric function g? is a kernel of an symmetric
integral nuclear operator in Ly(1). Hence, it expands over the
eigenfunctions:

g@(xl,XQ) = Z Am®m(x1)em(x2) (2)

m=1

where (¢m)m>1 is a real-valued orthonormal sequence L(1)
(possibly incomplete) and (Am)m>1 is a sequence of reals for which
> 1| Am| < 0o. We assume that Ay, # 0 for all m > 1.
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

On the proof of Theorem 4. Il

Let us show that for every m > 1
E(pm| T1F)=0.

We have p x p-almost surely
0= E(g"| T-OVF?)(x, x2) ZMP/ x1)E(oi| T71F) (%)

For every m > 1, multiplying this identity by ¢, (x1) and
integrating it in x; with respect to pu, we obtain that

AmE(m| TT1F)(x2) = 0

which implies the assertion.
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

On the proof of Theorem 4. IV

Let us set for N >1
N N

£N = Z )\mﬁgm g/q\)/(xlvx2) = Z Am@m(xl)som()Q)'

m=1 m=1
Notice that for every N the assertions of the theorem on the
convergence in distribution and the convergence of the first
moments will hold if we substitute f and £ in these assertions with
g,?, and &y, respectively. Indeed, by means of the Cramer—Wold
device the Billingsley—Ibragimov theorem extends to R"-valued
martingale-differences. Hence, the random vectors

1 n—1 1 n—1

k k
(444,2{:(p1 oT 7_"7444,j£:(pA/0 T )
\/Ek:o \/Ek:o

converge in distribution to (n1,...,ny) as n — oo:
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

On the proof of Theorem 4. V

Therefore, random variables

n—1 2
ST DRV = ZA <\%ZsomoT">
k=0

0< i, 2<n—1

comverge in distribution to Zﬁzl Amn?2, as n — oo. Convergence
of the first moments follows now from the convergence of the
second moments in the CLT for martingale differences. Observe that

o o
_ 2
|5—§N\1—‘ > Amnm‘lﬁ > [Am| = 0
m=N+1 m=N+1

Consequently, (£,),>1 converges in distribution to £ along with the

first moments.
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

On the proof of Theorem 4. VI

This convegernce and the fact that the relation

1 . 1 .
- E D,V(ii2) 0 = E D, \V(i1:i2) g0
’n 2 g n 2 En

1

0< iy, < n—1 0< iy, < n—1
> 1 , 1 ,
45 (5 X eno)o(ds X emer)
m=N+1 ﬁogign—l ﬁogign—l 2,2,m
(o)
< A
- Z ‘m| Njooo
m=N+1

holds uniformly in n (we use here that the functions
(¢m o T")1<m, 1<i are orthonormal) complete the proof.
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

Example: the doubling transformation

Let X = {z € C: |z| = 1}, p be the normalized Haar measure on
X, Tz = z? for z € X. We have

(VF)(x) = F(x?), (V*F)(x)=1/2 Z f(u).
{u: u?=x}

It is known that T is an exact transformation. If f; € L?(u) and
Jx fi(x)u(dx) = 0 then the setries

Z V*kfl
k>0

converges in L2(y) if, for example,

S w®(f,27%) < oo,

k>0

Here w(?)(f1,-) is the continuity modulus of f in L?(p). 2633



ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

Example (continued). Translation-invariant kernels

Let now f € L?(u?) be such that f(x1, x2) = g(x1x; *) with some
g(x) =Y rcz gkx* € L2(). Assume that f = £, (that is f is
canonical), real-valued and symmetric. This means that go = 0, g
are real and such that g_, = g for every k € Z. Next, let

f, € L3 (u?) which is equivalent in our conditions to the relation

2,
Z\gk’ < 0.

k€EZ

Furthermore, if C >0and d >0

C
<——— kelk

then Theorem 4 applies to 7.
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

Example (continued). General kernels

Consider now a general kernel f € Lp(X2, F®2, 1i2) with the
Fourier expansion

ko
f(Xl,XQ E fkl,kle X2 , X1,X2 € X.
ki, ko€ Z

Assume that the kernel f is real-valued and symmetric, that is
fok,—ky = Ty ko and fi, 4y = fiy K, fOr ki, ko € Z. The summands
of Hoeffding's decomposition are fy = fy o, fi(x) =

k
ZkeZ\{O} fi,0 XK, h(x,x) = Ekl, ko€ Z\{0} fla, ko Xllxé(z-
The kernel f satisfies all conditions of Theorems 2 and 4 whenever

D onm>0 Dk, ke 7\ {0} |fom iy 2m k| < 00 and

1/2
ano <Zke 7\ {0} |f2"k70|§> < oo (for Theorem 1 only),
fo = 0, f1(-) = 0 (for Theorem 4 only).
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

How to verify our assumptions ?

A more general approach can be developed on the basis of the
transfer operator (V* in our setting) restricted to some spaces of
nice (smooth, Holder or Sobolev) functions.

We assume now that T acts on a compact smooth manifold as an
expanding map preserving a measure 4 so that some rate of for
convergence of V*f for nice f is known. Expansion of a kernel into
an absolutely convergent series whose summands are
products of nice functions in separate variables is natural in
the context of the limit theory of V-statistics. Neither uniqueness
of the representation, nor linear independence of these functions is
assumed.
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

Proposition. Let, for some p € [1,00], ()32, be a sequence of
functions such that eg = 1 and for every k > 1 e, € L, (1) with
Jx ex(x)u(dx) = 0. Assume that for every k > 1

Cp, kd—efZIV*”ek\p<oo
n>0

Suppose that f € L,( ™) admits a representation

Fxa, - oxm) = > Al(F) e (x1) - ek, (xm) (3)
0<k<oco
where (Ak(f))o<k<oo is @ family of constants satisfying
def
Cp(f) = Z [ Ak () ot Cp ke < 00 (4)
0<k<oo
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

Then f is a canonical kernel of degree m, f € L, (1), the series

n
* def . *
g= > ka(: Jim ka> (5)

0<k< oo 0<k<n
= Nm — 00

converges in L, ~(p™) and its sum g satisfies the inequality

&lp, mx < Cp(f). (6)
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

QUESTIONS, PROBLEMS

@ Prove the Functional CLT (doable)

@ Develop a non-adapted version (doable)

© Incorporate the development after 2000 in the
field of martingale approximation (Maxwell-
Woodroofe, Peligrad-Utev) (doable)

Q@ Investigate large deviations and local CLT
(perturbation of some kind of transfer operator ?7)

@ Substitute the nuclearity assumption by a weaker
requirement (serious functional-theoretic
problem)
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ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

The preprint
by M. Denker and the speaker
arXiv:1109.0635v2 [math.DS]

covers the present talk but contains some missprints.

A corrected version can be requested from
the speaker via E-mail:
gordin@pdmi.ras.ru

Thank you !

33/33



	INTRODUCTION
	HOEFFDING'S DECOMPOSITION
	TWO THEOREMS
	MARTINGALE-COBOUNDARY DECOMPOSITION
	PROJECTIVE PRODUCTS AND RESTRICTIONS
	ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

