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(X ,F , µ): a probability space
T : X → X : a measure preserving transformation
Call random variables

x 7→
∑

0≤i1< n,..., 0≤ id <n

f (T i1x , ...,T idx), n = 1, 2, . . . , (1)

von Mises statistics (or V-statistics)
constructed against the transformation T and the
kernel f .
The kernel f will be assumed symmetric.
Our task: investigate asymptotic behavior of (1)
as n→∞.
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A particular case of the above definition:
random variables

x 7→
∑

0≤i1< n,..., 0≤ id <n

F (ξi1(x), ..., ξid (x)), n = 1, 2, . . . ,

constructed after a stationary process ξ = (ξn)n∈Z
and a function F .
If (ξn)n∈Z is a sequence of i.i.d. variables one gets
the original definition of von Mises (1947).
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Turn back to measure preserving transformations. For
d = 1 von Mises statistics reduce to well-known
Birkhoff’s sums ∑

0≤i<n

f ◦ T i .

Classical ergodic theorems describe the behavior of
normalized Birkhoff’s sums

1

n

∑
0≤i<n

f ◦ T i

for arbitrary measure preserving transformation
T and every function f ∈ L1(µ).

5 / 33



INTRODUCTION
HOEFFDING’S DECOMPOSITION

TWO THEOREMS
MARTINGALE-COBOUNDARY DECOMPOSITION

PROJECTIVE PRODUCTS AND RESTRICTIONS
ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

Additional structures: equivariant filtrations

Additional structures are needed for more precise
asymptotical results (like the Central Limit Theorem) to
specify a class of suitable functions and conduct proofs.
An important type of such structures:
T -equivariant filtrations (increasing or decreasing sequences
of σ-subfields of the σ-field F shifted by T ).
A decreasing equivariant filtration for (X ,F , µ,T ) is a
sequence

F0 ⊃ T−1F0 ⊃ T−2F0 · · ·
of σ-subfields of F .
For an invertible T it is more natural to consider a bilateral
increasing equivariant filtration

· · · ⊂ T 1F0 ⊂ F0 ⊂ T−1F0 ⊂ · · · .
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In presence of such a filtration one can establish limit
theorems for Birkhoff’s sums by means of the
martingale-coboundary decomposition, its extensions
and modifications. This approach is widely applied to
Birkhoff’s sums (but not to von Mises statistics).
QUESTION: Is it possible to investigate von Mises statistics
for d > 1 by means of the same additional structures
(filtrations) as in case d = 1 ?
If so what kind of changes in earlier known methods or
additions to them have to be made in this situation ?
ANSWER: Multiparameter generalization of the
martingale-coboundary decomposition, applied to
suitable spaces of finctions on (X d,F⊗d, µd) and
supplemented by the analysis of the restriction operator,
can be taken as a basis for the asymptotic study of
V -statistics in presence of equivariant filtrations. 7 / 33
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Initial assumptions, notation, facts and remarks I

Results we are going to discuss are established under
the assumptions that T is an exact
transformation that is⋂

k≥0

T−kF = N ,

where N is the trivial σ-field of the space (X ,F , µ).
In the rest of the present talk we assume that T
satifies this condition.
An exact transformation T defines on an nonatomic
(X ,F , µ) a strictly decreasing filtration
(T−kF)k≥0 = F ⊃ T−1F ⊃ · · · . 8 / 33
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Initial assumptions, notation, facts and remarks II

The dynamical operator V : f 7→ f ◦T , f ∈ Lp,
acts in every space Lp = Lp(X ,F , µ) (p ∈ [1,∞]).
The (pre)adjoint operator V ∗ acts in the same scale
of the Lp-spaces.
The symbols V (k1,...,km) (V ∗(k1,...,km)) denote operators
acting coordinate-wise as V k1, . . . ,V km (or as
V ∗k1, . . . ,V ∗km) in various spaces of functions on Xm

(in particular, in m-th tensor powers of the spaces
Lp).
Example.

