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Introduction
Representation of translation invariant experiments with independent increments

Large deviations and convergence results

Example 1

Observations: X1, . . . ,Xn, . . . are i.i.d. random variables with
density f (x − ϑ), x ∈ R;
f (x) is regular everywhere except x = 0, where it has a jump:

f (−0) = q, f (+0) = p, p > 0, q > 0, p 6= q;

Pn
ϑ is the law of X (n) = (X1, . . . ,Xn);
ϕn = n−1 is a normalization rate;
the normalized likelihood Zn,ϑ0

u = dPn
ϑ0+ϕnu

/dPn
ϑ0

;

Law
(
(Zn,ϑ0

u )u∈R|Pn
ϑ0

)
⇒

n→∞
Law

(
(Zu)u∈R

)
,

where Zu = exp(Yu),

Yu =

{
u(p − q) + log(q/p)π+(u), u ≥ 0,
−u(q − p) + log(p/q)π−(−u), u ≤ 0,

π+(u) and π−(u), u ≥ 0, are independent Poisson processes with
intensities p and q respectively.
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Large deviations and convergence results

Example 2: q = 0

What happens with the limiting process Zt = Z
(p.q)
t if q → 0:

Law
(
(Z

(p,q)
u )u∈R

)
⇒
q→0

Law
(
(Z

(p,0)
u )u∈R

)
,

where
Z

(p,0)
u = epu1{u≤τ},

where τ is a random variable with exponential distribution with
parameter p.
For example, let f (x) = e−x1{x≥0} (p = 1, q = 0), then

dPn
ϑ

dλ
(x1, . . . , xn) =

{
enϑ−

∑n
1 xi , x1 ≥ ϑ, . . . , xn ≥ ϑ,

0, otherwise,

hence

Zn,ϑ0
u = dPn

ϑ0+ϕnu/dPn
ϑ0

= eu1{x1∧···∧xn≥ϑ0+u/n}(x1, . . . , xn)

Law
= Z

(1,0)
u .
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Example 3

Observations: X1, . . . ,Xn, . . . are independent uniform on
[ϑ, ϑ+ 1], i.e. f (x) = 1[0,1](x).

Pn
ϑ is the law of X (n) = (X1, . . . ,Xn);
ϕn = n−1 is a normalization rate;
the normalized likelihood Zn,ϑ0

u = dPn
ϑ0+ϕnu

/dPn
ϑ0

;

Law
(
(Zn,ϑ0

u )u∈R|Pn
ϑ0

)
⇒

n→∞
Law

(
(Z∞u )u∈R

)
,

where
Z∞u = 1{−σ<u<τ}(u),

σ and τ are independent exponentially distributed random
variables with mean 1.
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Example 4 (Ibragimov and Hasminskii 1975)

Observations:

dX (t) = S(t − ϑ) dt + εdW (t), t ∈ [0, 1],

S(t) is regular everywhere except t = 0, where it has a jump:

S(−0) = q, S(+0) = p, p − q = r 6= 0;

Pεϑ is the law of X (t), t ∈ [0, 1];
ϕε = ε2 is a normalization rate;
the normalized likelihood Z ε,ϑ0

u = dPεϑ0+ϕεu
/dPεϑ0

;

Law
(
(Z ε,ϑ0

u )u∈R|Pεϑ0

)
⇒
ε→0

Law
(
(Zu)u∈R

)
,

where Zu = exp(rBu − 1
2 r 2|u|), and B(u), u ∈ R, is a two-sided

standard Brownian motion.
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MLE and BE

Let Z 0
u = exp(Bu − 1

2 |u|),

ξ0 = arg max
u∈R

Z 0
u and ζ0 =

∫
R uZ 0

u du∫
R Z 0

u du

be the maximum likelihood estimator and a generalized Bayesian
(wrt quadratic loss) estimator respectively.
Terent’yev (1968): Var(ξ0) = 26.
Ibragimov and Khasminskii (1979/1981): numerical simulation of
Var(ζ0) = 19.5± 0.5.
Golubev (1979): Var(ζ0) in terms of the second derivative of a
certain improper integral.
Rubin and Song (1995): exact value Var(ζ0) = 16ζ(3), where ζ(·)
is Riemann’s zeta function.
Novikov and Kordzakhia (2012/2013): short proof of
Var(ζ0) = 16ζ(3).
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Example 5: Chigansky and Kutoyants (2012)

