Large deviations and moderate large deviations for general renewal processes

A.A.Mogulskii

Sobolev Institute of Mathematics, 4 Acad. Koptyug ave, Novosibirsk, 630090, RUSSIA

Let

$$\{(\tau_i, \xi_i); i = 1, 2, \cdots\}$$

be a sequence of i.i.d. random vectors,

$$\mathbf{P}(\tau_1 > 0) = 1.$$

Put $for \quad n \ge 1$

$$T_n := \tau_1 + \dots + \tau_n, \quad S_n := \xi_1 + \dots + \xi_n.$$

We study large deviations (LD) and moderate large deviations (MLD) for the renewal process

$$Z(t) := S_{\eta(t)}, \quad t \ge 0,$$

where

$$\eta(t) := \min\{m \ge 0 : T_{m+1} \ge t\}.$$

 $[\mathbf{C}_0]$. (Cramér condition) For some $\delta > 0$

$$\mathbf{E}e^{\delta(\tau+|\xi|)} < \infty.$$

Put

$$A(\mu, \nu) := \ln \mathbf{E} e^{\mu \tau + \nu \xi},$$

$$\mathcal{A}_{\leq 0} := \{ (\mu, \nu) \in \mathbb{R}^2 : A(\mu, \nu) \leq 0 \}.$$

The second deviation (rate) function for a vector (τ, ξ) :

$$D(u,\alpha) := \sup_{(\mu,\nu)\in\mathcal{A}_{\leq 0}} \{\mu u + \nu \alpha\}.$$

See in [1] (Borovkov A.A., Mogulskii A.A. Siberian Math. J.—1996).

The deviation (rate) function for general renewal process Z(t):

$$G(\alpha) := \inf_{0 \le u \le 1} \{ D(1 - u, \alpha) + u\lambda_{\tau +} \}, \quad \alpha \in \mathbb{R},$$

where $\lambda_{\tau+} := \sup\{\lambda : \mathbf{E}e^{\lambda\tau} < \infty\}.$

See [2] (Mogulskii A.A., to appear),

[3] (Borovkov A.A., to appear)

Two conditions:

(I).

$$\ln \mathbf{P}(\tau \geq t) \sim \lambda_{\tau+}, \quad t \to \infty;$$

(II).

$$\lambda_{\tau+} \geq \mu_{\tau+}$$

where

$$\mu_{\tau+} := \sup_{(\mu,\nu) \in \mathcal{A}_{\leq 0}} \mu.$$

Theorem 1. (Local LD for Z(T)) Under(I) or (II) we have

$$\lim_{\varepsilon \to 0} \lim_{T \to \infty} \frac{1}{T} \ln \mathbf{P}(|\frac{1}{T} Z(T) - \alpha| < \varepsilon) = -G(\alpha).$$

Corollary 1. For any Borel set $B \subset \mathbb{R}$ we have

$$\overline{\lim}_{T \to \infty} \frac{1}{T} \ln \mathbf{P}(\frac{1}{T} Z(T) \in B) \le -\inf_{\alpha \in [B]} G(\alpha),$$

$$\varliminf_{T \to \infty} \frac{1}{T} \ln \mathbf{P}(\frac{1}{T} Z(T) \in B) \ge - \inf_{\alpha \in (B)} G(\alpha),$$

where [B], (B) is the closure, the interior of a set B, respectively.

In the domain of moderate large deviations similar results for Z(T) are obtained.

In the lattice case $\mathbf{P}((\tau, \xi) \in \mathbb{Z}^2) = 1$, the sharp asymptotics of large, moderate large and normal deviation probabilities for Z(n) has been studed:

$$\mathbf{P}(Z(n) = k) \sim ?$$

 $[\overline{\mathbf{C}}_{0}].$

$$\lambda_{\tau+} > \mu_{\tau+} \quad and \quad \mathcal{A}_{\leq 0} \subset (\mathcal{A}_{<\infty}),$$

where $\mathcal{A}_{<\infty} := \{(\mu, \nu) : A(\mu, \nu) < \infty\},\$ and $(\mathcal{A}_{<\infty})$ is the interior of $\mathcal{A}_{<\infty}$. Theorem 2. Under condition $[\overline{\mathbf{C}_0}]$ we have

$$\mathbf{P}(Z(n) = k) \sim \frac{C(\alpha)}{\sqrt{n}} e^{-nG(\frac{k}{n})},$$

where $k = k_n \in \mathbb{Z}$, $\frac{k}{n} \to \alpha$ as $n \to \infty$ and the function $C(\alpha)$ is known in an explicit form.

