Spline LASSO with thresholding in high-dim regression

Bing-Yi Jing

June 10, 2013

Bing-Yi Jing Spline LASSO with thresholding in high-dim regression

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回</p>

Outline

3 Spline LASSO

Spline LASSO with Thresholding

5 Summary

▲ 문 ▶ ▲ 문 ▶ 문 문 ■ ○ ○ ○ ○

High Dimensional Problems with Ordered Features

- Small *n* and large *p* problem: $p \gg n$
- Sparsity:
 - Number of influential features k is small.
- Feathers are ordered, and correlated.
- Examples:
 - protein mass spectroscopy data
 - gene expression data

·▲ヨ▶ ▲ヨ▶ ヨ|= ∽Q@

Introduction Review

Spline LASSC LASSO with Thresholding Summary

Objectives in model selection:

- Model sparsity
- Feathers (variables) selection
- Prediction power

A B A B A B A B B B A A A

Linear regression model

• Given $(Y_i, x_{i1}, ..., x_{ip}), i = 1, ..., n$, assume

$$Y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \epsilon_i, \qquad i = 1, \ldots, n.$$

In matrix form,

$$Y = X\beta + \epsilon$$

where

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & a_{np} \end{bmatrix}, \ \boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \\ \vdots \\ \boldsymbol{\beta}_p \end{bmatrix}, \ \boldsymbol{\epsilon} = \begin{bmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \vdots \\ \boldsymbol{\epsilon}_n \end{bmatrix},$$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回</p>

One Example: protein mass spectroscopy data, Adam et al (2003)

For each blood serum sample *i*,

- *x_{ij}*: intensity for many *time-of-flight* value *t_j*
- *time-of-flight*: related to mass over charge ratio *m*/*z*
- p = 48538 m/z-sites
- $n_1 = 157$ healthy patients, $n_2 = 167$ with cancer.

Objective:

• find m/z-sites discriminating between 2 groups.

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨヨ わのべ

Least square estimate (LSE)

• LSE:

$$\hat{\beta}^{lse} = \{\sum_{i} (y_i - \sum_{j} x_{ij}\beta_j)^2\} = (X^T X)^{-1} X Y$$

• ill-posed if p > n

▶ ▲ 분 ▶ ▲ 분 ▶ 분 분 같 이 Q @

Ridge regression

Ridge Regression: (Hoerl and Kennard, Technometrics, 1970)

$$\hat{\beta}^{ridge} = argmin\{\sum_{i} (y_i - \sum_{j} x_{ij}\beta_j)^2\} + \lambda \sum_{j=1}^{p} \beta_j^2$$
$$= (X^T X + \lambda I)^{-1} X Y$$

• When $X^T X = I$, then

$$\hat{eta}^{\textit{ridge}} = rac{\hat{eta}^{\textit{lse}}}{1+\lambda}$$

- L₁ penalty does shrinkage of LSE,
- but no variable selection.

A B A B A B A B B B A A A

LASSO (least absolute shrinkage and selection operator)

• Lasso (Tibshirani (1996), JRSSB):

$$\hat{\beta}^{lasso} = argmin\{\sum_{i}(y_i - \sum_{j}x_{ij}\beta_j)^2\} + \lambda \sum_{j=1}^{p}|\beta_j|$$

• When
$$X^T X = I$$
, then

$$\hat{eta}^{\textit{lasso}} = \textit{sgn}(\hat{eta}^{\textit{lse}}) \left(|\hat{eta}^{\textit{lse}}| - \lambda
ight)^+$$

- L₁ penalty does shrinkage and variable selection simultaneously.
- It works for p > n as well.
- Computation: LARS (Efron et al, 2004), very efficient

Variants of LASSO

Method	Reference	Detail
Elastic Net	Zou and Hastie(2005)	$\lambda \sum \beta_i^2$
Fused Lasso	Tibshirani <i>et al</i> .(2005)	$\lambda \sum \dot{\beta}_{i+1} - \beta_i $
Adaptive Lasso	Zou(2006)	$\lambda \sum \mathbf{w}_i \beta_i $
Grouped Lasso	Yuan and Lin(2007)	$\sum_{g} \beta_{g} _{2}$
Dantzig selector	Candes and Tao(2007)	$\tilde{\min}\{ X^{T}(y - X\beta) _{\infty}\} \beta _{1} < t$

< • • • **•**

▶ ▲ 문 ▶ ▲ 문 ▶ 문 문 비원 이 Q @

Fused LASSO

• Fused lasso (Tibshirani et al.(2005)):

$$\hat{\beta} = \operatorname{argmin}\{\sum_{i=1}^{N} (y_i - x_i^{\mathsf{T}}\beta)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=2}^{p} |\beta_j - \beta_{j-1}|\}$$

Equivalently,

$$\hat{eta} = argmin\{\sum_{i}(y_i - \sum_{j} x_{ij}\beta_j)^2\}$$

subject to $\sum_{j=1}^{p} |\beta_j| \leq s_1$ and $\sum_{j=2}^{p} |\beta_j - \beta_{j-1}| \leq s_2$.

