Von Mises statistics of measure preserving tranformations: elements of limit theory

After a joint paper with Manfrd Denker (Pennsylvania State University)

Mikhail Gordin

V.A. Steklov Mathematical Institute at Saint Petersburg

Russian-Chinese Seminar on Asymptotic Methods in Probability Theory and Mathematical Statistics

Saint Petersburg, June 10-14, 2013

INTRODUCTION

- 2 HOEFFDING'S DECOMPOSITION
- **3 TWO THEOREMS**

MARTINGALE-COBOUNDARY DECOMPOSITION

- **5** PROJECTIVE PRODUCTS AND RESTRICTIONS
- 6 ON THE PROOF OF THEOREM 4, EXAMPLE, QUESTIONS

 (X, \mathcal{F}, μ) : a probability space $\mathcal{T} : X \to X$: a measure preserving transformation Call random variables

$$x \mapsto \sum_{0 \le i_1 < n, ..., 0 \le i_d < n} f(T^{i_1}x, ..., T^{i_d}x), n = 1, 2, ..., (1)$$

von Mises statistics (or V-statistics) constructed against the **transformation** T and the **kernel** f.

The kernel *f* will be assumed **symmetric**.

Our task: investigate asymptotic behavior of (1) as $n \to \infty$.

A particular case of the above definition: random variables

$$x \mapsto \sum_{0 \le i_1 < n, ..., 0 \le i_d < n} F(\xi_{i_1}(x), ..., \xi_{i_d}(x)), \ n = 1, 2, ...,$$

constructed after a stationary process $\xi = (\xi_n)_{n \in \mathbb{Z}}$ and a function F.

If $(\xi_n)_{n \in \mathbb{Z}}$ is a sequence of i.i.d. variables one gets the original definition of von Mises (1947).

Turn back to measure preserving transformations. For d = 1 von Mises statistics reduce to well-known **Birkhoff's sums**

$$\sum_{0 \le i < n} f \circ T^i.$$

Classical ergodic theorems describe the behavior of **normalized Birkhoff's sums**

$$\frac{1}{n}\sum_{0\leq i< n}f\circ T^i$$

for arbitrary measure preserving transformation T and every function $f \in L_1(\mu)$.

Additional structures: equivariant filtrations

Additional structures are needed for more precise asymptotical results (like the Central Limit Theorem) to specify a class of suitable functions and conduct proofs. An important type of such structures:

T-equivariant filtrations (increasing or decreasing sequences of σ -subfields of the σ -field \mathcal{F} shifted by *T*).

A decreasing equivariant filtration for (X, \mathcal{F}, μ, T) is a sequence

$$\mathcal{F}_0 \supset T^{-1}\mathcal{F}_0 \supset T^{-2}\mathcal{F}_0 \cdots$$

of σ -subfields of \mathcal{F} .

For an invertible T it is more natural to consider a **bilateral** increasing equivariant filtration

$$\cdots \subset T^1 \mathcal{F}_0 \subset \mathcal{F}_0 \subset T^{-1} \mathcal{F}_0 \subset \cdots \simeq \mathbb{P}^{1} \mathbb{P}_0 \subset \mathbb{P}^{1} \mathbb{P}_0$$

> In presence of such a filtration one can establish limit theorems for Birkhoff's sums by means of the **martingale-coboundary decomposition, its extensions and modifications**. This approach is widely applied to Birkhoff's sums (but not to von Mises statistics).

QUESTION: Is it possible to investigate von Mises statistics for d > 1 by means of the same additional structures (filtrations) as in case d = 1 ?

If so what kind of **changes** in earlier known methods or **additions** to them have to be made in this situation ?

ANSWER: Multiparameter generalization of the martingale-coboundary decomposition, applied to suitable spaces of finctions on $(X^d, \mathcal{F}^{\otimes d}, \mu^d)$ and supplemented by the analysis of the restriction operator, can be taken as a basis for the asymptotic study of *V*-statistics in presence of equivariant filtrations.

7/33

Initial assumptions, notation, facts and remarks I

Results we are going to discuss are established under the assumptions that T is an **exact transformation** that is

$$\bigcap_{k\geq 0} T^{-k}\mathcal{F} = \mathcal{N},$$

where \mathcal{N} is the trivial σ -field of the space (X, \mathcal{F}, μ) . In the rest of the present talk we assume that \mathcal{T} satifies this condition.

