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We consider the equation

∂u

∂t
=
σ2

2

∂2u

∂x2
+ f (x)u,

where σ is a complex-valued parameter, such that Reσ2 ≥ 0.
When σ is a real number this equation corresponds to the Heat
equation while when Reσ2 = 0 it corresponds to the Schrödinger
equation. For this equation we consider the initial boundary value
problem with Dirichlet condition

u(0, x) = ϕ(x), u(a, t) = 0, u(t, b) = 0,

where [a, b] ⊂ R.
For simplicity we suppose that our interval [a, b] is an interval
[0, π]. The general case can be reduced to this case by a linear
change of argument.
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In the case when σ is a real number there exists probabilistic
representation of the solution in a form of the mathematical
expectation (so called Feynman - Kac formula), namely

u(t, x) = E

{
ϕ(ξ̃x(t ∧ τ))e

∫ t∧τ

0 f (ξ̃x (v))dv
}
, (1)

where ξ̃x(t) is a Brownian motion with a parameter σ, killed at the
exit time τ from the interval [a, b]. This approach doesn’t work if
Imσ 6= 0.
It is known that when σ is not a real number there exists no
analogue of the Wiener measure and hence one can not present the
Feynman - Kac formula as an integral with respect to a σ-additive
measure in a trajectory space.
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When Reσ2 = 0 (that corresponds to the Schrödinger equation)
one can apply an integral with respect to the so called Feynman
measure that is a finitely-additive complex measure in the
trajectory space which is defined as a limit over a sequence of
partitions of an interval [0,T ]. It should be mentioned that this
approach is not a probabilistic approach in the usual sense since
the very notion of a probability space does not appear in it.
There exists a number of papers and books devoted to the strict
mathematical background of the Feynman integral. One of them
has received new attention in works by Doss , Albeverio and
Mazzucchi, and Thaler is based on a construction of an analytic
prolongation of (1) (in σ).
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Unfortunately this approach demands a potential analyticity which
is a rather restrictive condition. In addition one can not use this
approach as a basis for a probabilistic construction of an
approximation of the Feynman integral and a construction of
trajectories for a complex-valued process σw(t) since it demands a
notion of an analytical function with an argument which is a
continuous function itself.
An alternative approach to the mathematical background of the
Feynman integral is due to Albeverio, Høegh-Krohn and Maslov
and is based on a construction of a complex measure
corresponding to the Fourier transform of (4) rather then to (4)
itself (that is a measure in momentum space rather then in
coordinate representation).
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To get the stochastic approximation of the solution we use another
approach based on the generalized function theory. Roughly
speaking, we consider the Wiener process as a jump Lèvy process

with a Lèvy measure Λ of the form Λ = δ(2)

2 , where δ
(2) is a

generalized function (not a measure) that acts on a test function ϕ
as (δ(2), ϕ) = ϕ′′(0).
Namely, on a special probability space we define the sequence of
probability measures {Pn} (each measure {Pn} is generated by
some compound Poisson process) and a limit object
L = limn→∞ Pn but this limit object is not a measure it is only
generalized function. That means that the convergence∫
fdPn → (L, f ) is valid only if f belongs to the class of test

functions. Now we describe this construction.
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Let Ω0 denote the space of all discrete signed measures on [0,T ]
with a finite spectrum (finite number of atoms). Each element ν
of this space can be represented in the form ν =

∑n
k=1 xkδtk ,

where δtk denotes a unit mass (δ−measure) at a point tk .
Let f : Ω0 → C be a Borel function, for every
k ∈ N0, N0 = {0, 1, 2 . . . }; we use a notation fk for a symmetric
function of k two-dimensional variables defined by

fk((t1, x1), (t2, x2), . . . , (tk , xk)) = f (
k∑

j=1

xjδtj ), tj ∈ [0,T ], xj ∈ R.

On Ω0 we define a sequence of probability measures Pn.
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Namely, let νn be a Poisson random measure on [0,T ] with
intensity measure ndt, so that Eνn(dt) = ndt, and {ξj}∞j=1 be an
orthogonal gaussian sequence of random variables independent of
νn.
For every n ∈ N we construct a random signed measure ζn
(random element of Ω0) by

ζn =
k∑

j=1

ξj√
n
δtj ∈ Ω0,

where νn =
∑k

j=1 δtj , t1 < t2 < · · · < tk is a realization of the
Poisson random measure νn, and k = νn([0,T ]).
Denote by Pn the distribution of ζn in Ω0, and by En the
mathematical expectation with respect to the measure Pn.
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By gn we denote a generalized function that acts on a test function
ψ : R → C as

(gn, ψ) =
n√
2π

∫

R

(
ψ
( y√

n

)
− ψ(0)

)
e−

y2

2 dy .

