
Lower Tail Probabilities and Normal Comparison
Inequalities

In Memory of Wenbo V. Li’s Contributions

Qi-Man Shao

The Chinese University of Hong Kong



Lower Tail Probabilities and Normal Comparison
Inequalities

In Memory of Wenbo V. Li’s Contributions

Qi-Man Shao

The Chinese University of Hong Kong



Outline

Lower tail probabilities

Non-stationary processes
Stationary processes

Special cases

Capture time of Brownian pursuits
Random polynomials

Normal comparison inequalities



1. Lower Tail Probabilities

Let {Xt, t ∈ T} be a real valued Gaussian process indexed by T with
EXt = 0. Lower tail probability refers to

P
(

sup
t∈T

(Xt − Xt0) ≤ x
)

as x→ 0, t0 ∈ T

or
P
(

sup
t∈T

Xt ≤ x
)

as |T| → ∞

I Examples:

(a) Capture time of Brownian pursuits

(b) Random polynomials



I A general result for non-stationary Gaussian processes

Let X = {Xt, t ∈ T} be a real valued Gaussian random process
indexed by T with mean zero. Define the L2-metric

d(s, t) = (E |Xs − Xt|2)1/2, s, t ∈ T.

For every ε > 0 and a subset A of T , let N(A, ε) denote the minimal
number of open balls of radius ε for the metric d that are necessary to
cover A. For t ∈ T and h > 0, let

B(t, h) = {s ∈ T : d(t, s) ≤ h}

and define

Q = sup
h>0

sup
t∈T

∫ ∞
0

(ln N(B(t, h), εh))1/2de



For θ = 1000(1 + Q) , define

A−1 = {t ∈ T : d(t, t0) ≤ θ−1x},
Ak = {t ∈ T : θk−1x < d(t, t0) ≤ θkx},

where 0 ≤ k ≤ L, L = 1 + [lnθ(D/x)] and D = supt∈T d(t, t0).
Let

Nk(x) = N(Ak, θ
k−2x) for k = 0, 1, · · · ,L

N(x) = 1 +
∑

0≤k≤L

Nk(x).



Theorem
(Li and Shao (2004))

(i) Assume that Q <∞ and

E ((Xs − Xt0)(Xt − Xt0)) ≥ 0 for s, t ∈ T

Then
P
(

sup
t∈T

Xt − Xt0 ≤ x
)
≥ e−N(x)

(ii) For x > 0, let si ∈ T, i = 1, ...,M be a sequence such that for
every i

M∑
j=1

|Corr(Xsi − Xt0 ,Xsj − Xt0)| ≤ 5/4

and d(si, t0) = (E |Xsi − Xt0 |2)1/2 ≥ x/2. Then

P
(

sup
t∈T

Xt − Xt0 ≤ x
)
≤ e−M/10.



Special Cases:

Let {X(t), t ∈ [0, 1]d} be a centered Gaussian process with
X(0) = 0 and stationary increments, that is

∀ t, s ∈ [0, 1]d, E (Xt − Xs)
2 = σ2(||t − s||).

If there are 0 < α ≤ β < 1 such that
σ(h)/hα ↑, σ(h)/hβ ↓

Then there exist 0 < c1 ≤ c2 <∞ such that for 0 < x < 1/2

−c2 ln
1
x
≤ lnP

(
sup

t∈[0,1]d
X(t) ≤ σ(x)

)
≤ −c1 ln

1
x
.

In particular, for the fractional Levy’s Brownian motion Lα(t) of
order α, i.e. Lα(0) = 0 and

E (Lα(t)− Lα(s))2 = ||t − s||α,

lnP
(

sup
t∈[0,1]d

Lα(t) ≤ x
)
≈ − ln

1
x
.



Let {X(t), t ∈ [0, 1]d} be a centered Gaussian process with
X(0) = 0 and

E (XtXs) =

d∏
i=1

1
2
(σ2(ti) + σ2(si)− σ2(|ti − si|)).

If there are 0 < α ≤ β < 1 such that

σ(h)/hα ↑, σ(h)/hβ ↓

Then
lnP
(

sup
t∈[0,1]d

X(t) ≤ σd(x)
)
≈ − lnd 1

x
.