(V (k1,k2)f)(x1, x2)= f (T k1x1,T
k2x2)=

(
(V k1⊗V k2)f

)
(x1, x2).9 / 33
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Approach and tools used
1 Restriction to the principal diagonal

The function x 7→ f (T k1x , . . . ,T kdx) is the restriction of
the function (x1, . . . , xd) 7→ f (T k1x1, . . . ,T

kdxd) to the
principal diagonal of the space (X d ,F⊗d , µd).
Constructing a well-defined restriction looks impossible
within the Lp spaces: the diagonal is of product measure
zero.
However: for suitable p и q the restriction operator Dd

has a finite norm as an operator whose domain is the
d-th projective tensor degree Lp, π(µ

d) of the space Lp
and the range is Lq(µ)

2 Hoeffding’s decomposition
3 d-parametric extension of the
martingale-coboundary decomposition
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Hoeffding’s decomposition of symmetric kernels
Let

(Xl ,Fl , µl), l = 1, . . . , d , be copies of the space
(X ,F , µ),
for every m ∈ {1, . . . , d} Lsymp (µm) be the
subspace of symmetric elements of the space
Lp (µ

m)
def
= Lp(X

m,F⊗m, µm),
Smd be the set of all m-subsets of the set
{1, ..., d} and, for every S ∈ Smd ,

πS : X d → Xm

be the projection map which only holds
coordinates with indices in S . 11 / 33
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Symmetric Hoeffding decomposition: there
exist such operators Rm : Lsymp (µd)→ Lsymp (µm)
that every f ∈ Lsymp (µd) can be represented in the
form

f =
d∑

m=0

∑
S∈Smd

(Rmf ) ◦ πS

and, moreover, integrating out with respect to the
measure µ any of m arguments of the function Rmf
returns 0 (such a function is called canonical).
Analogous decomposition and the same notation will
be applied later to the spaces Lp, π(µd).
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Example. Let d = 2 and f ∈ Lsymp (µ2). Then

f (x1, x2) = f0 + f1(x1) + f1(x2) + f2(x1, x2)

where
f0 =

∫
X 2

f (z1, z2)µ(dz1)µ(dz2),

f1(x) =

∫
X

f (x , z)µ(dz)− f0

(
=

∫
X

f (z , x)µ(dz)− f0

)
,

f2(x1, x2) = f (x1, x2)− f1(x1)− f1(x2)− f0.

Here
∫
X
f1(z)µ(dz) = 0, f2 ∈ Lsymp (µ2) and for almost all

x ∈ X ∫
X

f2(z , x)µ(dz) =

∫
X

f2(x , z)µ(dz) = 0.
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Limit distributions of "nondegenerate"V -statistics
Теорема 2. Let f ∈ Lsym2 (µd) be a real-valued kernel. Let
for every m=1, . . . , d Rmf ∈Lsym2m, π (µ

m) and the series∑
0≤ k1, ..., km < ∞

V ∗(k1, ..., km)Rmf

(
def
= lim

n→∞

∑
0≤ k1, ..., km<n

V ∗(k1, ..., km)Rmf

)
converges in L2m, π(µ

m). Then the sequence

V (d)
n f

def
=

1

nd−1/2

∑
0≤ k1, ..., kd < n

Dd V
(k1, ..., kd )(f − R0f )

tends in distribution, along with its second moments, to the
centered Gaussian random variable with the variance
d2σ2(f ) ≥ 0 where

σ2(f ) =

∣∣∣∣ ∞∑
k=0

V ∗ kR1f

∣∣∣∣2
2

−
∣∣∣∣ ∞∑
k=1

V ∗kR1f

∣∣∣∣2
2

≥ 0.
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Limit distributions of canonical kernels of degree 2
Theorem 4. Let f ∈ Lsym2, π (µ

2) be such a real-valued
canonical kernel that in L2,π(µ

2) there exists the limit

lim
n1, n2→∞

∑
0≤ i1≤ n1−1
0≤ i2≤ n2−1

V ∗(i1, i2)f .

Then as n→∞ the sequence of random variables
1

n

∑
0≤ i1, i2≤ n−1

D2V
(i1, i2)f , n ≥ 1,

converges in distribution, along with its first moments, to
ξ

def
=
∑∞

m=1 λmη
2
m where (ηm)

∞
m=1 is a sequence of

independent standard Gaussian random variables and (λm) are
the eigenvalues of the kernel g ∅ (see the next slide).
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Martingale-coboundary decomposition (d=2)
Proposition. Let f (= f2) ∈ Lsym2, π (µ