Observations: nonlinear (threshold autoregressive) TAR(1) model

Xj+1 = h(Xj)1{Xj<ϑ} + g(Xj)1{Xj≥ϑ} + εj+1, j = 0, . . . , n, . . . ,

where h and g are known functions, εj are i.i.d. random variables
with a known density f (x) > 0. Put δ(u) = g(u)− h(u).
Pn
ϑ is the law of X (n) = (X0, . . . ,Xn−1);
ϕn = n−1 is a normalization rate;
the normalized likelihood Zn,ϑ0

u = dPn
ϑ0+ϕnu

/dPn
ϑ0

;

Law
(
(Zn,ϑ0

u )u∈R|Pn
ϑ0

)
⇒

n→∞
Law

(
(Zu)u∈R

)
,

where

Zu =

 exp
(∑π+(u)

i=1 log
f (ε+

i +δ(ϑ0))

f (ε+
i )

)
, u ≥ 0,

exp
(∑π−(−u)

i=1 log
f (ε−i −δ(ϑ0))

f (ε−i )

)
, u ≤ 0,

π+(u) and π−(u), u ≥ 0, are independent Poisson processes with
the same intensities, ε± are i.i.d. random variables with density f
which are also independent of π±.Alexander Gushchin Translation Invariant Experiments with Independent Increments
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Dachian and Negri 2011

Let

Zγ,f
u =

 exp
(∑π+(u)

i=1 log
f (ε+

i +γ)

f (ε+
i )

)
, u ≥ 0,

exp
(∑π−(−u)

i=1 log
f (ε−i −γ)

f (ε−i )

)
, u ≤ 0,

where γ > 0, π+(u) and π−(u), u ≥ 0, are independent Poisson
processes with intensity 1, ε± are i.i.d. random variables with
density f > 0 which are also independent of π±. It is also assumed
that f has zero mean and variance 1 and quadratic mean
differentiable with the Fisher information I > 0.
Then

Law
(
(Zγ,f

u/(Iγ2)
)u∈R

)
⇒
γ→0

Law
(
(Z 0

u )u∈R
)
,

and
Law

(
(Zγ,f

u )u∈R
)
⇒
γ→∞

Law
(
(Z∞u )u∈R

)
.
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(
(Zγ,f

u )u∈R
)
⇒
γ→∞

Law
(
(Z∞u )u∈R

)
.
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Experiments

A statistical experiment is a triple E =
(
Ω,F ,

(
Pϑ
)
ϑ∈Θ

)
consisting

of a measurable space (Ω,F ) and a family
(
Pϑ
)
ϑ∈Θ

of probability
measures on (Ω,F ).
We consider experiments only with Θ = R or their finite
subexperiments E =

(
Ω,F ,

(
Pϑ
)
ϑ∈I
)
, I = {ϑ0, ϑ1, . . . , ϑk} ⊂ R,

which are denoted simply as
(
Pϑ0 ,Pϑ1 , . . . ,Pϑk

)
.
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Hellinger transform

For k ∈ N, let

Sk = {α = (α0, α1, . . . , αk) : αi > 0, i = 0, . . . , k ,
k∑

i=0

αi = 1}.

The Hellinger transform H(α; Pϑ0 ,Pϑ1 , . . . ,Pϑk ),
α = (α0, α1, . . . , αk) ∈ Sk , is defined by

H(α; Pϑ0 ,Pϑ1 , . . . ,Pϑk ) =

∫ k∏
i=0

(dPϑi
dµ

)αi

dµ,

where µ is an arbitrary σ-finite measure dominating
Pϑ0 ,Pϑ1 , . . . ,Pϑk . In the binary case k = 1, we write
H(α; Pϑ0 ,Pϑ1) instead of H((α, 1− α); Pϑ0 ,Pϑ1).
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The likelihood processes

For an experiment E =
(
Ω,F ,

(
Pϑ
)
ϑ∈Θ

)
the likelihood process of

E with base η ∈ Θ is (dPϑ
dPη

)
ϑ∈Θ

,

where dPϑ/dPη stands for the Radon–Nikodym derivative of the
Pη-absolutely continuous component of Pϑ with respect to Pη.
The distribution of the likelihood process with base η is always
taken with respect to Pη.
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Equivalent experiments

Two experiments E =
(
Ω,F ,

(
Pϑ
)
ϑ∈Θ

)
and

E′ =
(
Ω′,F ′,

(
P′ϑ
)
ϑ∈Θ

)
with the same parameter set are

equivalent (E ∼ E′) if

Law

((dPϑ
dPη

)
ϑ∈Θ

∣∣∣Pη) = Law

((dP′ϑ
dP′η

)
ϑ∈Θ

∣∣∣P′η) for every η ∈ Θ.