An exact transformation T defines on an nonatomic (X, \mathcal{F}, μ) a **strictly decreasing filtration** $(T^{-k}\mathcal{F})_{k\geq 0} = \mathcal{F} \supset T^{-1}\mathcal{F} \supset \cdots$

Initial assumptions, notation, facts and remarks II

The dynamical operator $V: f \mapsto f \circ T, f \in L_p$, acts in every space $L_p = L_p(X, \mathcal{F}, \mu)$ $(p \in [1, \infty])$. The (pre)adjoint operator V^* acts in the same scale of the L_p -spaces. The symbols $V^{(k_1,\ldots,k_m)}$ ($V^{*(k_1,\ldots,k_m)}$) denote operators acting coordinate-wise as V^{k_1}, \ldots, V^{k_m} (or as $V^{*k_1}, \ldots, V^{*k_m}$ in various spaces of functions on X^m (in particular, in *m*-th tensor powers of the spaces L_n).

Example.

 $(V^{(k_1,k_2)}f)(x_1,x_2) = f(T^{k_1}x_1,T^{k_2}x_2) = ((V^{k_1} \otimes V^{k_2})f)(x_1,x_2).$

PRODUCTS AND RESTRIC ROOF OF THEOREM 4. EXAMPLE, QUESTIONS

Approach and tools used

Restriction to the principal diagonal The function $x \mapsto f(T^{k_1}x, \ldots, T^{k_d}x)$ is the restriction of the function $(x_1, \ldots, x_d) \mapsto f(T^{k_1}x_1, \ldots, T^{k_d}x_d)$ to the principal diagonal of the space $(X^d, \mathcal{F}^{\otimes d}, \mu^d)$. Constructing a well-defined restriction looks impossible within the L_p spaces: the diagonal is of product measure zero.

However: for suitable $p \mid q$ the restriction operator D_d has a finite norm as an operator whose domain is the d-th projective tensor degree $L_{p,\pi}(\mu^d)$ of the space L_p and the range is $L_q(\mu)$ **Output** Hoeffding's decomposition

- I d-parametric extension of the martingale-coboundary decomposition () () 10/33

Hoeffding's decomposition of symmetric kernels

Let

- $(X_I, \mathcal{F}_I, \mu_I), I = 1, \dots, d$, be copies of the space (X, \mathcal{F}, μ) ,
- for every m ∈ {1,...,d} L^{sym}_p(μ^m) be the subspace of symmetric elements of the space L_p(μ^m) ^{def} = L_p(X^m, F^{⊗m}, μ^m),
 S^m_d be the set of all m-subsets of the set {1,...,d} and, for every S ∈ S^m_d, π_S : X^d → X^m

be the projection map which only holds coordinates with indices in S.

Symmetric Hoeffding decomposition: there exist such operators $R_m : L_p^{sym}(\mu^d) \to L_p^{sym}(\mu^m)$ that every $f \in L_p^{sym}(\mu^d)$ can be represented in the form

$$f = \sum_{m=0}^{d} \sum_{S \in \mathcal{S}_{d}^{m}} (R_{m}f) \circ \pi_{S}$$

and, moreover, integrating out with respect to the measure μ any of m arguments of the function $R_m f$ returns 0 (such a function is called **canonical**). Analogous decomposition and the same notation will be applied later to the spaces $L_{p,\pi}(\mu^d)$.

・ロット 全部 マート・トロッ

Example. Let
$$d = 2$$
 and $f \in L_p^{sym}(\mu^2)$. Then
 $f(x_1, x_2) = f_0 + f_1(x_1) + f_1(x_2) + f_2(x_1, x_2)$

where

$$f_{0} = \int_{X^{2}} f(z_{1}, z_{2})\mu(dz_{1})\mu(dz_{2}),$$

$$f_{1}(x) = \int_{X} f(x, z)\mu(dz) - f_{0}\left(=\int_{X} f(z, x)\mu(dz) - f_{0}\right),$$

