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Introduction

In 1900-1901 A. M. Lyapounov proposed a powerful tool for proving limit
theorems — the method of characteristic functions. Convergence
conditions in many limit theorems can be expressed in terms of
moments. In this talk the attention is focused on:

@ moment estimates for characteristic function;
@ moment inequalities;

@ applications to the central limit theorem.

Let X be a r.v. with E|X|" < oo for some n € N. Denote

o characteristic function (ch.f.):
f(t) = Ee™, t € R,
e moments (algebraic and absolute):

ar =EXK, Bk =EIX|, Jak| < Bk, k=1,2,...,n
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Estimates for ch.f. in the vicinity of zero. |

Behavior of the ch.f. in the vicinity of zero determines the rate of
convergence, e.g., in limit theorems for sums of independent random

variables.
Denote n—1 ok n—1 .
t : tX)k
Ro(t) = f(2) — S 2t _ (e'fX (itX) ) teR.
k! k!
k=0 k=0
Well-known estimate:
nlt]"
Ra( < 2 rer

If B, < oo, then for all t € R

|t th—1 ta ﬂ t .
< .. i n - ... .
[Rn(t)] < 25,171/0 /o /0 sin (2@1_1 A 2)df1 dtp_> dt,_1
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Estimates for ch.f. in the vicinity of zero. |l

Well-known estimate:

If B, < oo, then for all t € R
. 81"
Rn S f n n n I R7
|Ra(2)] 0<'Af1<1/2(/\|a | +an(N)Bn) — -, t€
d™R,(t) : [t|r—m
< f n n—m n ) - 17 O
‘ dtm 0<A\n<1/2 (Maa| + Gn-m(A)5n) (n—m)! m "
where n—1 . \k ]
. " 1
gn(A) = n! supx="|e™ — (i) — )\(IX) , 0 A<=,
x>0 k! n! 2
k=0

- : nlan| +(n+2)B,  [t]" _ Balt]"
(Prawitz, 1991): R,(t) < 2001 1) - < po

, teR.
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Example for n =3

Jensen's inequality: |as| < fs.

Theorem

Forall b > 1 and any r.v. X with a; =0, ap =1

las| < A(83) 3,

where

A(b)Z\/;\/1+8b—2+;—2b‘2<1, b>1,

with the equality attained for each value of B3 = b > 1 at the distribution

P(X:;(bi\/W)> _ 2+b(bb¢2\+/b:+4)/2_

In particular, if 33 = 1, then oz = 0.
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Example for n =3

Well-known estimate:

Bslt|?
6

|Rs(t)| = |f(t) — 1 —iaat + a2t?/2| < ~ 0.1667 - B3|t|>, teR.

Prawitz' estimate:
t
IRs(t)] < ( |oz| + [33)|| ~ (0.0625 - |ca| +0.1042 - B5) |t

By considering symmetric three point distributions (for which az = 0) Prawitz
also noticed that the factor = = 0.1042 cannot be less than

3 =supx (cosx — 14 x*/2) ~ 0.0992.

x>0

Corollary
1°. If az = 0, then

|R3(t)| < 53+ Bst]’, teR.
2°. Ifa1 =0, az =1, then for all t € R

[Rs(t)] < inf (Mlas| + s(A)5s)]t[*/6 <

0.0992- Bs[tf3, B3 =1,
Fab) + ) < § ST Bl B ST
<in +g3 3)—/— < “Bsitl, Bss L,
AZ0 6 0.1556 - B3|t|3, 3 < 1.5,
0.1667 - B3|t V¥ps.

4
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Square bias transformation

f'(t) — f'(0) f"(¢)
tf7(0) ° £(0)

Definition (see also (Goldstein, Reinert, 1997))

Let X be a r.v. with the ch.f. f(t) and EX = 0, EX? = 02 > 0. Then the
distribution of any r.v. X(?) with the ch.f.

f'(t) - '(0) _ f'(¥)
tf7(0) o2t

is called the X-zero biased distribution.

If EX? < oo, then are ch.f.’s as well (Lukacs, 1970).