E ∼ E′ if and only if

H(α; Pϑ0 ,Pϑ1 , . . . ,Pϑk ) = H(α; P′ϑ0
,P′ϑ1

, . . . ,P′ϑk )

for every I = {ϑ0, ϑ1, . . . , ϑk} with k ∈ N and every α ∈ Sk .
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Weak convergence

The weak convergence of experiments is understood as the weak
convergence of finite-dimensional distributions of likelihood
processes and is equivalent to the convergence of the Hellinger
transforms. It is denoted by

w→.
An experiment E =

(
Ω,F ,

(
Pϑ
)
ϑ∈Θ

)
is called totally

non-informative if Pϑ = Pη for all ϑ, η ∈ Θ.
The product E⊗ E′ of experiments E =

(
Ω,F ,

(
Pϑ
)
ϑ∈Θ

)
and

E′ =
(
Ω′,F ′,

(
P′ϑ
)
ϑ∈Θ

)
is defined as

E⊗ E′ =
(
Ω× Ω′,F ⊗F ′,

(
Pϑ × P′ϑ

)
ϑ∈Θ

)
.

The Hellinger transforms of the product are obtained as the
product of the corresponding Hellinger transforms. In an obvious
manner, the nth power E⊗n of E is defined.
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Infinitely divisible experiments

An experiment E is called infinitely divisible if, for every n ∈ N,
there is an experiment En such that E ∼ E⊗nn .
An experiment E =

(
Ω,F ,

(
Pϑ
)
ϑ∈R
)

is continuous if
limη→ϑ ‖Pη − Pϑ‖ = 0 for every ϑ ∈ Θ.
If λ > 0 and t ∈ R, E =

(
Ω,F ,

(
Pϑ
)
ϑ∈R
)
, then UλE and TtE are

defined as
UλE =

(
Ω,F ,

(
Pλϑ

)
ϑ∈R
)

and
TtE =

(
Ω,F ,

(
Pϑ+t

)
ϑ∈R
)
.
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Translation invariance, stability, independent increments

An experiment E =
(
Ω,F ,

(
Pϑ
)
ϑ∈R
)

is said

to be translation invariant if E ∼ TtE for every t ∈ R;

to be stable if it is either totally non-informative or if it is
continuous and there is some p > 0 (called the exponent of
stability) such that E⊗n ∼ Un1/pE for every n ∈ N;

to have independent increments if, for any
ϑ0 < ϑ1 < · · · < ϑk ,(

Pϑ0 ,Pϑ1 , . . . ,Pϑk
)

∼
(
Pϑ0 ,Pϑ1 , . . . ,Pϑ1

)
⊗
(
Pϑ1 ,Pϑ1 ,Pϑ2 , . . . ,Pϑ2

)
⊗ . . .

⊗
(
Pϑk−1

, . . .Pϑk−1
,Pϑk

)
.

Alexander Gushchin Translation Invariant Experiments with Independent Increments



Introduction
Representation of translation invariant experiments with independent increments

Large deviations and convergence results

Translation invariance, stability

Le Cam (1973) showed that weak limits of experiments UδnTϑ0En,
δn → 0, are “often” translation invariant.
Strasser (1985a) proved that an experiment F is stable if and only

if it is the weak limit of a sequence
(
UδnTϑ0E

)⊗n
= UδnTϑ0E⊗n,

δn ↓ 0, of product experiments (under a mild additional assumption
on this sequence). Moreover, if F is not totally non-informative,
then, necessarily,

δn = n−1/pan,

where p is the exponent of stability of F and (an) is a slowly
varying sequence, i.e.

lim
n

anm
an

= 1 for every m ∈ N.
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Experiments with independent increments

The notion of an experiment with independent increments was
introduced by Strasser (1985b), where he gave necessary and
sufficient conditions for a weakly convergent sequence
En = En,1 ⊗ · · · ⊗ En,kn , kn →∞, of product experiments to have
an experiment with independent increments in the limit.
Experiments with independent increments often arise as limiting
ones in non-regular models. To illustrate this, let us recall that
every continuous translation invariant experiment with independent
increments is stable with exponent p = 1, see Strasser (1985b).
This means, in particular, that if En corresponds to n independent
observations with a density f (· − ϑ) and UδnEn

w→ F, where F is an
experiment with independent increments, then the rate of
convergence is n up to a slowly varying sequence.
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Lévy processes