- 1st penalty ⇒ sparse β_j, while 2nd penalty ⇒ flatness of β_j. (i.e., maintain grouping effects and sparsity of the coefficients).
- Fussed lasso picks grouped ordered features.

∃ ► ▲ ∃ ► ▲ ∃ = ● ○ ○ ○

Figure: N = 50, p = 80, $X \in N(0, \Sigma)$ where $\Sigma_{ii} = 1$ and $\Sigma_{ij} = 0.9^{|i-j|}$.

Drawbacks:

- Hard to keep shape of β_j 's within the same group.
- Computation:
 - very intensive for large p,
 - not fully automatic

∃ → 4 ∃

ELE NOR

Smooth LASSO (Hebiri, M. and Van de Geer, S.(2011))

$$\hat{\beta} = argmin\{\sum_{i=1}^{N} (y_i - x_i^T \beta)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=2}^{p} (\beta_j - \beta_{j-1})^2 \}$$

Advantages:

- Capture the smooth change in features in a group
- Computation efficient

Disadvantages:

- Cannot capture changes in curvature.
- Less prediction power for large *p*,

A B A B A B A B B B A A A

Spline LASSO

$$\hat{\beta} = argmin\{\sum_{i=1}^{N} (y_i - x_i^T \beta)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=2}^{p-1} (\beta_{j-1} - 2\beta_j + \beta_{j+1})^2 \}$$

- The first penalty encourages sparse solution.
- The second penalty mimics cubic spline, i.e. penalizing large second-order derivatives of coefficients.

Computation

Spline LASSO can be solved by LARS.

Proposition

Given dataset (Y, X) and (λ_1, λ_2) , define an artificial data set (Y*, X*) by

$$X^*_{(N+\rho-2)\times\rho} = \left(X, \sqrt{\lambda_2}L\right)^T, Y^*_{(N+\rho-2)} = \left(Y, \mathbf{0}\right)^T.$$

where L is a $(p-2) \times p$ matrix with $L_{i,i} = L_{i,i+2} = 1, L_{i,i+1} = -2$ and $L_{i,j} = 0$ otherwise. Then the spline lasso optimization can be written as

$$(Y^* - X^*eta)^T(Y^* - X^*eta) + \lambda_1 \sum_{j=1}^p |eta_j|,$$

which is an equivalent lasso problem and can be solved efficiently.

Simulations

Model:

$$Y = X\beta + Z,$$

where $(X_1, \ldots, X_p)^T \in N(0, \Sigma)$, and $Z \in N(0, \sigma)$ where $\sigma \in [0, 1, 1]$.

- p > n.
- β's are generated from a continuous function with k non-zero terms, (k > n or k < n).
- Comparison in variable selection and prediction:
 - fused-lasso,
 - smooth-lasso,
 - spline,
 - spline-lasso

Case 1: N = 60, p = 200, k = 50, $\sigma = \frac{1}{10}$ and neighboring correlation is high

Figure: $X \sim N(0, \Sigma)$ where $\Sigma_{ii} = 1$ and $\Sigma_{ij} = 0.9^{|i-j|}$.

Case 2:N = 60, p = 300, k = 70, $\sigma = \frac{1}{5}$ and neighboring correlation is median

Figure: $X \sim N(0, \Sigma)$ where $\Sigma_{ii} = 1$ and $\Sigma_{ij} = 0.5^{|i-j|}$.

Case 3:N = 60, p = 500, k = 70, $\sigma = 1$ and all features are i.i.d.

Figure: $X \sim N(0, I)$.

