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Notation

X ,X1,X2, . . . � i.i.d. random elements in a Hilbert space H.

dim(H) � dimension of H, may be in�nite or �nite

Let (x , y) for x , y ∈ H denote the inner product in H.

Put |x | = (x , x)1/2.
Assume E|X1|2 <∞. For simplicity EX1 = 0 and E|X1|2 = 1

Denote by V a covariance operator of X1

(Vx , y) = E(X1, x)(X1, y).

Let σ2
1
> σ2

2
> . . . be the eigenvalues of V Put

Sn = n−1/2
n∑

i=1

Xi ,

Let Y be a H-valued Gaussian (0,V ) random element.
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Many asymptotic problems in probability theory and statistics can

be described in terms of closeness of f (Sn) and f (Y ).

If f (x) is linear we get two gems of probability theory � law of large

numbers and CLT.

It would be natural to extend the results to quadratic forms.

Moreover, in mathematical statistics there are numerous asymptotic

problems which can be formulated in terms of quadratic or almost

quadratic forms.
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Notation

Let Y be H-valued Gaussian (0,V ) random element. Put for any

a ∈ H

F (x) = P{|Sn − a|2 6 x}, F0(x) = P{|Y − a|2 6 x},

δn(a) = sup
x

|F (x)− F0(x)|.

It is known (see e.g. Sazonov (1968) and Bentkus (1986)) that in

the case H = Rd , d <∞, i.e. in the �nite dimensional case, we

have

δn(a) 6 c E|X1|3 σ−3d
n−1/2

and the bound is optimal with respect to the dependence on

moments, eigenvalues as well as n.
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History, dim(H) =∞

However in the in�nite dimensional case the situation essentially

changes. Here we have (see e.g. Sazonov (1981), ch.2)

sup
a

δn(a) > 1/2.
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History, 3 phases

The improvements of bounds for δn(a) in the in�nite dimensional

case can be divided roughly into three phases: proving bounds with

optimal

dependence on n;

moment conditions;

dependence on the eigenvalues of V .
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History. Approximation. Third phase

The �rst phase started in the middle of 60-s with bounds of

logarithmic order for δn(a) (see Kandelaki (1965))

At the end of the third phase it was proved (see Sazonov, Ulyanov

and Zalesskii (1988b), Nagaev (1989), Senatov (1989))

δn(a) 6
c c6(V )√

n
(1 + |a|3) E|X1|3, (1)

where

ck(V ) =
k∏
1

σ−1
i
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History, Optimal bound

It is known (see Senatov (1985)) that for any c0 > 0 and for any

given eigenvalues σ2
1
, . . . , σ2

6
> 0 of a covariance operator V there

exist a vector a ∈ H, |a| > c0, and a sequence X1,X2, . . . of i.i.d.
random elements in H with zero mean and covariance operator V

such that

lim inf
n→∞

√
n δn(a) > c c6(V ) (1 + |a|3) E|X1|3. (2)

Due to (2) the bound (1) is the best possible in case of �nite third

moment of |X1|.
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Notation, �rst term of expansion

Better approximations for F (x) are available when we use an

additional term, say F1(x), of its asymptotic expansion. This term

F1(x) is de�ned as the unique function satisfying F1(−∞) = 0 with

Fourier-Stieltjes transform equal to

F̂1(t) = − 2t2

3
√
n
Ee{t|Y − a|2}

(
3(X ,Y − a)|X |2

+2it(X ,Y − a)3
)
. (3)

Here and in the following we write e{x} = exp{ix}.
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History. Short asymptotic expansions

Introduce the error

∆n(a) = sup
x

|F (x)− F0(x)− F1(x)|.

