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• Stability analysis of modern queueing systems: a challenging problem;

• main known approaches: fluid approach, Lyapunov functions (for Markovian models);

• we present regenerative stability analysis (see [1]):

– describe the main steps;

– give stability conditions for some queueing models;

– an advantage: can be applied to non-Markovian models.
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Definitions

• Consider a stochastic process

X = {X(t), t ∈ T}, T = [0, ∞) or T = {0, 1, . . .}, state space (Rd, B)

• a path is divided by regeneration points (r.p.’s) βn onto iid regeneration cycles:

Gn := {X(t) : βn ≤ t < βn+1; βn+1 − βn, }, n ≥ 0, β0 := 0,

with the iid cycle periods βn+1 − βn (in general, G0 6=st Gn).

• Regeneration measure µ: distribution of X(βn); (for queues often µ{0} = 1)
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• The renewal process {βn} is positive recurrent if (β is generic cycle period)

Eµβ := Eβ < ∞ (and β1 < ∞ with probability (w.p.) 1). (1)

• If Eβ = ∞ then for each β(0) = x, the forward renewal time at instant t [9]:

β(t) := min{βk − t : βk − t > 0} → ∞ in Px-probability
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• (1) is crucial for stability because: for a measurable f : E{∫β0 | f (X(t)) | dt} <∞:

lim
T→∞

1

T

∫ T
0 f (X(t))dt =

E
∫β
0 f (X(t))dt

Eβ
(= Ef (X) if weak limit X(t)⇒ X exists).

Main steps of the proof: using predefined conditions we show:

i) negative drift condition: X has negative drift outside bounded set B;

ii) regeneration condition:

inf
x∈B

Px(X regenerates within a finite interval) > 0;
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• i), ii) imply: β(t) 6→ ∞ and Eβ <∞;

An example: Kiefer-Wolfowitz workload (Markov) process in a GI/G/m queue:

Wn = (W (1)
n , . . . ,W (m)

n ), n ≥ 0,

• W (i)
n is the ith smallest workload at arrival instant of customer n

• the renewal input with rate λ, service time S; m parallel servers;

i) negative drift condition: ρ = λES < m;

ii) regeneration condition: P(τ > S) := ε > 0.
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Then for any W0 = x ∃ bounded B, ε1 > 0 and deterministic ni →∞:

inf
i

Px(Wni ∈ B) > 0; (2)

• ∃ constants TB = T :

inf
x∈B

Px(β1 ≤ T ) > 0; (3)

• Then (discrete-time) forward regeneration(=renewal) time β(n) satisfies

inf
i

Px(β(ni) ≤ T ) ≥ inf
i

Px(Wni ∈ B) inf
z∈B

Pz(β1 ≤ T ) > 0 ⇒ Eβ <∞.
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• Using ii) one can show that for ∀ bounded B:

νx(B) = Ex(
β−1∑
k=0

IWk∈B) ≤ T/ε,

and set B has finite stationary measure (mean number of visits B during cycle)

ν(B) =
∫
νx(B)µ(dx) <∞. (4)

• Null recurrence: infinite mean cycle period, ν(Rm+) = Eµβ =∞;

Px(Wn ∈ B)→ 0, as n→∞, ∀ B, x. (5)

Similarly for null recurrent Harris Markov chains [4].
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• An advantage: dimension reduction (non-Markovity): the same r.p’s

replacement Xn ∈ Rd by Zn =
∑

1≤i≤d
X(i)
n .

A novel approach to prove β1 <∞ under arbitrary X(0); we show:

• the total time X(t) spends in a set B during 1st cycle is finite w.p.1;

• the total time X(t) spends in B is infinite w.p.1 ⇒

• the number of regeneration cycles ≥ 2 ⇒ β1 <∞.
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Recent queueing applications

• Main technique: coupling ⇒ monotonicity/dominance

• Classical m-server finite retrial system GI/G/m/n with infinite orbit:

renewal input rate λ, interarrival time τ ; service time S; i.i.d. exponential retrial times;

Theorem 1 [2]. Under conditions

λES < m, P(τ > S) > 0

the basic processes (e.g. orbit size N(t)) are positive recurrent.
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Underlying idea: as N(t)→∞, the idle time of server after each service goes to 0:

Discipline: asymptotically work-conserving.