Recall that the law of a real-valued Lévy process X = (Xt)t≥0 is
uniquely characterized by a triple (b, c ,F ), where b ∈ R, c ≥ 0,
and F is a measure on R \ {0} satisfying

∫
(1∧ x2) F (dx) <∞; for

every t > 0 and λ ∈ R,

E
[
e iλXt

]
= exp[tΨ(λ)],

where

Ψ(λ) = iλb − λ2

2
c +

∫ (
e iλx − 1− iλh(x)

)
F (dx) (1)

and h : R→ R is a truncation function. The function Ψ is called
the cumulant of X .
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A set Q of triples

Denote by Q the set of all triples (a, c,Π), where a ≥ 0, c ≥ 0, Π
is a measure on [−1,∞) such that

∫
(|x | ∧ x2) Π(dx) <∞. Given

such a triple (a, c ,Π) ∈ Q, let

Ψa,c,Π(λ) = −iλa− λ2

2
c +

∫ (
e iλx − 1− iλx

)
Π(dx). (2)

It is easy to see that (2) reduces to (1) if we put
b = −a−

∫
(x − h(x)) Π(dx), F = Π. Therefore, there exists a

Lévy process X with the cumulant Ψa,c,Π.
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Stochastic exponential

Recall that the stochastic exponential Z = E (X ) of a
semimartingale X is defined as a solution Z to the stochastic
differential equation

dZt = Zt− dXt , ,Z0 = 1,

which is understood as

Zt = 1 +

∫
(0,t]

Zs− dXs .

A solution always exists and is unique. E (X ) ≥ 0 iff ∆X ≥ −1.
E (X ) > 0 and E (X )− > 0 iff ∆X > −1.
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Exponentials and stochastic exponentials of Lévy processes

If Y is a real-valued Lévy process, then eY = E (X ), where X is
also a Lévy process with ∆X > −1. If conversely X is a Lévy
process with ∆X > −1, then Y = log E (X ) is also a Lévy process.
Furthermore the triples (bX , cX ,FX ) and (bY , cY ,FY ) of X and Y
respectively can be expressed via each other by

bX = bY + cY
2 +

∫
[h(ex − 1)− h(x)] FX (dx),

cY = cX ,

FX is the image of FY under the mapping x  ex − 1,

and

bY = bX − cX
2 +

∫
[h(log(1 + x))− h(x)] FY (dx),

cX = cY ,

FY is the image of FX under the mapping x  log(1 + x).
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Lévy processes with the cumulant Ψa,c,Π, (a, c,Π) ∈ Q

Proposition

Let X be a Lévy process. The following conditions are equivalent:

E (X ) ≥ 0, EE (X )t ≤ 1 for some t > 0;

the cumulant of X is Ψa,c,Π for some (a, c ,Π) ∈ Q.

If these conditions are satisfied, then

EE (X )t = e−at ; eatE (X )t is a martingale;

E (X ) is represented in the form

E (X )t = eYt e−atVt ,

where Y is a Lévy process, V ≡ 1 if Π({−1}) = 0 and
Vt = eΠ({−1})t1{t<τ} otherwise, where
τ = inf {t ≥ 0: ∆Xt = −1} is a random variable independent
of Y with the exponential distribution with mean 1/Π({−1}).
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Decomposition

The above decomposition can be also written in the form

E (X ) = E (X (1))E (X (2))E (X (3)),

where X (1), X (2), X (3) are independent Lévy processes with the
cumulants Ψ0,c,1(−1,∞)·Π, Ψ0,0,1{−1}·Π, Ψa,0,0, respectively.
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Conjugate triple

For a triple (a, c ,Π) ∈ Q define a conjugate triple (â, ĉ, Π̂):

â = Π({−1}), ĉ = c , Π̂({−1}) = a,

Π̂(G ) =

∫
{x>−1}

(1 + x)1
(
− x

1 + x
∈ G

)
Π(dx), G ∈ B(−1,∞).