For every k ∈ N by mk we denote the Lebesgue measure on [0,T ]k .

Theorem

For every bounded f : Ω0 → C we have

∫

Ω0

fdPn = Enf =

∞∑

k=0

1

k!

∫

[0,T ]k

(
g⊗k
n , fk

)
dmk .

Here we integrate with respect to time variables tj ∈ [0,T ], and
generalized function (gn)

⊗k acts with respect to space variables
xj ∈ R.
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Now consider the limit limn→∞ Pn. The limit object is not a
measure, it is only a linear functional (generalized function).
First note that for every sufficiently smooth function ψ we have

lim
n→∞

(gn, ψ) =
ψ(2)(0)

2
=

(δ(2)
2
, ψ

)
,

so that δ(2)

2 = limn→∞ gn (in generalized functions sense).
Now under some class of test functions G we define a generalized
function L. For every f ∈ G, f : Ω0 → C we put

Lf = (L, f ) =
∞∑

k=0

1

k!

∫

[0,T ]k

((
δ(2)

2

)⊗k

, fk

)
dmk . (6)
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In (6) we suppose that the generalized function
(
δ(2)

2

)⊗k
acts with

respect to x1, . . . , xk , m
k denotes the Lebesgue measure on [0,T ]k

and we integrate with respect to (t1, . . . , tk).

Theorem

For every f ∈ G
lim
n→∞

Enf = Lf .

L — is not a measure.
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For every x ∈ R we define a random process ξσx (t), t ∈ [0,T ] by

ξσx (t) = ξσx (t, ω) = x + σω([0, t]), ω ∈ Ω0

For every fixed n the process ξσx (t), t ∈ [0,T ] is a complex-valued
piecewise constant process on the probability space
(Ω0,B(Ω0),Pn). But on the the space (Ω0,F ,L) the process
ξσx (t) is not a random process in usual sense because instead of a
probability measure on Ω0 we have only a generalized function L.
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t1 t2 t3 t4 . . . tk−1 tk T

x

x+ x1

x+ x1 + x2

x+ x1 + x2 + x3

x+
∑k

j=1
xj
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Let ϕ be a continuous function ϕ : [0, π] → C . Decompose the
function ϕ into a sum

ϕ(x) = ϕ(0) +
ϕ(π)− ϕ(0)

π
x + ϕ0(x),

so that ϕ0(0) = ϕ0(π) = 0. For every ϕ0 by ϕodd
0 denote its odd

continuation from [0, π] to [−π, π].
Denote by HD the set of functions ϕ : [0, π] → C, such that the
function ϕodd

0 is of the form

ϕodd

0 (x) =
∞∑

m=−∞
Bme

imx ,

where B0 = 0, and for all m B−m = −Bm and only finite number
of indices Bm are not equal to 0 (that is ϕodd is a trigonometrical
polynomial).
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For every function ϕ ∈ HD define its continuation ϕ̃D : C → C,
setting for z ∈ C

ϕ̃D(z) = ϕ(0) +
ϕ(π)− ϕ(0)

π
z +

∞∑

m=−∞
Bme

imz .

On the domain HD for t ∈ [0,T ] define linear operators Pt
D and

Pt
D,n by

Pt
Dϕ(x) = Lϕ̃D(ξ

σ
x (t)) = Lϕ̃D(x + σω[0, t])

and
Pt
D,nϕ(x) = Enϕ̃D(ξ

σ
x (t)) = Enϕ̃D(x + σω[0, t]).

Note that Pt
D ,P

t
D,n are semigroups of operators, so that

Pt+s
D = Pt

DP
s
D and Pt+s

D,n = Pt
D,nP

s
D,n.
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Theorem

1.

Pt
Dϕ(x) = ϕ(0) +

ϕ(π)− ϕ(0)

π
x +

∞∑

m=−∞
Bme

− tσ2m2

2 e imx ,

2.