• Retrial system Σ with constant retrial rate µ0 and exponential retrial

time (joint work with INRIA, Sophia-Antipolis, France)

renewal input rate λ; service rate µ; finite buffer, c servers;

• Motivation: modeling telephone exchange systems [8]; short TCP transfers [6];

ALOHA multiple access protocols [7]: n retrial customers, each has rate µ0/n.
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• To find stability condition, consider an auxiliary loss system Σ̂:

• an independent Poisson input with rate µ0;

• lost customers joins a virtual orbit N̂(t) with the ”output rate” µ0 (not affecting Σ̂)

• Σ is less loaded than Σ̂ ⇒ N(t) ≤st N̂(t) ⇒

• stability of N̂(t) implies stability of N(t) [5].

• Let P̂loss be the stationary loss probability in Σ̂ (always exists).
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• Theorem ([5]). Under negative drift assumption

input to N̂(t) = λP̂loss < µ0(1− P̂loss) = µ0P̂accept = output from N̂(t), (6)

the basic regenerative process {N(t)} is positive recurrent.

((6) is stability criteria for M/G/n-type retrial system).

• Example: for M/G/1/1-type (Erlang) system condition (6) reads

ρ :=
λ

µ
<

µ0
λ + µ0

⇒ becomes classic: ρ < 1, as µ0 →∞. (7)

The proof is based on monotonicity property of loss system [11, 12, 13].
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• N -orbit retrial system: input rates λi; retrial rates µ
(i)
0 ; service rates µi;

• necessary stability condition for N = 2:

λiPloss < (1− Ploss)µ
(i)
0 , i = 1, 2. (8)

Ploss - loss probability in auxiliary loss system with total input rate

λ1 + λ2 + µ
(1)
0 + µ

(2)
0 .

• Ploss is known for some systems; ((8) is stability criteria for Poisson inputs ?)
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Figure 1: N -orbit retrial system with constant retrial rates µ
(i)
0
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• Discrete queue with m non-reliable servers: input rate λ; service time S,

server i: interruption rate λ
(i)
0 (non-Poisson), repair time X(i);

• preemptive repeat service interruption: stability condition

λES + ES
m∑
i=1
λ
(i)
0 +

m∑
i=1
λ
(i)
0 EX(i) < m , (9)

lost capacity: interruption+ repeat service=∑m
i=1 λ

(i)
0 EX(i) + ES ∑m

i=1 λ
(i)
0 ;

• preemptive resume service interruption: stability condition

λES +
m∑
i=1
λ
(i)
0 EX(i) < m. (10)
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• main idea: construction of common renewal points for the superposition of m indepen-

dent discrete work/repair processes [3].

• m-wavelength system with optical fiber lines (joint with UGENT):

lengths a0 < a1 < · · · , lim an =∞:

renewal input rate λ, interarrival time T ; transmission time S;

gn = an+1 − an = difference of adjacent lengths;

∆∗ = max gn <∞;

∆0 = lim sup
n→∞

gn = difference between ”longest” lines/orbits (11)
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• buffer control uses a FIFO rule to choose the shortest line with sufficient length ⇒

• a modified Lindley’s recursion for waiting time Wk of the kth signal:

Wk+1 = dWk + Sk − TkeA (12)

where A = {ai}, dxeA = inf{y ∈ A : y ≥ x} (to keep FIFO order).

• Classical regenerations for {Wk}:

β0 = 0, βn+1 = inf(k > βn : Wk = 0), n ≥ 0.
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• Theorem ([14, 15, 16]). The workload process is positive recurrent if

λES + λ∆0 < m, equivalently, (13)

arrived load + lost capacity (for busy high orbits) < system capacity

• and (regeneration) condition holds: P(T > ∆∗ + S) > 0.

• Remark. For iid (or constant) distances gn =st ∆: inspection paradox makes more

exact stability zone by replacement in (13):

∆0 →
E∆2

2E∆
.
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station 2
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∞∞∞∞

∞∞∞∞

Figure 2: A cascade network with two stations

• 2 -station cascade system [17] : stability condition (negative drift)

µ2 > λ2 + (λ1 − µ1)+, (14)

• capacity of 2nd station > input to 2nd station+extra rate from 1st station;

20



µ
1

λ
1

µ
2
-λ

2

•
µ

2
-λ

2

2121

22

µ+µ<λ+λ

µ<λ

Figure 3: Stability region (coloured area) of a cascade network

• equivalent form of negative drift:

µ2 − λ2 > 0, λ1 < µ2 − λ2 + µ1
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Conclusion

obtained conditions are transparent and close to being stability criteria;

method: applicability to non-Markovian processes;

a wide class recurrent Harris Markov processes posses regenerative property [4];

confidence estimation: regenerative simulation based on regenerative CLT [18]:

group data over cycles; apply classic CLT for the new iid enlarged data;

new (macroscopic/cycle) scale: simulation up to an integer number of cycles.
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