$$f_{2}(x_{1}, x_{2}) = f(x_{1}, x_{2}) - f_{1}(x_{1}) - f_{1}(x_{2}) - f_{0}.$$
Here $\int_{X} f_{1}(z)\mu(dz) = 0, f_{2} \in L_{p}^{sym}(\mu^{2})$ and for almost all $x \in X$

$$\int_{X} f_{2}(z, x)\mu(dz) = \int_{X} f_{2}(x, z)\mu(dz) = 0.$$

13/33

Limit distributions of "nondegenerate" V-statistics

Теорема 2. Let $f \in L_2^{sym}(\mu^d)$ be a real-valued kernel. Let for every m = 1, ..., d $R_m f \in L_{2m,\pi}^{sym}(\mu^m)$ and the series $\sum_{0 \le k_1, ..., k_m < \infty} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ k_1, ..., k_m < n \end{pmatrix} V^{*(k_1, ..., k_m)} R_m f \begin{pmatrix} \text{def} \\ = \\ \\ n \to \infty \\ 0 \le \\ 0 \le$

tends in distribution, along with its second moments, to the centered Gaussian random variable with the variance $d^2\sigma^2(f) \ge 0$ where $\sigma^2(f) = \left|\sum_{k=0}^{\infty} V^{*k}R_1f\right|_2^2 - \left|\sum_{k=1}^{\infty} V^{*k}R_1f\right|_2^2 \ge 0$, where $\sigma^2(f) = \left|\sum_{k=0}^{\infty} V^{*k}R_1f\right|_2^2 - \left|\sum_{k=1}^{\infty} V^{*k}R_1f\right|_2^2 \ge 0$.

Limit distributions of canonical kernels of degree 2

Theorem 4. Let $f \in L_{2,\pi}^{sym}(\mu^2)$ be such a real-valued canonical kernel that in $L_{2,\pi}(\mu^2)$ there exists the limit

$$\lim_{\substack{n_1, n_2 \to \infty \\ 0 \le i_2 \le n_2 - 1}} \sum_{\substack{0 \le i_1 \le n_1 - 1 \\ 0 \le i_2 \le n_2 - 1}} V^{*(i_1, i_2)} f.$$

Then as $n \to \infty$ the sequence of random variables

$$\frac{1}{n} \sum_{0 \le i_1, i_2 \le n-1} D_2 V^{(i_1, i_2)} f, \quad n \ge 1,$$

converges in distribution, along with its first moments, to $\xi \stackrel{\text{def}}{=} \sum_{m=1}^{\infty} \lambda_m \eta_m^2$ where $(\eta_m)_{m=1}^{\infty}$ is a sequence of independent standard Gaussian random variables and (λ_m) are the eigenvalues of the kernel g^{\emptyset} (see the next slide).

Martingale-coboundary decomposition (d=2)

Proposition. Let $f(= f_2) \in L_{2,\pi}^{sym}(\mu^2)$ be a canonical kertnel of degree 2. If the limit

$$g \stackrel{\text{def}}{=} \lim_{\substack{n_1, n_2 \to \infty \\ 0 \le i_2 \le n_2 - 1}} \sum_{\substack{0 \le i_1 \le n_1 - 1 \\ 0 \le i_2 \le n_2 - 1}} V^{*(i_1, i_2)} f_{i_1}$$

there exists in $L_{2,\pi}(\mu^2)$, then f admits a unique representation of the form

$$f = g^{\emptyset} + (V^{(1,0)} - I)g^{\{1\}} + (V^{(0,1)} - I)g^{\{2\}} + (V^{(1,0)} - I)(V^{(0,1)} - I)g^{\{1,2\}}$$

where

$$\begin{split} E(g^{\emptyset}|(T^{-1}\mathcal{F}^{(1)})\otimes\mathcal{F}^{(2)}) &= 0, \qquad E(g^{\emptyset}|\mathcal{F}^{(1)}\otimes T^{-1}\mathcal{F}^{(2)}) = 0, \\ E(g^{\{1\}}|\mathcal{F}^{(1)}\otimes T^{-1}\mathcal{F}^{(2)}) &= 0, \quad E(g^{\{2\}}|(T^{-1}\mathcal{F}^{(1)})\otimes\mathcal{F}^{(2)}) = 0 \\ \text{and } g^{\emptyset}, g^{\{1\}}, g^{\{2\}}, g^{\{1,2\}} \text{ are canonical. Moreover,} \\ g^{\emptyset}, g^{\{1,2\}} &\in L_{2,\pi}^{sym}(\mu^{2}), g^{\{1\}}, g^{\{2\}} \in L_{2,\pi}(\mu^{2}), g^{\{1\}} \circ \theta = g^{\{2\}} \text{ and} \\ g^{\{2\}} \circ \theta = g^{\{1\}} \text{ (here } \theta(x_{1}, x_{2}) = (x_{2}, x_{1}), x_{1}, x_{2} \in X)). \end{split}$$