Note that F̂1(t) = 0 and hence F1(x) = 0 when a = 0 or X has a

symmetric distribution, i.e. when X and −X are identically

distributed. Therefore, we get

∆n(0) = δn(0).
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History. Asymptotic expansions. First phase

Similar to the developments of bounds for δn(a) the �rst task

consisted in deriving the bounds for ∆n(a) with optimal

dependence on n. Starting with a seminal paper by Esseen (1945)

for �nite dimensional spaces H = Rd , d <∞ who proved

∆n(0) = O(n−d/(d+1)), (4)

a comparable bound

∆n(0) = O(n−γ)

with γ = 1− ε for any ε > 0 was �nally proved in G�otze(1979,

1984), based on Weyl type inequalities
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History, First and second phases

Fifty years after Essen's result the optimal bounds (in n and

moments)

∆n(0) 6
c(9,V )

n
E|X1|4, (5)

∆n(a) 6
c(13,V )

n
(1 + |a|6) E|X1|4, (6)

where c(i ,V ) 6 exp{cσ−2
i
}, i = 9, 13, were �nally established in

Bentkus and G�otze (1997), using new techniques which allowed to

prove optimal bounds in classical lattice point problems as well.
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The bounds (5) and (6) are optimal with respect to the dependence

on n and on the moments.

The bound (5) improves as well Esseen's result (4) for Euclidean

spaces Rd with d > 8.

However the dependence on covariance operator V in (5), (6) can

be improved.
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Main result

Theorem. G�otze and Ulyanov (2011) There exists an absolute

constant c such that for any a ∈ H

∆n(a) 6
c

n
· c12(V ) ·

(
E|X1|4 + E(X1, a)4

)
×
(
1 + (Va, a)

)
, (7)

where

c12(V ) =
12∏
1

σ−1
i
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Optimality

It follows from G�otze and Ulyanov (2000) that for any given

eigenvalues σ2
1
, . . . , σ2

12
> 0 of a covariance operator V there exist

a ∈ H, |a| > 1, and a sequence X1,X2, . . . of i.i.d. random
elements in H with zero mean and covariance operator V such that

lim inf
n→∞

n ∆n(a) > c c12(V ) (1 + |a|6) E|X1|4.
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Optimality

Thus, (7) is the best bound in the following sense:

� it is impossible that ∆n(a) is of order O(n−1) uniformly for

distributions of X1 with arbitrary eigenvalues σ2
1
, σ2

2
, . . .;

� the form of dependence on the eigenvalues of V , on n and on

E|X1|4 in (7) coincides with one given in lower bound.
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Case a = 0

In special cases the number of eigenvalues which are necessary for

optimal bounds may well decrease below 12.

Lower bounds for n∆n(a) in the case a = 0 are not available. A

conjecture in G�otze (1998) said that in that case the �ve �rst

eigenvalues of V su�ce. That conjecture was con�rmed in G�otze

and Zaitsev (2008) with result ∆n(0) = O(n−1) provided that

σ5 > 0 only.

Note that for some centered ellipsoids in Rd with d ≥ 5 the bounds

of order O(n−1) were obtained in G�otze and Ulyanov (2003).
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Case a 6= 0 and dim(H) <∞

It was proved recently (see G�otze and Zaitsev (2010)) that even for

a 6= 0 we have ∆n(a) = O(n−1) when H = Rd , 5 ≤ d <∞, and
the upper bound for ∆n(a) depends on the smallest eigenvalue σd .

It is necessary to emphasize that (7) implies ∆n(a) = O(n−1) for

in�nite dimensional space H with dependence on �rst twelve

eigenvalues only.
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Proof

The proofs of recent results due to G�otze, Ulyanov and Zaitsev are

based on the reduction of the original problem to lattice valued

random vectors and on symmetrization techniques developed in

number of papers, see e.g. G�otze (1979), Yurinskii (1982),

Sazonov, Ulyanov and Zalesskii (1988a, 1988b, 1991), G�otze and

Ulyanov (2000), Bogatyrev, G�otze and Ulyanov (2006). In the

proofs we use also the new inequalities obtained in Lemma 6.5 in

G�otze and Zaitsev (2011) and in G�otze and Margulis (2010) (see

Lemma 8.2 in G�otze and Zaitsev (2011)). In fact, the bounds in

G�otze and Zaitsev (2011) are constructed for more general

quadratic forms of the type (Qx , x) with non-degenerate linear

symmetric bounded operator in Rd .
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Notation

(Y1, . . . ,Yk)T – vector with multinomial distribution Mk(n, π):

Pr(Y1 = n1, . . . ,Yk = nk) =

{
n!
∏k

j=1 π
nj
j /nj !, n1 + · · ·+ nk = n

0, otherwise

Hypothesis

H0 : π = p
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Goodness-of-fit tests