2) be a canonical kertnel of
degree 2. If the limit

g
def
= lim

n1, n2→∞

∑
0≤ i1≤ n1−1
0≤ i2≤ n2−1

V ∗(i1, i2)f ,

there exists in L2,π(µ
2), then f admits a unique representation of

the form
f =g∅+(V (1,0)−I )g{1}+ (V (0,1)−I )g{2}+ (V (1, 0)−I )(V (0,1)−I )g{1,2}

where
E (g∅|(T−1F (1))⊗F (2)) = 0, E (g∅|F (1) ⊗ T−1F (2)) = 0,

E (g{1}|F (1) ⊗ T−1F (2)) = 0, E (g{2}|(T−1F (1))⊗F (2)) = 0
and g∅, g{1}, g{2}, g{1,2} are canonical. Moreover,
g∅, g{1,2}∈Lsym2,π (µ

2), g{1}, g{2}∈L2,π(µ2), g{1} ◦ θ=g{2} and
g{2} ◦ θ = g{1} (here θ(x1, x2) = (x2, x1), x1, x2 ∈ X )). 16 / 33
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Projective tensor products of Banach spaces

Let B1, . . . ,Bd be Banach spaces with norms | · |B1 , . . . , | · |Bd
, and

let B1 ⊗ · · · ⊗ Bd be their algebraic tensor prpduct. Elements of
B1 ⊗ · · · ⊗ Bd representable in the form f1 ⊗ · · · ⊗ fd are called
elementary tensors. The projective tensor product
B1⊗̂π · · · ⊗̂πBd of Banach spaces B1, . . . ,Bd is defined as the
completion of B1 ⊗ · · · ⊗ Bd relative to the projective norm. The
latter is defined as the supremum of all norms on B1 ⊗ · · · ⊗ Bd ,
which are equal to

∏d
i=1 |fi |Bi

for every elementary tensor
f1 ⊗ · · · ⊗ fd .
Example. The space L2, π(µ

2) can be identified with the space of
nuclear opeartors from L2(µ)

∗ to L2(µ).
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Embedding of the projective product L p, π(µ
d) to

Lp(µ
d)

Let (Xi ,Fi , µi ) (i = 1, . . . , d) be copies of (X ,F , µ). Set for
p ∈ [1,∞]

L p, π(µ
d)

def
= Lp(X1,F1, µ1)⊗̂π · · · ⊗̂πLp(Xd ,Fd , µd).

Let | · | p, d , π be the norm of the space L p, π(µ
d). It is shown in the

following lemma that L p, π(µ
d) can be regarded as a subspace of

L p(µ
d).

Lemma. For every p ∈ [1,∞] there exists a unique linear mapping
Jd : Lp,π(µ

d)→ Lp(µ
d) of norm 1 which sends every elementary

tensor f1 ⊗ · · · ⊗ fd to the function (x1, . . . , xd) 7→ f1(x1) · · · fd(xd).
Furthermore, Jd maps Lp, π(µ

d) to Lp(µ
d) injectively. For every

p ∈ [1,∞) the subspace Jd
(
Lp, π(µ

d)
)

is dense in Lp (µ
d).
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Restriction to the diagonal
Proposition. Let p ∈ [1,∞] and r = p/d . Then

1 the mapping D which sends every d-tuple
(f1, . . . , fd) ∈ Lp(µ)× . . . ×Lp(µ) to the function
x 7→ f1(x) · · · fd(x) is a d-linear mapping of norm 1 from
Lp(µ)× · · · × Lp(µ) to Lr (µ);

2 there exists such a unique linear mapping (of norm 1)
Dd : L p, π(µ

d)→ Lr (µ) that for every d-tuple
(f1, . . . , fd) ∈ Lp1(µ)× · · · × Lpd (µ)
Dd(f1 ⊗ · · · ⊗ fd) = D(f1, . . . , fd).

The existence of embedding of L p, π(µ
d) to L p(µ

d) allows us
to interpret elements of L p, π(µ

d) as functions defined on X d .
Then Dd f plays the role of the restriction of f to the principal
diagonal {(x1, . . . , xd) : x1 = · · · = xd)} ⊂ X d .
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On the proof of Theorem 4. I

We will use the above martingale-coboundary decomposition
(propositition following Theorem 4). It follows from inequalites∣∣∣ ∑
0≤ i1, i2≤ n−1

D2V
(i1, i2)

(
(V (1, 0)−I )g{1}+(V (0,1)−I )g{2}

)∣∣∣
1
≤2C 2, 2, 1

√
n | g | 2, 2, π,

∣∣∣ ∑
0≤ i1, i2≤ n−1

D2V
(i1, i2)

(
(V (1,0)−I )(V (0,1)−I )g{1, 2}

)∣∣∣
1
≤ C 2, 2, 2 | g | 2, 2, π.

and the proposition on martingale-coboundary decomposition that∣∣∣1
n

∑
0≤ i1, i2≤ n−1

D2V
(i1, i2)(f − g∅)

∣∣∣
1
→

n→∞
0.