▲ 글 ▶ _ 글

Prediction Accuracy

 We generated 1000 testing data to compare the prediction accuracy of the above estimates and a summary is given as follow:

MSE	Fused Lasso	Smooth Lasso	Spline OLS	Spline Lasso
Case 1	73.9222	52.7745	64.8594	50.2912
Case 2	201.9074	63.1969	59.2204	48.2225
Case 3	258.1292	106.0806	133.276	63.4307

A B A B A B A B B B A A A

Estimation Accuracy

 We also summarize the L₂ norm of the difference between these estimates and the true β:

$ \hat{\beta} - \beta _2$	Fused Lasso	Smooth Lasso	Spline OLS	Spline Lasso
Case 1	2.1621	1.3238	1.7614	1.2262
Case 2	15.9208	1.7069	1.5989	1.1407
Case 3	17.5091	3.1576	4.0761	1.747

Why Threshold?

• Spline LASSO is good at prediction, but not quite sparse.

Specificity	Fused Lasso	Smooth Lasso	Spline OLS	Spline Lasso
Case 1	0.9603	0.7881	0	0.7483
Case 2	0.8371	0.4208	0	0.1674
Case 3	0.9121	0.3682	0	0.1378

- WHY? Lasso penalty (λ_1) is often quite small.
- Solution: Applying thresholding after estimation.
- Thresholding can also be applied to smooth lasso and spline OLS, etc.

Level of thresholding?

- thresholding level ± σ̂ √2 log(N), where σ̂ is standard error of small coefficients.
- In wavelet, Donoho and Johnstone (1998)
- Theoretical study is under investigation.

Applying the Threshold

The specificity improved a lot while sensitivity was barely affected.

Specificity	Smooth Lasso	Smooth Lasso Thr	Spline OLS	Spline OLS Thr	Spline Lasso	Spline Lasso Thr
Case 1	0.7881	0.9603	0	1	0.7483	0.9669
Case 2	0.4208	0.9683	0	0.9864	0.1674	0.9729
Case 3	0.3682	0.9549	0	0.9786	0.1378	0.9501
Sensitivity	Smooth Lasso	Smooth Lasso Thr	Spline OLS	Spline OLS Thr	Spline Lasso	Spline Lasso Thr
Sensitivity Case 1	Smooth Lasso 0.9592	Smooth Lasso Thr 0.9388	Spline OLS 1	Spline OLS Thr 0.9184	Spline Lasso 0.9796	Spline Lasso Thr 0.9592
Sensitivity Case 1 Case 2	Smooth Lasso 0.9592 0.9873	Smooth Lasso Thr 0.9388 0.9747	Spline OLS 1 1	Spline OLS Thr 0.9184 0.9873	Spline Lasso 0.9796 1	Spline Lasso Thr 0.9592 0.9873

Prediction and estimation also improved:

MSE	Smooth Lasso	Smooth Lasso Thr	Spline OLS	Spline OLS Thr	Spline Lasso	Spline Lasso Thr
Case 1	52.7745	52.7739	64.8594	42.3359	50.2912	49.698
Case 2	63.1969	59.1765	59.2204	47.7498	48.2225	45.1844
Case 3	106.0806	104.24	133.276	96.0668	63.4307	61.1429
$ \hat{\beta} - \beta _2$	Smooth Lasso	Smooth Lasso Thr	Spline OLS	Spline OLS Thr	Spline Lasso	Spline Lasso Thr
Case 1	1.3238	1.3219	1.7614	0.8796	1.2264	1.1983
Case 1 Case 2	1.3238 1.7069	1.3219 1.546	1.7614 1.5989	0.8796 1.12	1.2264 1.1407	1.1983 1.0048

- Spline lasso captures smooth-changing feathers
- It works well in high dimensional settings with ordered features.
- Prediction is better than existing methods.
- Thresholding improves variable selection, prediction and estimation.

<<p>(日本)

Reference

- Candes, E. and Tao, T. (2007) The dantzig selector statistical estimation when *p* is much larger than *n*. Ann. Statist., 35, 2313-2351.
- David L. Donoho and Iain M. Johnstone. (1998) Minimax Estimation via Wavelet Shrinkage. Ann. Statist., 26, 879-921.
- Hebiri, M. and Van de Geer, S. (2011) The Smooth-Lasso and Other $\ell_1 + \ell_2$ -penalized methods. Electron. J. Statist. 5, 1184-1226.
- Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. J. R. Statist. Soc. B, 58, 267-288.
- Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005) Sparsity and smoothness via the fused lasso. J. R. Statist. Soc. B, 67, 91-108.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のない

Reference

- Yuan, M. and Lin, Y. (2007) Model selection and estimation in regression with grouped variables. J. R. Statist. Soc. B, 68, 49-67.
- Zou, H. (2006) The adaptive lasso and its oracle properties. J. Am. Statist. Ass., 101, 1418-1429.
- Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301-320.