Chi-square statistics

t1(Y ) =
k∑

j=1

(Yj − npj)
2

npj

Log-likelihood ratio statistics

t0(Y ) = 2
k∑

j=1

Yj log(Yj/(npj))

Power-divergence family of statistics (Cressie and Read, 1984)

tλ(Y ) =
2

λ(λ+ 1)

k∑
j=1

Yj

[(
Yj

npj

)λ
− 1

]
, λ ∈ R
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Formulation of the Problem

It is well known that

tλ(Y )⇒ χ2
k−1 as n→∞

We study the rate of convergence

Pr(tλ(Y ) < c) = Pr(χ2
k−1 < c) + O(n?)
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History, Pearson statistics

Yarnold (1972) proved for chi-square statistics

Pr(t1(Y ) < c) = Pr(χ2
k−1 < c) + O(n−(k−1)/k)

Götze and Ulyanov (2003) for k > 5

Pr(t1(Y ) < c) = Pr(χ2
k−1 < c) + O(n−1)
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J(n) term

We take Yarnold’s expansion

Pr(tλ(Y ) < c) = Pr(χ2
k−1 < c) + J(n) + O(n−1)

where

J(n) = − 1√
n

∑r

l=1
n−(r−l)/2

∑
xl+1∈Ll+1

· · ·
∑

xr∈Lr[∫
· · ·
∫

Bλ
l

[S1(
√

nxl + npl )ϕ(x)]
θl (x∗)
λl (x∗)

dx1, · · · , dxl−1

]

Lj =

{
x : xj =

nj − npj√
n

, with pj defined as before
}

S1(x) = x − bxc − 1/2, bxc is the integer part of x
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Transformation of statistics

We consider transformation

Xj = (Yj − npj)/
√

n, j = 1, . . . , k , r = k − 1, X = (X1, . . . ,Xr )
T .

The statistic tλ(Y ) can be expressed as a function of X in the form

Tλ(X ) =
2n

λ(λ+ 1)

 k∑
j=1

pj

((
1 +

Xj√
npj

)λ+1

− 1

) ,
and then, via the Taylor’s expansion, transformed to the form

Tλ(X ) =
k∑

i=1

(
X 2

i
pi

+
(λ− 1)X 3

i
3
√

np2
i

+
(λ− 1)(λ− 2)X 4

i
12p3

i n
+ O

(
n−3/2

))
.
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J(n) term

Write

Pr(tλ(Y ) < c) = Pr(Tλ(X ) < c) = Pr(X ∈ Bλ)

Shiotani, Fujikoshi and Read (1984) showed

J(n) = (Nλ − nr/2V λ) e−c/2
/(

(2πn)r
∏k

j=1
pj

)1/2

+ o(1)

Ulyanov and Zubov (2009):

J(n) = (Nλ − nr/2V λ) e−c/2
/(

(2πn)r
∏k

j=1
pj

)1/2

+ O(n−1)
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Introduction Our work Summary

Studied objects

-∂B1

-∂Bλ

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

Bλ = {x : Tλ(x) < c},
L � lattice with lattice spacing n−1/2.
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Yarnold's argument

-∂B1

-∂Bλ
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(
Nλ − n

k−1
2 Vλ
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+ O(n−1).
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Hlawka result

E. Hlawka (1950): Let B be a compact convex set in Rr with the
origin as its inner point. We denote the volume of this set by V .
Assume that the boundary of this set is an (r − 1)-dimensional
surface of class C∞, the Gaussian curvature being non-zero and
finite everywhere on the surface. Also assume that a specially
defined canonical map from the unit sphere to B is one-to-one and
belongs to the class C∞. Then in the set that is obtained from the
initial one by translation along an arbitrary vector and by linear
expansion with the factor

√
n the number of integer points is

N = nr/2V + O
(
D nr/2−r/(r+1)

)
,

where the constant D is a number dependent only on the properties
of the curve C , but not on the parameters n or V .
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Results

� Ulyanov and Zubov (2009) for k ≥ 4

Pr(tλ(Y) < c) = Pr(χk−1 < c) + O(n−(k−1)/k)

