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Introduction

We consider the equation

ou  o20%u
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where o is a complex-valued parameter, such that Rec? > 0.
When o is a real number this equation corresponds to the Heat
equation while when Reo? = 0 it corresponds to the Schrodinger
equation. For this equation we consider the initial boundary value
problem with Dirichlet condition

u(0,x) = ¢(x), u(a,t) =0, u(t,b) =0,

where [a, b] C R.

For simplicity we suppose that our interval [a, b] is an interval
[0, 7]. The general case can be reduced to this case by a linear
change of argument.

The probablllstlc ayy)rommatlon of the one-dimensional initial
ary value problem solution.
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Introduction

In the case when o is a real number there exists probabilistic
representation of the solution in a form of the mathematical
expectation (so called Feynman - Kac formula), namely

u(t, x) = E{p(&(t Ar))els &N, (1)

where gx(t) is a Brownian motion with a parameter o, killed at the
exit time 7 from the interval [a, b]. This approach doesn’t work if
Imo # 0.

It is known that when ¢ is not a real number there exists no
analogue of the Wiener measure and hence one can not present the
Feynman - Kac formula as an integral with respect to a o-additive
measure in a trajectory space.
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Introduction

When Reo? = 0 (that corresponds to the Schrodinger equation)
one can apply an integral with respect to the so called Feynman
measure that is a finitely-additive complex measure in the
trajectory space which is defined as a limit over a sequence of
partitions of an interval [0, T]. It should be mentioned that this
approach is not a probabilistic approach in the usual sense since
the very notion of a probability space does not appear in it.
There exists a number of papers and books devoted to the strict
mathematical background of the Feynman integral. One of them
has received new attention in works by Doss , Albeverio and
Mazzucchi, and Thaler is based on a construction of an analytic
prolongation of (1) (in o).
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Introduction

Unfortunately this approach demands a potential analyticity which
is a rather restrictive condition. In addition one can not use this
approach as a basis for a probabilistic construction of an
approximation of the Feynman integral and a construction of
trajectories for a complex-valued process ow(t) since it demands a
notion of an analytical function with an argument which is a
continuous function itself.

An alternative approach to the mathematical background of the
Feynman integral is due to Albeverio, Hgegh-Krohn and Maslov
and is based on a construction of a complex measure
corresponding to the Fourier transform of (4) rather then to (4)
itself (that is a measure in momentum space rather then in
coordinate representation).
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Introduction

To get the stochastic approximation of the solution we use another
approach based on the generalized function theory. Roughly
speaking, we consider the Wiener process as a jump Lévy process
with a Levy measure A of the form A = (22) where 6 is a
generalized function (not a measure) that acts on a test function ¢
as (63),p) = ¢"(0).

Namely, on a special probability space we define the sequence of
probability measures {P,} (each measure {P,} is generated by
some compound Poisson process) and a limit object

L = lim,_ P, but this limit object is not a measure it is only
generalized function. That means that the convergence

[ fdP, — (L, f) is valid only if f belongs to the class of test
functions. Now we describe this construction.
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The space Q.

Let Qo denote the space of all discrete signed measures on [0, T]
with a finite spectrum (finite number of atoms). Each element v
of this space can be represented in the form v = Y~} _; xx0¢,,
where d;, denotes a unit mass (d—measure) at a point t.

Let f : Qo — C be a Borel function, for every

k € No, No ={0,1,2...}; we use a notation f for a symmetric
function of k two-dimensional variables defined by

k
fk((tl,Xl), (t27X2)> e -7(tk7Xk)) = f(zxjétj)a tj € [O? T]aXJ eR.
j=1

On Qg we define a sequence of probability measures Pp,.
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The space Q.

Namely, let v, be a Poisson random measure on [0, T] with
intensity measure ndt, so that Ev,(dt) = ndt, and {¢;}7°; be an
orthogonal gaussian sequence of random variables independent of
Vn.

For every n € N we construct a random signed measure (,
(random element of €p) by

cn—z iy, € Q.

where v, = E}‘:l 0y, t <ta <---<tgis a realization of the
Poisson random measure v, and k = v,([0, T]).
Denote by P, the distribution of (, in Qq, and by E,, the

mathematical expectation with respect to the measure P,,.
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The space Q.

By g, we denote a generalized function that acts on a test function
¥ : R — C as

(gn ¥) = \/ﬂ / —1(0))e”

For every k € N by m* we denote the Lebesgue measure on [0, T].

Theorem

For every bounded f : Qg — C we have

/fdP,,_E f_zk'/onk g%, f) dm*

Here we integrate with respect to time variables t; € [0, T], and
generalized function (g,)®* acts with respect to space variables
xj € R.
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The space Q.

Now consider the limit lim,_, o, P,. The limit object is not a
measure, it is only a linear functional (generalized function).
First note that for every sufficiently smooth function ) we have

»((0) 5

nll~>n;o(gn’ w) = 2 = (77 ¢)7
so that @ = limp—00 gn (in generalized functions sense).

Now under some class of test functions G we define a generalized
function L. For every f € G, f : Qo — C we put

0= o (7))o 0
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The space Q.

M@)@k

In (6) we suppose that the generalized function (7 acts with

respect to xi, ..., xx, m* denotes the Lebesgue measure on [0, T]k
and we integrate with respect to (t1, ..., tk).