This reduces the proof to the special case of the "orthomartingale
kernel" g∅.
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On the proof of Theorem 4. II

The real-valued symmetric function g∅ is a kernel of an symmetric
integral nuclear operator in L2(µ). Hence, it expands over the
eigenfunctions:

g∅(x1, x2) =
∞∑

m=1

λmϕm(x1)ϕm(x2) (2)

where (ϕm)m≥1 is a real-valued orthonormal sequence L2(µ)
(possibly incomplete) and (λm)m≥1 is a sequence of reals for which∑∞

m=1 |λm| <∞. We assume that λm 6= 0 for all m ≥ 1.
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On the proof of Theorem 4. III

Let us show that for every m ≥ 1

E (ϕm|T−1F) = 0.

We have µ× µ -almost surely

0 = E (g∅|T−(0,1)F⊗2)(x1, x2) =
∞∑
l=1

λlϕl(x1)E (ϕl |T−1F)(x2)

For every m ≥ 1, multiplying this identity by ϕm(x1) and
integrating it in x1 with respect to µ, we obtain that

λmE (ϕm|T−1F)(x2) = 0

which implies the assertion.
22 / 33
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On the proof of Theorem 4. IV
Let us set for N ≥ 1

ξN =
N∑

m=1

λmη
2
m, g∅N(x1, x2) =

N∑
m=1

λmϕm(x1)ϕm(x2).

Notice that for every N the assertions of the theorem on the
convergence in distribution and the convergence of the first
moments will hold if we substitute f and ξ in these assertions with
g∅N and ξN , respectively. Indeed, by means of the Cramer–Wold
device the Billingsley–Ibragimov theorem extends to RN -valued
martingale-differences. Hence, the random vectors( 1√

n

n−1∑
k=o

ϕ1 ◦ T k , . . . ,
1√
n

n−1∑
k=o

ϕN ◦ T k
)

converge in distribution to (η1, . . . , ηN) as n→∞.
23 / 33
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On the proof of Theorem 4. V

Therefore, random variables

1

n

∑
0≤ i1, i2≤ n−1

D2V
(i1, i2)g

(N)
∅ =

N∑
m=1

λm

(
1√
n

n−1∑
k=0

ϕm ◦ T k

)2

comverge in distribution to
∑N

m=1 λmη
2
m as n→∞. Convergence

of the first moments follows now from the convergence of the
second moments in the CLT for martingale differences. Observe that

| ξ − ξN |1 =
∣∣∣ ∞∑
m=N+1

λm η
2
m

∣∣∣
1
≤

∞∑
m=N+1

|λm| →
N→∞

0.

Consequently, (ξn)n≥1 converges in distribution to ξ along with the
first moments.

24 / 33



INTRODUCTION
HOEFFDING’S DECOMPOSITION

TWO THEOREMS
MARTINGALE-COBOUNDARY DECOMPOSITION

PROJECTIVE PRODUCTS AND RESTRICTIONS
ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

On the proof of Theorem 4. VI

This convegernce and the fact that the relation∣∣∣∣1n ∑
0≤ i1, i2≤ n−1

D2V
( i1, i2 )g∅ − 1

n

∑
0≤ i1, i2≤ n−1

D2V
( i1, i2 )g∅N

∣∣∣∣
1

≤
∣∣∣∣ ∞∑
m=N+1

λm

(
1√
n

∑
0≤ i ≤n−1

ϕm ◦ T i

)
⊗
(

1√
n

∑
0≤ i ≤n−1

ϕm ◦ T i

)∣∣∣∣
2, 2, π

≤
∞∑

m=N+1

|λm| →
N→∞

0

holds uniformly in n (we use here that the functions
(ϕm ◦ T i )1≤m, 1≤i are orthonormal) complete the proof.
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Example: the doubling transformation

Let X = {z ∈ C : |z | = 1}, µ be the normalized Haar measure on
X , Tz = z2 for z ∈ X . We have

(Vf )(x) = f (x2), (V ∗f )(x) = 1/2
∑

{u: u2=x}

f (u).

It is known that T is an exact transformation. If f1 ∈ L2(µ) and∫
X f1(x)µ(dx) = 0 then the setries∑

k≥0
V ∗k f1

converges in L2(µ) if, for example,∑
k≥0

w (2)(f1, 2
−k) <∞.