Projective tensor products of Banach spaces

Let B_1, \ldots, B_d be Banach spaces with norms $|\cdot|_{B_1}, \ldots, |\cdot|_{B_d}$, and let $B_1 \otimes \cdots \otimes B_d$ be their algebraic tensor product. Elements of $B_1 \otimes \cdots \otimes B_d$ representable in the form $f_1 \otimes \cdots \otimes f_d$ are called elementary tensors. The projective tensor product $B_1 \hat{\otimes}_{\pi} \cdots \hat{\otimes}_{\pi} B_d$ of Banach spaces B_1, \ldots, B_d is defined as the completion of $B_1 \otimes \cdots \otimes B_d$ relative to the **projective norm**. The latter is defined as the supremum of all norms on $B_1 \otimes \cdots \otimes B_d$, which are equal to $\prod_{i=1}^{d} |f_i|_{B_i}$ for every elementary tensor $f_1 \otimes \cdots \otimes f_d$. **Example**. The space $L_{2,\pi}(\mu^2)$ can be identified with the space of

nuclear opeartors from $L_2(\mu)^*$ to $L_2(\mu)$.

Embedding of the projective product $L_{\rho,\pi}(\mu^d)$ to $L_{\rho}(\mu^d)$

Let $(X_i, \mathcal{F}_i, \mu_i)$ (i = 1, ..., d) be copies of (X, \mathcal{F}, μ) . Set for $p \in [1, \infty]$

$$L_{\rho,\pi}(\mu^d) \stackrel{\text{def}}{=} L_{\rho}(X_1,\mathcal{F}_1,\mu_1) \hat{\otimes}_{\pi} \cdots \hat{\otimes}_{\pi} L_{\rho}(X_d,\mathcal{F}_d,\mu_d).$$

Let $|\cdot|_{p,d,\pi}$ be the norm of the space $L_{p,\pi}(\mu^d)$. It is shown in the following lemma that $L_{p,\pi}(\mu^d)$ can be regarded as a subspace of $L_p(\mu^d)$.

Lemma. For every $p \in [1, \infty]$ there exists a unique linear mapping $J_d : L_{p,\pi}(\mu^d) \to L_p(\mu^d)$ of norm 1 which sends every elementary tensor $f_1 \otimes \cdots \otimes f_d$ to the function $(x_1, \ldots, x_d) \mapsto f_1(x_1) \cdots f_d(x_d)$. Furthermore, J_d maps $L_{p,\pi}(\mu^d)$ to $L_p(\mu^d)$ injectively. For every $p \in [1, \infty)$ the subspace $J_d(L_{p,\pi}(\mu^d))$ is dense in $L_p(\mu^d)$.

Restriction to the diagonal

Proposition. Let $p \in [1, \infty]$ and r = p/d. Then

• the mapping \mathcal{D} which sends every d-tuple $(f_1, \ldots, f_d) \in L_p(\mu) \times \ldots \times L_p(\mu)$ to the function $x \mapsto f_1(x) \cdots f_d(x)$ is a d-linear mapping of norm 1 from $L_p(\mu) \times \cdots \times L_p(\mu)$ to $L_r(\mu)$;

2 there exists such a unique linear mapping (of norm 1) $D_d: L_{p,\pi}(\mu^d) \to L_r(\mu)$ that for every d-tuple $(f_1, \ldots, f_d) \in L_{p_1}(\mu) \times \cdots \times L_{p_d}(\mu)$ $D_d(f_1 \otimes \cdots \otimes f_d) = \mathcal{D}(f_1, \ldots, f_d).$

The existence of embedding of $L_{p,\pi}(\mu^d)$ to $L_p(\mu^d)$ allows us to interpret elements of $L_{p,\pi}(\mu^d)$ as functions defined on X^d . Then $D_d f$ plays the role of the restriction of f to the principal diagonal $\{(x_1, \ldots, x_d) : x_1 = \cdots = x_d)\} \subset X^d$.