For every f € G

lim E,f = Lf.

n—o0

L — is not a measure.
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Generalized random processes on 0.

For every x € R we define a random process £7(t), t € [0, T] by
& (1) =& (t,w) = x +ow([0,1]), we Qo

For every fixed n the process £Z(t), t € [0, T] is a complex-valued
piecewise constant process on the probability space

(Q0, B(Q0), Pr). But on the the space (Qo, F, L) the process
&2(t) is not a random process in usual sense because instead of a
probability measure on Qg we have only a generalized function L.
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Generalized random processes on 0.
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Generalized random processes on 0.

Let ¢ be a continuous function ¢ : [0, 7] — C . Decompose the
function ¢ into a sum

0
TX + ©o(x),

so that o(0) = wo(m) = 0. For every (g by ¢33 denote its odd
continuation from [0, 7] to [—m, 7.

Denote by Hp the set of functions ¢ : [0, 7] — C, such that the
function goOdd is of the form

Odd Z B e

m=—00

where By = 0, and for all m B_,, = —B,, and only finite number
of indices B, are not equal to 0 (that is ¢°4 is a trigonometrical
polynomial).
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Generalized random processes on 0.

For every function ¢ € Hp define its continuation ¢p : C — C,
setting for z € C

Fo(2) = p(0) + 220, S~ g e

m=—0o0

On the domain Hp for t € [0, T] define linear operators P}, and
P, by

Pbi(x) = Lgp(&5 () = Lep(x + ow[0, t])
and
Pb,n(x) = En@p(£5(t)) = En@p(x + ow(0, t]).
Note that Pp, Pf, , are semigroups of operators, so that

t+s _ pt ps t+s _ pt s
Py = PpPp and PD,n = PD’nPDm.
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Generalized random processes on 0.

1
PD‘P(X) (0)+ 90( ) X+ Z Bme = mx’
m=—00
2.
m2c72 .
PE,HSO(X) = (70(0)+ SO( ) X+ Z Bme nt " 2n —1))elmX
m=—00
tcr2m2 _ﬁ

3.For every o, Rea? >0 ]e” 2 | <1 and |e("t(e 2" *1))] <1.
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Generalized random processes on 0.

Initially operators Pf, Pf,  are defined on the space Hp, but using
this theorem one can extend the operators P, and Pf on the set
of functions ¢, such that the series Y \Bm| converges.

For every ¢ such that >-°°__ m?|B| < oo define functions
u=u(t,x), t>0,x €R, u, = up(t, x) by

u(t, x) = Ppp(x) = L&p(&5(1)),

un(t, x) = Pp np(x) = En$p(&7(1)).
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Generalized random processes on 0.

1. The function u(t, x) is a solution of the initial boundary value
problem

3‘; _ Uzgxg, u(0,x) = p(x), u(t,0) = (0), u(t, ™) = ().

2.The function up(t, x) is a solution of the initial boundary value
problem

% % nUn; UH(O’X) = QO(X), Un(t, 0) = (,0(0), u,,(t,ﬂ') = 90(7['),

where the operator A7, . acts on 1 € Hp as

gy _ye
D.nt(x \/ﬂ/ ¥p(x ﬁ) Yp(x))e” Zdy.
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Generalized random processes on 0.

Let ¢ : [0,7] — C be a continuous function such that
p(x) = a+ bx+ o(x), ¢0o(0) = o(r) = 0 and
o |Bm| < 0o. Define a norm by

m=—0o0

[e.e]
lollroas = |al + [blm +

m=—0o0

It is clear that ||¢]|co < |l¢]lgodd-

Suppose that Rea? > 0. Then uniform in t € [0, T]

lim HPB o — PBQDHRodd =0.
n—00 U
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The Feynman-Kac formula.

We define semigroups of operators F} and F* ( t > 0) setting for
v € Hp

Fio(x) = L [@’D(ﬁ;’ (t) exp < /Ot?even(gg (V))dvﬂ

and
Fiet) = Ea| polel0) e [ t?eve“@z(v))dv)].

Here by feven e denote an even continuation of f and suppose
that £eVen is a trigonometrical polynomial.

One can extend the operators F! and F' on the spaces

Ro = {g(x) = > Bme™ : 3" |Bn| < 00} (¢°49, foven € Ry).
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The Feynman-Kac formula.

Suppose that " € Ry. For every ¢ such that ¢(0) = ¢(7) =0
> mez M*|Bm| < oo define functions u = u(t,x), t >0,x € R,
up = up(t,x) by

u(t,x) = Fio(x), un(t,x) = Fap(x).

Theorem

1.The function u(t, x) is a solution of the initial boundary value
problem (u(O x) = ¢(x),u(t,0) = u(t,7) =0)

u __

o = 558 +f(x)u.

2.The function u,(t,x) is a solution of the initial boundary value
problem (un(0,x) = ©(x), un(t,0) = ux(t, 7r) =0)

aun _ \ﬁfR un(t, x + :’%)—un(t x))e~ T dy + f(x)u.
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The Feynman-Kac formula.

Suppose that Rea? > 0, p(0) = ¢(m) = 0 and °dd, feven ¢ Ry,
Then uniform in t € [0, T]

- t  rt _
lim [|Fie — Follz,
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The Feynman-Kac formula.

Thank you for your attention!
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