Here w (2)(f1, ·) is the continuity modulus of f1 in L2(µ). 26 / 33
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Example (continued). Translation-invariant kernels

Let now f ∈ L2(µ2) be such that f (x1, x2) = g(x1x
−1
2 ) with some

g(x) =
∑

k∈Z gkx
k ∈ L2(µ). Assume that f = f2 (that is f is

canonical), real-valued and symmetric. This means that g0 = 0, gk
are real and such that g−k = gk for every k ∈ Z. Next, let
f2 ∈ Lsym2, π (µ

2) which is equivalent in our conditions to the relation∑
k∈Z
|gk | <∞.

Furthermore, if C > 0 and δ > 0

|gk | ≤
C

|k |(log |k |)1+δ
, k ∈ Z, k 6= 0,

then Theorem 4 applies to f .
27 / 33
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Example (continued). General kernels

Consider now a general kernel f ∈ L2(X
2,F⊗2, µ2) with the

Fourier expansion

f (x1, x2) =
∑

k1, k2∈Z
fk1, k2x

k1
1 xk22 , x1, x2 ∈ X .

Assume that the kernel f is real-valued and symmetric, that is
f−k1,−k2 = f k1, k2 and fk2, k1 = fk1, k2 for k1, k2 ∈ Z. The summands
of Hoeffding’s decomposition are f0 = f0, 0, f1(x) =∑

k∈Z\{0} fk, 0 x
k , f2(x1, x2) =

∑
k1, k2∈Z\{0} fk1, k2 x

k1
1 xk22 .

The kernel f satisfies all conditions of Theorems 2 and 4 whenever∑
n1, n2≥ 0

∑
k1, k2∈ Z\{0} |f2n1k1, 2n2k2 | <∞ and∑

n≥0

(∑
k∈Z\{0} |f2nk, 0|22

)1/2
<∞ (for Theorem 1 only),

f0 = 0, f1(·) = 0 (for Theorem 4 only). 28 / 33
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How to verify our assumptions ?

A more general approach can be developed on the basis of the
transfer operator (V ∗ in our setting) restricted to some spaces of
nice (smooth, Hölder or Sobolev) functions.
We assume now that T acts on a compact smooth manifold as an
expanding map preserving a measure µ so that some rate of for
convergence of V ∗nf for nice f is known. Expansion of a kernel into
an absolutely convergent series whose summands are
products of nice functions in separate variables is natural in
the context of the limit theory of V -statistics. Neither uniqueness
of the representation, nor linear independence of these functions is
assumed.
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Proposition. Let, for some p ∈ [1,∞], (ek)∞k=0 be a sequence of
functions such that e0 ≡ 1 and for every k ≥ 1 ek ∈ Lp (µ) with∫
X ek(x)µ(dx) = 0. Assume that for every k ≥ 1

Cp , k
def
=
∑
n≥ 0

|V ∗nek |p <∞.

Suppose that f ∈ L p(µ
m) admits a representation

f (x1, . . . , xm) =
∑

0<k<∞
λk(f ) ek1(x1) · · · ekm(xm) (3)

where (λk(f ))0<k<∞ is a family of constants satisfying

Cp (f )
def
=

∑
0<k<∞

|λ k (f )|Cp , k1 · · · Cp , km <∞. (4)
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Then f is a canonical kernel of degree m, f ∈ Lp, π(µ
m), the series

in

g =
∑

0≤k<∞
V ∗kf

(
def
= lim

n1→∞
...

nm→∞

∑
0≤ k<n

V ∗kf

)
(5)

converges in Lp , π(µ
m) and its sum g satisfies the inequality

| g |p ,m, π ≤ Cp (f ). (6)
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QUESTIONS, PROBLEMS

1 Prove the Functional CLT (doable)
2 Develop a non-adapted version (doable)
3 Incorporate the development after 2000 in the
field of martingale approximation (Maxwell-
Woodroofe, Peligrad-Utev) (doable)

4 Investigate large deviations and local CLT
(perturbation of some kind of transfer operator ?)

5 Substitute the nuclearity assumption by a weaker
requirement (serious functional-theoretic
problem)
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The preprint

by M. Denker and the speaker

arXiv:1109.0635v2 [math.DS]
covers the present talk but contains some missprints.

A corrected version can be requested from
the speaker via E-mail:
gordin@pdmi.ras.ru

Thank you !
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