Definition (see also (Goldstein, 2007))

Let X be a r.v with the ch.f. f(t) and EX? = 02 > 0. Then the
distribution of any r.v. X© with the ch.f.
'(t) ()
o — —
(t) _ f”(O) - o2

is called the X-square biased distribution.

v
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Square bias transformation: properties

Elementary properties of X":
2
o dP(X" < x) = 5dP(X <x), xR
g
e EX2G(X) =0%EG(X") VG < XU has the X-square biased
distribution (see also (Goldstein, Reinert, 2005)).
o XOLX & P(IX|=0)=1.
o (cX)” £ cxO.
o If E|X]® < oo, then 02EX" = EX3, 02E|X"| = E|X|3.

Theorem
IfEX =0 and E|X|* < oo, then

Li(X, X7) <EIXP,

with the equality attained at any symmetric three-point distribution with
an atom at zero, L1(X,Y) being the L;-distance:

Li(X,Y) = inf{E\X’ — v x'EX, y/gy}.

v
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Square bias transformation: applications

For any r.v.'s X, Y with E|X|V E|Y| < co

] . t
[Ee™X — Ee'tY| < 2sin (Ll(X, Y)|2—| A

Li(X, X®) < %E\XP (Tyurin, 2009), (Goldstein, 2009).
Li(X,X") <EIX|* (Sh., 2012).

Corollary

For any r.v. X withEX =0, EX2=1and E[X]*=b>1forallt €R

0 0] < 2en(803)

() + F(£)] < 2sin(b‘2t|A2)

<
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Exact estimates for the real part of ch.f.

For any r.v. X with EX? =1 and f245 = E|X|>T? <00, 0 <6 <1,

EcostX < 1—v5(t, Boys) < 1—t2/2 + 25P245/t)*T°, teR, (1)

where
t2/2 — xse|t|?H9, g9t < 6,
Ys(t,e) =4 e72/9(1 - cos (¢'/°t)), 6 < e/o)t| < 2m, €>0,
0, el/o|t| > 2m,

0 = 6(9) is the unique root of the equation
867 +20sin6 = 2(2 + 6)(1 — cosh), 0< 6 < 2m,
5 = sup (cosx — 1+ X2/2)X7276 = (cosf — 1+ 6%/2)9727°.
x>0

Equality in (1) is attained at a symmetric three-point distribution.

(Prawitz, 1972): § = 1.
(Ushakov, 1999): Ecos tX < 1 — t2/2 + s58245/t|?>*°, t eR, 0 < d < 1.
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Sharpening of the von Mises inequality

Forany rv. X withEX =0, EX? =1, 35 = E|X|5 and
Brrs =EIXP0 <00, 0<6<1,

|Eeitx| < \/1*2w5(t,ﬂ2+5+/35)7 te Ra

= ‘EeitX’ <1, ‘t|(52+5 =4 65)1/6 < 2.

Corollary

For any lattice r.v. X with span h and EX =0, EX? =1, 35 = E|X
Bars = E|X|?T0 < oo for some 0 < § < 1,

4

h < (Bats + Bs)Y%;  in particular, for 5 =1: h < 3 + fa.

If X has a symmetric distribution, then

h < max {6;@,2}; in particular, for 6 = 1: h < max {63,2}.

(Mises, 1939): h < 20s.



Centering inequality for the third moments

Theorem

For all a € R and any r.v. X with EX = a and E|X|*® <

17 +7v7
E|X—a|3<%[

E|X|® < 1.3156 - E|X|?,
with the equality attained at the two-point distribution of the form

P(X_ 6a )_3i\/1+2\ﬁ
4—T+\1+2V7 6 '

Applications: method of truncation.
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The Esseen moment inequality

For any r.v. X with EX =0, EX2 =1, EX3 = a3, E|X|* = Bk, k = 1,3,

where 1 A+1 (7w 1 . A—1
= — — _— —_— = 27
p(N) 5 )\+35m<6 3 arctan A2+ )\+3>,
L—XA+2(A+2)p—2(\+3)p?
p(1—p)
(Esseen, 1945, 1956): X, X;, Xo,... —iid, EX =0 EX?=1, =

|as| +3h V1043
limsupv/nsup | P(Xi+...+X, < x = <

h being the span, if X is lattice, and h = 0 otherwise.
(Sh., 2009, 2012) =

las|+3h < Jas|+3(Bs+1) < jnf {(A+3)83+M(p(1), M)} < (V10+3)8;