In particular, for d-dimensional fractional Brownian sheet Bα(t)
(i.e., σ(h) = hα)

lnP
(

sup
t∈[0,1]d

Bα(t) ≤ x
)
≈ − lnd 1

x



I Lower tail probabilities for stationary Gaussian processes

Let {B(t), t ≥ 0} be the Brownian motion and {U(t), t ≥ 0} be the
Ornstein-Uhlenbeck process. It is known that {U(t), t ≥ 0} and
{B(et)/et/2, t ≥ 0} have the same distribution. Moreover

P
(

sup
0≤t≤1

B(t) ≤ x
)
= P

(
|B(1)| ≤ x

)
∼ (2/π)1/2x

as x→ 0 and

P
(

sup
0≤t≤T

U(t) ≤ 0
)
= exp(−T/2 + o(T))

as T →∞.

Is there a connection between these two types of lower tail
probabilities ?



Let {Xt, t ≥ 0} be a Gaussian process with X0 = 0, EXt = 0. Assume
that

(A1) EXsXt ≥ 0 and EX2
t = tα for α > 0;

(A2) {Yt = X(et)/eα/2, t ≥ 0} is a stationary Gaussian process;

(A3) {Xat, 0 ≤ t ≤ 1} and {aα/2Xt, 0 ≤ t ≤ 1} have the same
distribution for each fixed a > 0.

(A4) ρ(t) := EYtY0 is decreasing and

a2
h,θ := inf

0<t≤h

ρ(θt)− ρ(t)
1− ρ(t)

> 0

for every 0 < h <∞ and 0 < θ < 1



By subadditivity and the Slepian lemma,

cα,Y := − lim
T→∞

1
T

lnP
(

sup
0≤t≤T

Yt ≤ 0
)
= − sup

T>0

1
T
P
(

sup
0≤t≤T

Yt ≤ 0
)

exists. Next result shows that the constant c is closely related to the
rate of the lower tail probability P

(
sup0≤t≤1 Xt ≤ x

)
.

Li and Shao (2004):
Under conditions (A1)− A(4), we have

P( sup
0≤t≤1

Xt ≤ x) = x2cα,Y/α+o(1)

as x→ 0.
Molchan (1999): For fractional Brownian motion {Bα(t), t ≥ 0}
of order α (0 < α < 1)

P( sup
0≤t≤1

Bα(t) ≤ x) = x(1−α)/α+o(1)

and hence cα = 1− α.



I Explicit bounds of lower tail probabilities (Li and Xiao (2013))

Let B(t) be the Brownian motion.

For 0 < θ < 1

P( sup
0≤t≤1

(B(t)− θB(1)) ≤ x) ∼ 1
3θ2(1− θ)2

√
2π

x3,

P( sup
0≤t≤1

(B(t)− θtB(1)) ≤ x) ∼ (1− θ)
√

2/π x

and

ln P( sup
0≤t≤1

B(t)−
∫ 1

0
B(s)ds ≤ x) ∼ −x2 c

where c is a specified constant.



2. Special cases

I Capture time of Brownian pursuits

Let B0,B1, · · · ,Bn be independent standard Brownian motions.
Define

τn = inf
{

t > 0 : max
1≤k≤n

Bk(t) = B0(t) + 1
}
.

When is E (τn) finite?
Note that for any a > 0, by Brownian scaling,

P(τn > t)

= P
(

max
1≤k≤n

sup
0≤s≤t

(Bk(s)− B0(s)) < 1
)

= P
(

max
1≤k≤n

sup
0≤s≤1

(Bk(s)− B0(s)) < t−1/2
)
.

Thus, the estimate is reduced to a lower tail probability problem.



I DeBlassie (1987):

P{τn > t} ∼ ct−γn as t→∞.

Bramson and Griffeath (1991): E τ3 =∞

Li and Shao (2001): E τ5 <∞.

Ratzkin and Treibergs (2009): E τ4 <∞.



What is the asymptotic behavior of γn?

Kesten (1992):

0 < lim inf
n→∞

γn/ ln n ≤ lim sup
n→∞

γn/ ln n ≤ 1/4

Conjecture: limn→∞ γn/ ln n exists.

Li and Shao (2002):

lim
n→∞

γn/ ln n = 1/4



Li and Shao (2002) also consider the capture time of the fractional
Brownian motion pursuit. Let {Bk,α(t); t ≥ 0}(k = 0, 1, 2, . . . , n) be
independent fractional Brownian motions of order α ∈ (0, 1). Put

τn := τn,α = inf
{

t > 0 : max
1≤k≤n

Bk,α(t) = B0,α(t) + 1
}
.