Pt
D,nϕ(x) = ϕ(0)+

ϕ(π)− ϕ(0)

π
x +

∞∑

m=−∞
Bme

(
nt
(
e
−

m2
σ
2

2n −1
))
e imx

3.For every σ, Reσ2 ≥ 0 |e− tσ2m2

2 | ≤ 1 and |e
(
nt
(
e
−

m2
σ
2

2n −1
))
| ≤ 1.
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Initially operators Pt
D ,P

t
D,n are defined on the space HD , but using

this theorem one can extend the operators Pt
D,n and Pt

D on the set
of functions ϕ, such that the series

∑∞
m=−∞ |Bm| converges.

For every ϕ such that
∑∞

m=−∞m2|Bm| <∞ define functions
u = u(t, x), t ≥ 0, x ∈ R, un = un(t, x) by

u(t, x) = Pt
Dϕ(x) = Lϕ̃D(ξ

σ
x (t)),

un(t, x) = Pt
D,nϕ(x) = Enϕ̃D(ξ

σ
x (t)).
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Theorem

1.The function u(t, x) is a solution of the initial boundary value
problem

∂u

∂t
=
σ2

2

∂2u

∂x2
, u(0, x) = ϕ(x), u(t, 0) = ϕ(0), u(t, π) = ϕ(π).

2.The function un(t, x) is a solution of the initial boundary value
problem

∂un
∂t

= Aσ
D,nun, un(0, x) = ϕ(x), un(t, 0) = ϕ(0), un(t, π) = ϕ(π),

where the operator Aσ
D,n acts on ψ ∈ HD as

Aσ
D,nψ(x) =

n√
2π

∫

R

(ψ̃D(x +
σy√
n
)− ψ̃D(x))e

− y2

2 dy .
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Let ϕ : [0, π] → C be a continuous function such that
ϕ(x) = a+ bx + ϕ0(x), ϕ0(0) = ϕ0(π) = 0 and∑∞

m=−∞ |Bm| <∞. Define a norm by

‖ϕ‖Rodd = |a|+ |b|π +
∞∑

m=−∞
|Bm|.

It is clear that ‖ϕ‖∞ 6 ‖ϕ‖Rodd .

Theorem

Suppose that Reσ2 ≥ 0. Then uniform in t ∈ [0,T ]

lim
n→∞

‖Pt
D,nϕ− Pt

Dϕ‖Rodd = 0.
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We define semigroups of operators F t
n and F t ( t ≥ 0) setting for

ϕ ∈ HD

F tϕ(x) = L

[
ϕ̃D(ξ

σ
x (t)) exp

(∫ t

0
f̃ even(ξσx (v))dv

)]

and

F t
nϕ(x) = En

[
ϕ̃D(ξ

σ
x (t)) exp

(∫ t

0
f̃ even(ξσx (v))dv

)]
.

Here by f̃ even we denote an even continuation of f and suppose
that f̃ even is a trigonometrical polynomial.
One can extend the operators F t

n and F t on the spaces
R0 = {g(x) = ∑

Bme
imx :

∑ |Bm| <∞} (ϕodd, f even ∈ R0).
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Suppose that f even ∈ R0. For every ϕ such that ϕ(0) = ϕ(π) = 0∑
m∈Z m2|Bm| <∞ define functions u = u(t, x), t ≥ 0, x ∈ R,

un = un(t, x) by

u(t, x) = F tϕ(x), un(t, x) = F t
nϕ(x).

Theorem

1.The function u(t, x) is a solution of the initial boundary value
problem (u(0, x) = ϕ(x), u(t, 0) = u(t, π) = 0)
∂u
∂t

= σ2

2
∂2u
∂x2

+ f (x)u.
2.The function un(t, x) is a solution of the initial boundary value
problem (un(0, x) = ϕ(x), un(t, 0) = un(t, π) = 0)

∂un
∂t

= n√
2π

∫
R
(un(t, x + σy√

n
)− un(t, x))e

− y2

2 dy + f (x)u.
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Theorem

Suppose that Reσ2 ≥ 0, ϕ(0) = ϕ(π) = 0 and ϕodd, f even ∈ R0.
Then uniform in t ∈ [0,T ]

lim
n→∞

‖F t
nϕ− F tϕ‖R0 = 0.
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Thank you for your attention!
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