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High Dimensional Problems with Ordered Features

Small n and large p problem: p � n
Sparsity:

Number of influential features k is small.

Feathers are ordered, and correlated.
Examples:

protein mass spectroscopy data
gene expression data
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Objectives in model selection:

Model sparsity
Feathers (variables) selection
Prediction power

Bing-Yi Jing Spline LASSO with thresholding in high-dim regression



Introduction
Review

Spline LASSO
Spline LASSO with Thresholding

Summary

Linear regression model

Given (Yi , xi1, ..., xip), i = 1, ..., n, assume

Yi = β0 + β1xi1 + ... + βpxip + εi , i = 1, ..., n.

In matrix form,
Y = Xβ + ε

where

Y =


Y1
Y2
...

Yn

 , X =


1 x11 · · · x1p
1 x21 · · · x2p
...

...
. . .

...
1 xn1 · · · anp

 , β =


β0
β1
...

βp

 , ε =


ε1
ε2
...
εn

 ,
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One Example: protein mass spectroscopy data, Adam
et al (2003)

For each blood serum sample i ,
xij : intensity for many time-of-flight value tj
time-of-flight: related to mass over charge ratio m/z
p = 48538 m/z-sites
n1 = 157 healthy patients, n2 = 167 with cancer.

Objective:
find m/z-sites discriminating between 2 groups.
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Least square estimate (LSE)

LSE:
β̂ lse = {

∑
i

(yi −
∑

j

xijβj)
2} = (X T X )−1XY

ill-posed if p > n
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Ridge regression

Ridge Regression: (Hoerl and Kennard, Technometrics, 1970)

β̂ridge = argmin{
∑

i

(yi −
∑

j

xijβj)
2}+ λ

p∑
j=1

β2
j

= (X T X + λI)−1XY

When X T X = I, then

β̂ridge =
β̂ lse

1 + λ

L1 penalty does shrinkage of LSE,
but no variable selection.
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LASSO (least absolute shrinkage and selection
operator)

Lasso (Tibshirani (1996), JRSSB):

β̂ lasso = argmin{
∑

i

(yi −
∑

j

xijβj)
2}+ λ

p∑
j=1

|βj |

When X T X = I, then

β̂ lasso = sgn(β̂ lse)
(
|β̂ lse| − λ

)+

L1 penalty does shrinkage and variable selection simultaneously.
It works for p > n as well.
Computation: LARS (Efron et al, 2004), very efficient
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Variants of LASSO

Method Reference Detail
Elastic Net Zou and Hastie(2005) λ

∑
β2

j
Fused Lasso Tibshirani et al .(2005) λ

∑
|βj+1 − βj |

Adaptive Lasso Zou(2006) λ
∑

wj |βj |
Grouped Lasso Yuan and Lin(2007)

∑
g ||βg ||2

Dantzig selector Candes and Tao(2007) min{||X T (y − Xβ)||∞}||β||1 < t
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Fused LASSO

Fused lasso (Tibshirani et al .(2005)):

β̂ = argmin{
N∑

i=1

(yi − xT
i β)2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=2

|βj − βj−1|}

Equivalently,

β̂ = argmin{
∑

i

(yi −
∑

j

xijβj)
2}

subject to
∑p

j=1 |βj | ≤ s1 and
∑p

j=2 |βj − βj−1| ≤ s2.

1st penalty =⇒ sparse βj , while 2nd penalty =⇒ flatness of βj .
(i.e., maintain grouping effects and sparsity of the coefficients).
Fussed lasso picks grouped ordered features.
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Figure: N = 50, p = 80, X ∈ N(0, Σ) where Σii = 1 and Σij = 0.9|i−j|.

Drawbacks:
Hard to keep shape of βj ’s within the same group.
Computation:

very intensive for large p,
not fully automatic
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Smooth LASSO (Hebiri, M. and Van de Geer,
S.(2011))

β̂ = argmin{
N∑

i=1

(yi − xT
i β)2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=2

(βj − βj−1)
2}

Advantages:
Capture the smooth change in features in a group
Computation efficient

Disadvantages:
Cannot capture changes in curvature.
Less prediction power for large p,
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Spline LASSO

β̂ = argmin{
N∑

i=1

(yi − xT
i β)2 + λ1

p∑
j=1

|βj |+ λ2

p−1∑
j=2

(βj−1 − 2βj + βj+1)
2}

The first penalty encourages sparse solution.
The second penalty mimics cubic spline, i.e. penalizing large
second-order derivatives of coefficients.
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Computation

Spline LASSO can be solved by LARS.