Let
Xk,α(t) = e−tαBk,α(et), k = 0, 1, · · · , n

and
γn,α := − lim

T→∞

1
T

lnP
(

sup
0≤t≤T

max
1≤k≤n

Xk,α(t) ≤ 0
)

Li and Shao (2002):
1

dα
≤ lim inf

n→∞

γn,α

ln n
≤ lim sup

n→∞

γn,α

ln n
<∞,

where dα = 2
∫∞

0 (e2αx + e−2αx − (ex − e−x)2α)dx.
Conjecture:

lim
n→∞

γn,α

ln n
=

1
dα
.



I The probability that a random polynomial has no real root

Dembo, Poonen, Shao and Zeitouni (2002)

P
( n∑

i=0

Zixi < 0 ∀ x ∈ R1
)
= n−b+o(1)

where n is even, Zi are i.i.d. N(0, 1), and

b = −4 lim
T→∞

1
T

lnP
(

sup
0≤t≤T

Xt ≤ 0
)

where Xt is a centered stationary Gaussian process with

EXsXt =
2e−|t−s|/2

1 + e−|t−s|



Dembo, Poonen, Shao and Zeitouni (2002): 0.4 < b < 1.29.
Simulation: b = 0.76± 0.03

Li and Shao (2002): 0.5 < b < 1



Let {B(t), t ≥ 0} be the Brownian motion and put B0(t) = B(t),

Bm(t) =
∫ t

0
Bm−1(s)ds

Li and Shao (2003+)

P( sup
0≤t≤1

Bm(t) ≤ x) = xrm+o(1)

and
b ≤ 2rm(2m + 1), 2rm(2m + 1)→ b

Open questions:

What is the value of b?
If {Xt, t ≥ 0} is a differentiable stationary Gaussian process with
positive correlation, what is the limit

lim
T→∞

1
T

ln P
(

sup
0≤t≤T

Xt ≤ 0
)
?



3. Comparison Inequalities

Let n ≥ 2, and let (ξj, 1 ≤ j ≤ n) be standard normal random
variables with correlation matrix R1 = (r1

ij), let (ηj, 1 ≤ j ≤ n) be
standard normal random variables with correlation matrix R0 = (r0

ij).
Set ρij = max(|r1

ij|, |r0
ij|).

Slepian’s Lemma: If r1
ij ≥ r0

ij, then

P
( n⋂

j=1

{ξj ≤ uj}
)
≥ P

( n⋂
j=1

{ηj ≤ uj}
)



Normal comparison inequality:

Berman (1964,1971), Cramer and Leadbetter (1967)):

P
( n⋂

j=1

{ξj ≤ uj}
)
− P

( n⋂
j=1

{ηj ≤ uj}
)

≤ 1
2π

∑
1≤i<j≤n

(r1
ij − r0

ij)
+(1− ρ2

ij)
−1/2 exp

(
−

u2
i + u2

j

2(1 + ρij)

)
Li and Shao (2002):

P
( n⋂

j=1

{ξj ≤ uj}
)
− P

( n⋂
j=1

{ηj ≤ uj}
)

≤ 1
4

∑
1≤i<j≤n

(r1
ij − r0

ij)
+ exp

(
−

u2
i + u2

j

2(1 + ρij)

)



Li and Shao (2002): If

r1
ij ≥ r0

ij ≥ 0 for all 1 ≤ i, j ≤ n

Then

P
( n⋂

j=1

{ηj ≤ uj}
)

≤ P
( n⋂

j=1

{ξj ≤ uj}
)
≤ P

( n⋂
j=1

{ηj ≤ uj}
)

exp
{ ∑

1≤i<j≤n

ln
(π − 2 arcsin(r0

ij)

π − 2 arcsin(r1
ij)

)
exp

(
−

(u2
i + u2

j )

2(1 + r1
ij)

)}
for any ui ≥ 0, i = 1, 2, · · · , n satisfying
(rl

ki − rl
ijr

l
kj)ui + (rl

kj − rl
ijr

l
ki)uj ≥ 0 (∗)

for l = 0, 1 and for all 1 ≤ i, j, k ≤ n.

Note: Condition (**) is satisfied if ui = u ≥ 0.



Open questions:

Does the result remain valid without assuming (*)? Yan (2009)
gave a partial answer.

Can a sharper bound be obtained?



Thank you!!
Spaseeba!!!!