On the proof of Theorem 4. I

We will use the above martingale-coboundary decomposition (propositition following Theorem 4). It follows from inequalites

$$\Big| \sum_{0 \le i_1, i_2 \le n-1} D_2 V^{(i_1, i_2)} ((V^{(1,0)} - I)g^{\{1\}} + (V^{(0,1)} - I)g^{\{2\}}) \Big|_1 \le 2C_{2,2,1}\sqrt{n} |g|_{2,2,\pi},$$

$$\Big|\sum_{0\leq i_1,i_2\leq n-1} D_2 V^{(i_1,i_2)} ((V^{(1,0)}-I)(V^{(0,1)}-I)g^{\{1,2\}})\Big|_1 \leq C_{2,2,2} \|g\|_{2,2,\pi}.$$

and the proposition on martingale-coboundary decomposition that

$$\Big|rac{1}{n}\sum_{0\leq i_1,i_2\leq n-1}D_2V^{(i_1,i_2)}(f-g^{\emptyset})\Big|_1 \stackrel{
ightarrow}{
ightarrow} 0.$$

This reduces the proof to the special case of the "orthomartingale kernel" g^{\emptyset} .

On the proof of Theorem 4. II

The real-valued symmetric function g^{\emptyset} is a kernel of an symmetric integral nuclear operator in $L_2(\mu)$. Hence, it expands over the eigenfunctions:

$$g^{\emptyset}(x_1, x_2) = \sum_{m=1}^{\infty} \lambda_m \varphi_m(x_1) \varphi_m(x_2)$$
(2)

where $(\varphi_m)_{m\geq 1}$ is a real-valued orthonormal sequence $L_2(\mu)$ (possibly incomplete) and $(\lambda_m)_{m\geq 1}$ is a sequence of reals for which $\sum_{m=1}^{\infty} |\lambda_m| < \infty$. We assume that $\lambda_m \neq 0$ for all $m \geq 1$.

On the proof of Theorem 4. III

Let us show that for every $m \geq 1$

$$\mathsf{E}(\varphi_m|T^{-1}\mathcal{F})=0.$$

We have $\mu \times \mu$ -almost surely

$$0 = E(g^{\emptyset} | T^{-(0,1)} \mathcal{F}^{\otimes 2})(x_1, x_2) = \sum_{l=1}^{\infty} \lambda_l \varphi_l(x_1) E(\varphi_l | T^{-1} \mathcal{F})(x_2)$$

For every $m \ge 1$, multiplying this identity by $\varphi_m(x_1)$ and integrating it in x_1 with respect to μ , we obtain that

$$\lambda_m E(\varphi_m | T^{-1} \mathcal{F})(x_2) = 0$$

which implies the assertion.

On the proof of Theorem 4. IV

Let us set for $N \ge 1$

$$\xi_N = \sum_{m=1}^N \lambda_m \eta_m^2, \quad g_N^{\emptyset}(x_1, x_2) = \sum_{m=1}^N \lambda_m \varphi_m(x_1) \varphi_m(x_2).$$

Notice that for every N the assertions of the theorem on the convergence in distribution and the convergence of the first moments will hold if we substitute f and ξ in these assertions with g_N^{\emptyset} and ξ_N , respectively. Indeed, by means of the Cramer–Wold device the Billingsley–Ibragimov theorem extends to \mathbb{R}^N -valued martingale-differences. Hence, the random vectors

$$\left(\frac{1}{\sqrt{n}}\sum_{k=o}^{n-1}\varphi_1\circ T^k,\ldots,\frac{1}{\sqrt{n}}\sum_{k=o}^{n-1}\varphi_N\circ T^k\right)$$

converge in distribution to (η_1, \ldots, η_N) as $n \rightarrow \infty$ as $n \rightarrow \infty$