If

$$|k - an| = o(n^{2/3}), \quad as \quad n \to \infty,$$

then

$$\mathbf{P}(Z(n) = k) \sim \frac{1}{\sqrt{2\pi n}\sigma} e^{-\frac{(k-an)^2}{2n\sigma^2}},$$

where
$$a := \frac{\mathbf{E}\xi}{\mathbf{E}\tau}$$
, $\sigma^2 := \frac{\mathbf{E}(\xi - a\tau)^2}{\mathbf{E}\tau}$.

Put

$$z_T(t) := \frac{1}{x} Z(tT), \ 0 \le t \le 1,$$

where a function $x = x_T > 0$ is such that $x \sim T$ as $T \to \infty$. Large deviation principle (extended) for $\{z_T(\cdot); T > 0\}$ was obtained:

$$\ln \mathbf{P}(z_T(\cdot) \in B) \sim -T \inf_{f \in B} I(f).$$

The definition of the extended LDP see in [4] (Borovkov A.A., Mogulskii A.A. Siberian Math. J.—2010).

Let \mathbb{V} be the metric space of function f = f(t); $0 \le t \le 1$, f(0) = 0, with finite variation $\operatorname{Var}(f) < \infty$. Let $\rho = \rho(f, g)$ be the metric $\rho_{\mathbb{V}} = \rho_{\mathbb{V}}(f, g)$ (see [5] Borovkov A.A., Mogulskii A.A. Theory Probab. Appli. (2011-2013)).

Denote

$$g_{\pm} := \lim_{\alpha \to \infty} \frac{G(\pm \alpha)}{\alpha}.$$

For

$$f = f_a + f_s^+ - f_s^- \in \mathbb{V}, \quad f_s^+(0) = f_s^-(0) = 0$$

put

$$I(f) := \int_0^1 G(f'_a(t))dt + g_+ f_s^+(1) + g_- f_s^-(1).$$

The properties of I(f) see in

- [6] (Borovkov A.A., Mogulskii A.A., Siberian Math. J.—2011) and
- [7] (Mogulskii A.A., Siberian Adv. Math.—2012.)

Theorem 3. (Local LDP for $\zeta_T(\cdot)$) If

$$\lambda_{\tau+} \geq \mu_{\tau+}$$

then for any $f \in \mathbb{V}$

$$\lim_{\varepsilon \to 0} \lim_{T \to \infty} \frac{1}{T} \ln \mathbf{P}(z_T(\cdot) \in (f)_{\varepsilon}) = -I(f),$$
where

$$(f)_{\varepsilon} := \{ g \in \mathbb{V} : \rho(f, g) < \varepsilon \}.$$

For a Borel set $B \subset \mathbb{V}$ put

$$I(B) := \inf_{f \in B} I(f), \quad I(B+) := \lim_{\varepsilon \to 0} I((B)_{\varepsilon}).$$
Theorem 4. (Extended LDP for $\zeta_T(\cdot)$)

If

$$\lambda_{\tau+} \geq \mu_{\tau+}$$

then

$$\overline{\lim}_{T \to \infty} \frac{1}{T} \ln \mathbf{P}(z_T(\cdot) \in B) \le -I(B+);$$

$$\frac{\overline{\lim}}{T \to \infty} \frac{1}{T} \ln \mathbf{P}(z_T(\cdot) \in B) \le -I(B+);$$

$$\underline{\lim}_{T \to \infty} \frac{1}{T} \ln \mathbf{P}(z_T(\cdot) \in B) \ge -I((B)).$$

In the domain of moderate latge deviations similar results for $z_T(\cdot)$ are obtained.

References

- [1] Borovkov A. A., Mogulskii A. A., The second rate function and the syymptotic problems of renewal and hitting the boundary for multidimentional random walks//Siberian Math. J.—1996.—Vol. 37.—P. 647-682.
- [2] Mogulskii A. A., Large deviation principles for general renewal processe// Siberian Adv. Math. (to to appear)
- [3] Borovkov A. A., Asymptotic analysis of random walks (to to appear)
- [4] Borovkov A. A., Mogulskii A. A., About large deviation principles in metric spases// Siberian Math. J.—1996.— 2010. Vol. 51.
 P. 1251–1269.
- [5] Borovkov A. A., Mogulskii A. A. Large deviation principles for traectoties of random walks .I,II,III//—Theory Probab. Appli.. —I—2011.—Vol.56, P. 627—655; II—2012.—Vol.57, P. 3—34; III—to appia.
- [6] Borovkov A. A., Mogulskii A. A. Properties of a functionals of trajectories which arises in studying the probabilities of large deviations of random walks// Siberian Math. J.—2011.—Vol. 52.—P.777—795.
- [7] Mogulskii A. A. The composite theorem for deviation integral// Siberian Adv. Math.—2012.—Vol 15.—P.127—145.