Proposition

Given dataset (Y , X ) and (λ1, λ2), define an artificial data set
(Y ∗, X ∗) by

X ∗
(N+p−2)×p =

(
X ,

√
λ2L

)T
, Y ∗

(N+p−2) = (Y , 0)T
.

where L is a (p − 2)× p matrix with Li,i = Li,i+2 = 1, Li,i+1 = −2 and
Li,j = 0 otherwise. Then the spline lasso optimization can be written
as

(Y ∗ − X ∗β)T (Y ∗ − X ∗β) + λ1

p∑
j=1

|βj |,

which is an equivalent lasso problem and can be solved efficiently.
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Simulations

Model:
Y = Xβ + Z ,

where (X1, . . . , Xp)
T ∈ N(0,Σ), and Z ∈ N(0, σ) where

σ ∈ [0.1, 1].
p > n.
β’s are generated from a continuous function with k non-zero
terms, (k > n or k < n).
Comparison in variable selection and prediction:

fused-lasso,
smooth-lasso,
spline,
spline-lasso

Bing-Yi Jing Spline LASSO with thresholding in high-dim regression



Introduction
Review

Spline LASSO
Spline LASSO with Thresholding

Summary

Case 1: N = 60, p = 200, k = 50, σ = 1
10 and

neighboring correlation is high

Figure: X ∼ N(0, Σ) where Σii = 1 and Σij = 0.9|i−j|.
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Case 2:N = 60, p = 300, k = 70, σ = 1
5 and

neighboring correlation is median

Figure: X ∼ N(0, Σ) where Σii = 1 and Σij = 0.5|i−j|.
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Case 3:N = 60, p = 500, k = 70, σ = 1 and all features
are i.i.d.

Figure: X ∼ N(0, I).
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Prediction Accuracy

We generated 1000 testing data to compare the prediction
accuracy of the above estimates and a summary is given as
follow:

MSE Fused Lasso Smooth Lasso Spline OLS Spline Lasso
Case 1 73.9222 52.7745 64.8594 50.2912
Case 2 201.9074 63.1969 59.2204 48.2225
Case 3 258.1292 106.0806 133.276 63.4307
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Estimation Accuracy

We also summarize the L2 norm of the difference between these
estimates and the true β:

||β̂ − β||2 Fused Lasso Smooth Lasso Spline OLS Spline Lasso
Case 1 2.1621 1.3238 1.7614 1.2262
Case 2 15.9208 1.7069 1.5989 1.1407
Case 3 17.5091 3.1576 4.0761 1.747
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Why Threshold?

Spline LASSO is good at prediction, but not quite sparse.

Specificity Fused Lasso Smooth Lasso Spline OLS Spline Lasso
Case 1 0.9603 0.7881 0 0.7483
Case 2 0.8371 0.4208 0 0.1674
Case 3 0.9121 0.3682 0 0.1378

WHY? Lasso penalty (λ1) is often quite small.
Solution: Applying thresholding after estimation.
Thresholding can also be applied to smooth lasso and spline
OLS, etc.
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Level of thresholding?

thresholding level ±σ̂
√

2 log(N), where σ̂ is standard error of
small coefficients.
In wavelet, Donoho and Johnstone (1998)
Theoretical study is under investigation.
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Applying the Threshold

The specificity improved a lot while sensitivity was barely affected.

Specificity Smooth Lasso Smooth Lasso Thr Spline OLS Spline OLS Thr Spline Lasso Spline Lasso Thr
Case 1 0.7881 0.9603 0 1 0.7483 0.9669
Case 2 0.4208 0.9683 0 0.9864 0.1674 0.9729
Case 3 0.3682 0.9549 0 0.9786 0.1378 0.9501

Sensitivity Smooth Lasso Smooth Lasso Thr Spline OLS Spline OLS Thr Spline Lasso Spline Lasso Thr
Case 1 0.9592 0.9388 1 0.9184 0.9796 0.9592
Case 2 0.9873 0.9747 1 0.9873 1 0.9873
Case 3 0.9873 0.962 1 0.9241 1 0.9747
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Prediction and estimation also improved:

MSE Smooth Lasso Smooth Lasso Thr Spline OLS Spline OLS Thr Spline Lasso Spline Lasso Thr
Case 1 52.7745 52.7739 64.8594 42.3359 50.2912 49.698
Case 2 63.1969 59.1765 59.2204 47.7498 48.2225 45.1844
Case 3 106.0806 104.24 133.276 96.0668 63.4307 61.1429
||β̂ − β||2 Smooth Lasso Smooth Lasso Thr Spline OLS Spline OLS Thr Spline Lasso Spline Lasso Thr
Case 1 1.3238 1.3219 1.7614 0.8796 1.2264 1.1983
Case 2 1.7069 1.546 1.5989 1.12 1.1407 1.0048
Case 3 3.1576 3.07 4.0761 2.7968 1.747 1.6269
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Summary

Spline lasso captures smooth-changing feathers
It works well in high dimensional settings with ordered features.
Prediction is better than existing methods.
Thresholding improves variable selection, prediction and
estimation.
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