On the proof of Theorem 4. V

Therefore, random variables

$$\frac{1}{n} \sum_{0 \le i_1, i_2 \le n-1} D_2 V^{(i_1, i_2)} g_{\emptyset}^{(N)} = \sum_{m=1}^N \lambda_m \left(\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \varphi_m \circ T^k \right)^2$$

converge in distribution to $\sum_{m=1}^{N} \lambda_m \eta_m^2$ as $n \to \infty$. Convergence of the first moments follows now from the convergence of the second moments in the CLT for martingale differences. Observe that

$$|\xi - \xi_N|_1 = \left|\sum_{m=N+1}^{\infty} \lambda_m \eta_m^2\right|_1 \le \sum_{m=N+1}^{\infty} |\lambda_m| \xrightarrow[N \to \infty]{} 0.$$

Consequently, $(\xi_n)_{n\geq 1}$ converges in distribution to ξ along with the first moments.

On the proof of Theorem 4. VI

This convegernce and the fact that the relation

$$\begin{aligned} &\left|\frac{1}{n}\sum_{0\leq i_{1},i_{2}\leq n-1}D_{2}V^{(i_{1},i_{2})}g^{\emptyset}-\frac{1}{n}\sum_{0\leq i_{1},i_{2}\leq n-1}D_{2}V^{(i_{1},i_{2})}g^{\emptyset}_{N}\right|_{1} \\ &\leq \left|\sum_{m=N+1}^{\infty}\lambda_{m}\left(\frac{1}{\sqrt{n}}\sum_{0\leq i\leq n-1}\varphi_{m}\circ T^{i}\right)\otimes\left(\frac{1}{\sqrt{n}}\sum_{0\leq i\leq n-1}\varphi_{m}\circ T^{i}\right)\right|_{2,2,\pi} \\ &\leq \sum_{m=N+1}^{\infty}\left|\lambda_{m}\right|\underset{N\to\infty}{\to}0 \end{aligned}$$

holds uniformly in n (we use here that the functions $(\varphi_m \circ T^i)_{1 \le m, 1 \le i}$ are orthonormal) complete the proof.

Example: the doubling transformation

Let $X = \{z \in \mathbb{C} : |z| = 1\}$, μ be the normalized Haar measure on X, $Tz = z^2$ for $z \in X$. We have

$$(Vf)(x) = f(x^2), \ (V^*f)(x) = 1/2 \sum_{\{u: \ u^2 = x\}} f(u).$$

It is known that T is an exact transformation. If $f_1 \in L^2(\mu)$ and $\int_X f_1(x)\mu(dx) = 0$ then the setries

$$\sum_{k\geq 0} V^{*k} f_2$$

converges in $L^2(\mu)$ if, for example,

$$\sum_{k\geq 0} w^{(2)}(f_1, 2^{-k}) < \infty.$$

Here $w^{(2)}(f_1, \cdot)$ is the continuity modulus of f_1^{\square} in $\mathcal{I}^2(\mu)$.

Example (continued). Translation-invariant kernels

Let now $f \in L^2(\mu^2)$ be such that $f(x_1, x_2) = g(x_1 x_2^{-1})$ with some $g(x) = \sum_{k \in \mathbb{Z}} g_k x^k \in L^2(\mu)$. Assume that $f = f_2$ (that is f is canonical), real-valued and symmetric. This means that $g_0 = 0, g_k$ are real and such that $g_{-k} = g_k$ for every $k \in \mathbb{Z}$. Next, let $f_2 \in L_{2,\pi}^{sym}(\mu^2)$ which is equivalent in our conditions to the relation

$$\sum_{k\in\mathbb{Z}}|g_k|<\infty.$$

Furthermore, if C > 0 and $\delta > 0$

$$|g_k| \leq rac{C}{|k|(\log |k|)^{1+\delta}}, k \in \mathbb{Z}, k
eq 0,$$

then Theorem 4 applies to f.