It is easy to check that (â, ĉ , Π̂) ∈ Q.
Note that the conjugate triple to (â, ĉ , Π̂) is (a, c ,Π).
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Constructing a two-sided process

Therefore, we can take a Lévy process X̂ with the cumulant Ψâ,ĉ,Π̂

and independent of X . Starting from X̂ , we construct as above the
processes X̂ (1), X̂ (2), X̂ (3), Ŷ and a random variable T̂ .
Finally, for −∞ < t <∞, define

Zt =

{
E (X )t , if t ≥ 0,

E (X̂ )|t|, if t ≤ 0,

=

{
eYt+(â−a)t1{t≤T}, if t ≥ 0,

eŶ|t|+(a−â)|t|1{|t|≤T̂}, if t ≤ 0,
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Main theorems (1/2)

Theorem

Let E =
(
Ω,F ,

(
Pt

)
t∈R
)

be a continuous translation invariant
experiment with independent increments. Then there is a triple
(a, c ,Π) ∈ Q such that

Law

((dPt

dP0

)
t∈R

∣∣∣∣P0

)
= Law

(
(Zt)t∈R

)
,

where Z = (Zt)t∈R is defined by

Zt =

{
E (X )t , if t ≥ 0,

E (X̂ )|t|, if t ≤ 0,
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Main theorems (2/2)

Theorem

Assume that (a, c ,Π) ∈ Q, X and X̂ are independent Lévy
processes with the cumulants Ψa,c,Π and Ψâ,ĉ,Π̂, respectively, and
Z = (Zt)t∈R is defined as in the previous theorem. Then there is a
continuous translation invariant experiment with independent
increments E =

(
Ω,F ,

(
Pt

)
t∈R
)

such that

Law

((dPt

dP0

)
t∈R

∣∣∣∣P0

)
= Law

(
(Zt)t∈R

)
.
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Preliminaries

E =
(
Ω,F ,

(
Pt

)
t∈R
)

is a continuous translation invariant
experiment with independent increments,

Zt =
dPt

dP0
, t ∈ R,

and

Zt =

{
E (X )t , if t ≥ 0,

E (X̂ )|t|, if t < 0,

=

{
eYt+(â−a)t1{t≤T}, if t ≥ 0,

eŶ|t|+(a−â)|t|1{|t|≤T̂}, if t < 0,

where X and X̂ are independent Lévy processes with cumulants
(a, c ,Π) ∈ Q and the conjugate triple (â, ĉ , Π̂), respectively, Y
and T are obtained from X and Ŷ and T̂ are obtained from X̂ as
described above.
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Integrability property

The trivial case a = c = 0, Π = 0 is tacitly excluded from the
consideration. Then

κ = − log E0

√
Z1 =

c

8
+

∫
x≥−1

(
1 +

x

2
−
√

1 + x
)

Π(dx) +
a

2
> 0.

Lemma

For any p ≥ 0, ∫ ∞
−∞

Zt(1 ∨ |t|p) dt <∞ P0-a.s.
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c

8
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1 +

x

2
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a
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Posterior distribution

In particular, there exists a posterior distribution (with respect to
the Lebesgue measure on R as a prior) F = F (ω,B), ω ∈ Ω,
B ∈ B, satisfying

F (B) =

∫
B

qt dt, B ∈ B, P0-a.s.,

where

qt =
Zt∫

R Zt dt
.
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Bayesian estimators

Let W : R→ [0,∞) be a loss function. Here we shall assume that
W (0) = 0, W is strictly convex and W (t) ≤ C (1 ∨ |t|p), t ∈ R,
for some p ≥ 1 and C > 0.
A generalized Bayesian estimator with respect to the uniform prior
(i.e. the Lebesgue measure) on R and the loss function W . or a
Pitman estimator, denoted by ζ, exists, is translation invariant (i.e.
Law (ζ | P0) = Law (ζ − t | Pt) for every t ∈ R) and minimax, and
satisfies

ζ = arg min
x∈R

∫
R

W (x − t)qt dt = arg min
x∈R

∫
R

W (x − t)Zt dt P0-a.s.

In particular, if W (x) = x2,

ζ =

∫ ∞
−∞

tqt dt P0-a.s.
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Large deviations for the posterior distribution

Theorem

There exist positive constants C0, C1, R0, and C such that, for all
R > R0,

P0

(∫
|t|≥R

qt dt ≥ e−C1R
)
≤ Ce−C0R .

Remark

One can arbitrarily choose C0 from the interval (0, κ/8) and then
C1 from the interval (0, 2(κ− 8C0)/5), and R0 is any number
satisfying R0 ≥ 2 and e−γR0 ≤ 1− e−γ , where
γ = 2(κ− 8C0)/5− C1.