, 0<p<

B3,



Applications




Applications: CLT for sums of independent r.v.'s

By F3 denote the set of all d.f.'s of a r.v. X such that
EX =0, EX]?<c.
Let Xi,...,X, be independent r.v.'s with d.f.'s Fy,..., F, € F3. Let
o7 =EX?, B3;=EX[, j=12...,n,

Bi=) 07>0, lp= Bigzﬁ&f’ n = %Z”fs’
=1 =t

n J:]-
Fa(x)=P(X1+ ...+ X, < xBp) = (F1 % ... % F,)(xB,),
A, = An(Fla cooy Fn) = sup |fn(x) - ¢(X)|7

AL(F)=An(F,...,F), n=12...,

®(-) being the standard normal d.f. It can be made sure that

by > 1, > n Y2
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Moment-type estimates with optimal structure. |

Theorem

, N. Thenfora/lFl,...,F,,e]:g7 n>1

2£ Z P, j J 6£‘:’,/3, non-i.i.d. case,
b 3\/27r 2v2m § B3 302, i.i.d. case,

Ly n 2\[ 32 301/°, non-ii.d. case,
3\/ 33 26?,/2, i.i.d. case.

(2v27)™t =0.199%..., 1/(2v3—3)/(67) = 0.1569...

2
Cuu(F3) = limsuplimsup  sup — %  _02659...

{—0 n—oo FeFsz: lp={ 14 3vV2m

A < 20, n 1 zn: ‘i O(E‘,L,/3), non-i.i.d. case (Bentkus, 1991),
"3V 2v2m =i B3 1 O(¢2), iid. case (Prawitz, 1975).
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Moment-type estimates with optimal structure. Il

For all ¢ > 2/(3v/2r), n ,Fn € F3

" o3 7/6 4/3 L
< clp+ K(c Z Bij { 305" NA(c)y'", non-ii.d. case,
=il

2032 NA()?,  iid. case,

where (¢) = L0200+ 2(6) ~ 206+ 3)p2(6)

b)
0=6v2mc—3

6\ 27 O) 1~ P(®))
p(6) =3~ giésm <g—farctan\/02+2§+§) 0>1,

A(c) — oo as ¢ — 2/(3v/2m), A(c) decreases monotonically and is given
in the explicit form. Value of K(c) can be made less for no ¢ > ﬁ

Remark. K(c) decreases monotonically for ¢ > 2/(3v/27) and

(o)
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Corollaries

Estimates in Kolmogorov's form:

Foralln>1and Fy,...,F, € F3
f+3€ { 45?,/3, non-i.i.d. case,

A, <
6V 27

32, iid. case.

V10 + 3
621

For symmetric Bernoulli distributions:

Chistyakov, 200 A 0, + O(£49/39 |og ¢,,|7/0).
istyakov, 1): n & i n og

Foralln>1 and F,...,F, € F3 such thatﬁ37jzaf,j:1,...,n

y " 4043 non-ii.d. case,
32, iid. case.
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Applications: Poisson random sums

Let X, Xy, Xo, ... be i.id. r.v.'s with common d.f. F(x), and such that
EX=a, EX?’=a"+0°>0, EX®=p <o

By F3 denote the set of all d.f.'s of the r.v. X, satisfying the above
conditions for some a,o > 0 and fs.
Let Ny, A > 0, have the Poisson distribution:

)\k
P(N,\:k):e_/\ﬂ, k:0,1,2,...,
and be independent of X1, X5,... . Denote

Sx=X1+...+ Xn, (for Ny =0 define S, =0),

Ay = Ax(F) =sup , A>0, x€eR,

xER

5>\ —\a

P (}M < X> — q)(X)
Bs

(a2 +02)3/2\f>\'
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Convergence rate estimates for Poisson random sums

For all A > 0 and F € F3

o 2 0.3031- 4y, Viy,
A 4 2 and Ay <{ 02929-0,, £, <01,
3vam 0.2660 - £y, £y <10~

The lower asymptotically exact and asymptotically exact constants:

M,z(F3) = limsuplimsup sup  Ax(F)/¢,
— £—0 Ao FEFs: fy=t
M,z(F3) = limsup sup A\(F)/e.

€0 N FEFs: r=t

%(}-3) = MAE(]:3) =
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