� Assylbekov, Ulyanov and Zubov (2011) for k = 3

Pr(tλ(Y) < c) = Pr(χ2 < c) + O(n−3/4+β)

with β = 0.065
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Statistic 1

Multivariate Linear Model

Model

Y = XΘ + (ε1, . . . , εn)′

ε1, . . . , εn ∼ i .i .d .
E[εj ] = 0, Cov(εj) = Σ

Hypothesis Testing
H0 : CΘ = 0

SS & SP Matrices

Sh = Θ̂′C ′{C (X ′X )−1C ′}−1C Θ̂

Se = Y ′(In − X (X ′X )−1X ′)Y

Θ̂ = (X ′X )−1X ′Y
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Statistic 2

Test Statistics

(i) TLR = −n log{|Se |/|Se + Sh|}
(ii) TLH = T 2

0 = n trShS−1
e

Se ∼Wp(n,Σ) Sh ∼Wp(q,Σ)
Se ⊥ Sh independent; Σ = I

The case p = 1
(i) TLR = n log

(
1 + 1

nT 2
0
)

(ii) TLH = T 2
0 =

( 1
nχ

2
n
)−1

χ2
q
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.

Error Bound for Asymptotic
Expansions of Pr(T 2

0 ≤ x)
UFS (2005)

|Pr(T 2
0 ≤ x)− Gr (x)− r

4n
{(q − p − 1)Gr (x)

−2qGr+2(x) + (q + p + 1)Gr+4(x)}|

≤ r
48n2 (|h1|+ |h2|+ 48q)

+
1
2n2 p(2p2 + 5p + 5)min{η−1,4,p, ν−1,4,p}
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.
Function of Multivariate scale mixture

An Expression for T 2
0 (= TLH)

TLH = T 2
0 = n trShS−1

e = X1 + . . .+ Xp = f (S · Z ),

where
(i) Xi = SiZi , i = 1, . . . , p
(ii) Z1, . . . ,Zp ∼ i.i.d. χ2

q

(iii) Si = Y−1
i (i = 1, . . . , p) and

Y1 > . . . > Yp > 0

are the characteristic roots of W and nW ∼Wp(n, Ip)
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TLR = n logΛ = n log
p∏

j=1

Vj

Vj ∼ Be
(
1
2

(n − j + 1),
1
2
q
)

=

p∑
i=1

n log(1 + Xi/n)

X = (X1, . . . ,Xp)′

(i) Xi = SiZi , i = 1, . . . , p
(ii)Z1, . . . ,Zp ∼ i .i .d .χ2

q

(iii) Si = Y−1
i (i = 1, . . . , p) and nYi ∼ χ2

mi
, mi = n − (i − 1)

Vladimir V. Ulyanov



High Dimensional Case, U-Fujikoshi-Wakaki (2006)

The distribution of Λ = |Se |/|Se + Sh| can be regarded as

Λq,p,n+q−p =

q∏
j=1

Be(
1
2
mj ,

1
2
pj)

=

q∏
j=1

(
1 + χ2

pj
/χ2

mj

)−1
,

where pj = p, mj = n + q − p + 1− j , j = 1, . . . , q and all the
χ2-variables are independent.
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Further, the limiting distribution of

TLR =

√
p

a
√

q
{− logΛ− q log(1 + q)}

provided that
p/n→ c ∈ (0, 1),

is the standard normal distribution (see, e.g., Tonda and Fujikoshi
(2004)), where

r =
p
m
, m = n − p + q, a =

√
2r√

1 + r
.

How to get
sup
x
|Pr(TLR ≤ x)− Φ(x)| ≤ D?
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Theorem. UFW (2006) Let X1, . . . ,Xp be i.i.d. positive random
variables and Y1, . . . ,Yn be i.i.d. positive random variables.
Let EX1 = EY1, Var(X1) = Var(Y1) = σ2 and
E |X1|3 = E |Y1|3 = β.
Put Sp(X ) = (X1 + . . .+ Xp)/p and
Sn(Y ) = (Y1 + . . .+ Yn)/n.
Then for

A =

(
np

σ2(n + p)

)1/2

we have

sup
x

∣∣∣∣Pr(A
(

Sp(X )

Sn(Y )
− 1
)
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ c0
β

σ3

(
1
n

+
1
p

)1/2
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