Example (continued). General kernels

Consider now a general kernel $f \in L_2(X^2, \mathcal{F}^{\otimes 2}, \mu^2)$ with the Fourier expansion

$$f(x_1, x_2) = \sum_{k_1, k_2 \in \mathbb{Z}} f_{k_1, k_2} x_1^{k_1} x_2^{k_2}, \quad x_1, x_2 \in X.$$

Assume that the kernel f is real-valued and symmetric, that is $f_{-k_1, -k_2} = \overline{f}_{k_1, k_2}$ and $f_{k_2, k_1} = f_{k_1, k_2}$ for $k_1, k_2 \in \mathbb{Z}$. The summands of Hoeffding's decomposition are $f_0 = f_{0,0}$, $f_1(x) =$ $\sum_{k \in \mathbb{Z} \setminus \{0\}} f_{k,0} x^k$, $f_2(x_1, x_2) = \sum_{k_1, k_2 \in \mathbb{Z} \setminus \{0\}} f_{k_1, k_2} x_1^{k_1} x_2^{k_2}$. The kernel f satisfies all conditions of Theorems 2 and 4 whenever $\sum_{n_1, n_2 \ge 0} \sum_{k_1, k_2 \in \mathbb{Z} \setminus \{0\}} |f_{2^{n_1}k_1, 2^{n_2}k_2}| < \infty$ and $\sum_{n \ge 0} \left(\sum_{k \in \mathbb{Z} \setminus \{0\}} |f_{2^n k, 0}|_2^2 \right)^{1/2} < \infty$ (for Theorem 1 only), $f_0 = 0, f_1(\cdot) = 0$ (for Theorem 4 only).

How to verify our assumptions ?

A more general approach can be developed on the basis of the transfer operator (V^* in our setting) restricted to some spaces of nice (smooth, Hölder or Sobolev) functions. We assume now that T acts on a compact smooth manifold as an expanding map preserving a measure μ so that some rate of for convergence of $V^{*n}f$ for nice f is known. Expansion of a kernel into an absolutely convergent series whose summands are products of nice functions in separate variables is natural in the context of the limit theory of V-statistics. Neither uniqueness of the representation, nor linear independence of these functions is assumed.

Proposition. Let, for some $p \in [1, \infty]$, $(e_k)_{k=0}^{\infty}$ be a sequence of functions such that $e_0 \equiv 1$ and for every $k \geq 1$ $e_k \in L_p(\mu)$ with $\int_X e_k(x)\mu(dx) = 0$. Assume that for every $k \geq 1$

$$C_{p,k} \stackrel{\text{def}}{=} \sum_{n\geq 0} |V^{*n}e_k|_p < \infty.$$

Suppose that $f \in L_p(\mu^m)$ admits a representation

$$f(x_1,\ldots,x_m) = \sum_{\mathbf{0} < \mathbf{k} < \infty} \lambda_{\mathbf{k}}(f) e_{k_1}(x_1) \cdots e_{k_m}(x_m)$$
(3)

where $(\lambda_{\mathbf{k}}(f))_{\mathbf{0} < \mathbf{k} < \infty}$ is a family of constants satisfying

$$C_{p}(f) \stackrel{\text{def}}{=} \sum_{\mathbf{0} < \mathbf{k} < \infty} |\lambda_{\mathbf{k}}(f)| C_{p, k_{1}} \cdots C_{p, k_{m}} < \infty.$$
(4)

30 / 33

Then f is a canonical kernel of degree m, $f \in L_{p,\pi}(\mu^m)$, the series in

$$g = \sum_{\substack{\mathbf{0} \le \mathbf{k} < \infty}} V^{*\mathbf{k}} f \left(\stackrel{\text{def}}{=} \lim_{\substack{n_1 \to \infty \\ n_m \to \infty}} \sum_{\substack{\mathbf{0} \le \mathbf{k} < \mathbf{n}}} V^{*\mathbf{k}} f \right)$$
(5)

converges in $L_{p,\pi}(\mu^m)$ and its sum g satisfies the inequality

$$|g|_{p,m,\pi} \leq C_p(f).$$
(6)

QUESTIONS, PROBLEMS

- Prove the Functional CLT (doable)
- Develop a non-adapted version (doable)
- Incorporate the development after 2000 in the field of martingale approximation (Maxwell-Woodroofe, Peligrad-Utev) (doable)
- Investigate large deviations and local CLT (perturbation of some kind of transfer operator ?)
- Substitute the nuclearity assumption by a weaker requirement (serious functional-theoretic problem)

The preprint by M. Denker and the speaker arXiv:1109.0635v2 [math.DS]

covers the present talk but contains some missprints.

A corrected version can be requested from the speaker via E-mail: gordin@pdmi.ras.ru

Thank you !