The proof follows the arguments used in the proof of Theorem
1.5.2 in Ibragimov and Has’minskii (1979/1981).
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Notation

It follows from the definitions that the class of continuous
translation invariant experiments with independent incrementsis
closed with respect to the weak convergence. Here our aim is to
study conditions for the weak convergence. All necessary tools can
be found in Coquet and Jacod (1990).

For (a, c ,F ) ∈ Q and α ∈ (0, 1), put

ga,c,F (α) = αa +
α(1− α)

2
c

+

∫
x≥−1

(
1 + αx − (1 + x)α

)
Π(dx).

It is easy to check that ga,c,F (α) = − log H(1− α; P0,P1).
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Closedness

The following proposition is taken from Coquet and Jacod (1990).
It also follows from our previous considerations.

Proposition

Let (an, cn,Fn) ∈ Q for any n. If gan,cn,Fn converges pointwise to
g , then there is (a, c ,F ) ∈ Q such that g = ga,c,F .
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Convergence in terms of characteristics

Let h : R→ R be a truncation function.

Theorem (Coquet and Jacod (1990))

Let (an, cn,Fn) ∈ Q for any n, (a, c ,F ) ∈ Q. The following
statements are equivalent:
(i) gan,cn,Fn converges pointwise to ga,c,F ;
(ii)

−an −
∫

(x − h(x)) Πn(dx)→ −a−
∫

(x − h(x)) Π(dx);

cn +
∫

h2(x) Πn(dx)→ c +
∫

h2(x) Π(dx);∫
χ(x) Πn(dx)→

∫
χ(x) Πn(dx) for any bounded χ : R→ R

which equals zero in a neighborhood of zero.
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Weak convergence (preliminaries)

Let now En =
(
Ωn,F n,

(
Pn
ϑ

)
ϑ∈R
)
, n > 1, and

E =
(
Ω,F ,

(
Pϑ
)
ϑ∈R
)

be continuous translation invariant
experiments with independent increments. The corresponding Lévy
processes on R+ are denoted by X n and X , their cumulants are
Ψan,cn,Fn and Ψa,c,F respectively. The likelihood processes are
denoted by Zn and Z respectively. The next theorem is also mainly
due to Coquet and Jacod (1990).
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Weak convergence (main result)

Theorem

The statements (i) and (ii) of the previous theorem are equivalent
to any one of the following statements:
(i) Law

(
dPn

1/dPn
0

∣∣Pn
0)⇒ Law

(
dP1/dP0

∣∣P0);

(ii) En w→ E.
Moreover, if these conditions are satisfied, then

X n converge in distribution to X in the Skorokhod space
D[0,∞);

Zn converge in distribution to Z in the Skorokhod space
D(−∞,∞).
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Convergence of Bayesian estimators

Let a sequence En of continuous translation invariant experiments
with independent increments weakly converges to E. If E is not
totally noninformative, then we automatically have the weak
convergence of Bayesian estimators together with convergence of
all their moments.
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Large deviations and convergence results

Example: Zγ,f , γ → 0 (1/2)

Recall the notation

Zγ,f
u =

 exp
(∑π+(u)

i=1 log
f (ε+

i +γ)

f (ε+
i )

)
, u ≥ 0,

exp
(∑π−(−u)

i=1 log
f (ε−i −γ)

f (ε−i )

)
, u ≤ 0,

where γ > 0, π+(u) and π−(u), u ≥ 0, are independent Poisson
processes with intensity 1, ε± are i.i.d. random variables with
density f > 0 which are also independent of π±.
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Example: Zγ,f , γ → 0 (2/2)

Now let
f (x) = C (α)e−|x |

α
, x ∈ R,

where α > 0. In the regular case α > 1/2 Dachian and Negri
(2011) showed that

Law
(
(Zγ,f

u/(c(α)γ2)
)u∈R

)
⇒
γ→0

Law
(
(Z 0

u )u∈R
)
.

It follows easily from our results that

Law
(
(Zγ,f

u/(c(α)γ2 log(1/γ))
)u∈R

)
⇒
γ→0

Law
(
(Z 0

u )u∈R
)
, α = 1/2,

(almost regular case), and

Law
(
(Zγ,f

u/(c(α)γ1+2α)
)u∈R

)
⇒
γ→0

Law
(
(Z 0

u )u∈R
)
, α < 1/2.
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Thank you
for your attention!
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