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Let {Xn, n ≥ 0} be a time homogeneous Markov chains with values in R+.

Denote by ξ(x) a random variable corresponding to the jump of the chain at point x, that

is,

P(ξ(x) ∈ B) = P(Xn+1 −Xn ∈ B|Xn = x) = Px(X1 ∈ x+B).

Let mk(x) denote the kth moment of the chain at x, i.e.,

mk(x) := Eξk(x).

We consider the case of the asymptotically zero drift:

m1(x)→ 0 as x→∞.



The existence of invariant distribution (positive recurrence) was studied by

Lamperti(1960, 1963):

If 2xm1(x) +m2(x) ≤ −ε, then the chain is positive recurrent.

Was can be said about this stationary distribution?



Examples of chains with calculable stationary distributions.

• Diffusion with the drift m1(x) and the diffusion coefficient m2(x).

The invariant density function solves the Kolmogorov forward equation

0 = − d

dx
(m1(x)p(x)) +

1
2
d2

dx2
(m2(x)p(x)),

which has the following solution:

p(x) =
C

m2(x)
exp

{∫ x

0

2m1(y)
m2(y)

dy

}
.



• Markov chains on Z+ with |ξ(x)| ≤ 1.

Set p−(x) = P(ξ(x) = −1), p+(x) = P(ξ(x) = 1) and

1− p−(x)− p+(x) = P(ξ(x) = 0).

Then the stationary probabilities π(x), x ∈ Z+ satisfy

π(x) = π(x− 1)p+(x− 1) +π(x)(1− p−(x)− p+(x)) +π(x+ 1)p−(x+ 1).

Consequently,

π(x) = π(0)
x∏
k=1

p+(k − 1)
p−(k)

.



Theorem 1. Suppose that, as x→∞,

m1(x) ∼ −µ
x
, m2(x) ∼ b and 2µ > b.

Suppose also that there exists a differentiable function r(x) > 0 such that r′(x) ∼ − 2µ
bx2

and
2m1(x)
m2(x)

= −r(x) +O(x−2−δ).

Suppose also that

sup
x

E|ξ(x)|3+δ <∞, E[ξ2µ/b+3+δ(x); ξ(x) ≥ Ax] = O(x2µ/b)

and

m3(x)→ m3 ∈ (−∞,∞)

Then there exists a constant c > 0 such that

π(x,∞) ∼ cxe−
R x
0 r(y)dy = cx−2µ/b+1`(x).



Menshikov and Popov (1995) investigated Markov chains on Z+ with bounded jumps: For

every ε > 0 there exist constants c±(ε) such that

c−(ε)x−2µ/b−ε ≤ π({x}) ≤ c+(ε)x−2µ/b+ε.

Korshunov (2011) has shown that if {(ξ+(x))2+γ , x ≥ 0} and {(ξ−(x))2, x ≥ 0} are

uniformly integrable, then the moment of order γ of the distribution π is finite for

γ < 2µ/b− 1, and infinite for γ > 2µ/b− 1. Consequently, for every ε > 0 there exists

c(ε) such that

π(x,∞) ≤ c(ε)x−2µ/b+1+ε.



Based on this result on the existence/nonexistence of moments one can expect that the

statement of Theorem 1 should be true under less restrictive moment conditions.

First, we conjecture that E[ξ2µ/b+3+δ(x); ξ(x) ≥ Ax] = O(x2µ/b) can be replaced

by E[ξ2µ/b+1+δ(x); ξ(x) ≥ Ax] = O(x2µ/b).

Second, the convergence of third moments is a technical condition, since the

corresponding limit does not appear in the answer.

Theorem 2. Suppose that all conditions of Theorem 1 hold except probably the

convergence of third moments. If Xn lives on Z+ and ξ(x) ≥ −1, then the statement of

Theorem 1 remains valid.



Random walks with delay. Consider a Markov chain given by the recursion

Wn+1 = (Wn + ηn)+, n ≥ 0,

where ηn are independent identically distributed random variables with Eη1 < 0.

This Markov chain is ergodic and, furthermore,

Wn ⇒ sup
n≥0

n∑
k=1

ηk,

i.e., the stationary measure of Wn is the distribution of the supremum of the random walk

Sn =
∑n
k=1 ηk.



If there exists h > 0 such that Eehη1 = 1, then one can determine π using the following

program:

1. Exponential change of measure: One considers a new random walk Ŝn with

increments

P(η̂i ∈ dx) = ehxP(η ∈ dx);

2. Limit theorem for the overshoot of Ŝn.

As a result one gets, under the additional assumption Eη1ehη1 <∞,

π(x,∞) ∼ ce−hx.



Asymptotically homogeneous Markov chains.

Assume that

ξ(x)⇒ ξ as x→∞

and

Eehξ = 1, Eξehξ <∞.

Borovkov and Korshunov (1996) have shown that if

sup
x

Eehξ(x) <∞ and

∫ ∞
0

(∫
R
eht|P(ξ(x) < t)−P(ξ < t)|dt

)
dx <∞,

then

π(x,∞) ∼ ce−hx.

Korshunov (2004) derived limit theorems for pre-limiting distributions. His method is based

on the exponential change of measure and subsequent analysis of non-probabilistic

transition kernels.



Let B = [0, x0] be such that π(B) > 0 and set τB := min{k ≥ 1 : Xk ∈ B}. For

the measure π we have

π(dx) =
∫
B

π(dz)
∞∑
n=1

Pz(Xn ∈ dx, τB > n), x > x0.



If we find a positive function V (x) such that V (x) = Ex[V (X1), τB > 1], then we may

change the measure:

π(dx) =
1

V (x)

∫
B

π(dz)V (z)
∞∑
n=1

Pz(X̂n ∈ dx) = c0
H(dx)
V (x)

,

where X̂n is a Markov chain with the following transition kernel

Px(X̂1 ∈ dy) =
V (y)
V (x)

Px(X1 ∈ dy, τB > 1)

and initial distribution

P(X̂0 ∈ dz) =
1
c0
π(dz)V (z), z ∈ B.



Harmonic function (1).

Let U(x) be positive on (x0,∞) and zero on [0, x0]. Define

u(x) = Ex[U(X1)]− U(x).

If Ex
∑τB−1
n=0 (u(Xn))+ <∞ for all x > 0, then

V (x) := U(x) + Ex
τB−1∑
n=0

u(Xn)

is well-defined, non-negative and harmonic for Xn:

V (x) = Ex[V (X1), τB > 1].

If U1(x) ∼ U2(x) as x→∞, then V1 ≡ V2. But it remains uncler, whether V (x) is

unique.



Harmonic function (2).

Taylor expansion:

u(x) = EU(x+ ξ(x))− U(x)

= U ′(x)m1(x) +
1
2
U ′′(x)m2(x) +R(x).

All individual properties of ξ(x) are hidden in R(x), and first two terms are “universal”,

i.e., they depend on m1 and m2 only.

Then we can take U such that

U ′(x)m1(x) +
1
2
U ′′(x)m2(x) = 0.



Harmonic function (3).

m1(x)U ′(x) +
m2(x)

2
U ′′(x) = 0, U(x0) = 0.

Consequently,

U(x) =
∫ x

x0

eR(y)dy, x > x0

where R(x) :=
∫ x
x0

−2m1(x)
m2(x)

dz.

If m1(x) ∼ −µx and m2(x) ∼ b, then

U(x) = x2µ/b+1`(x).

U(x) is harmonic for a diffusion with the drift m1 and the diffusion coefficient m2(x),

which is in the same “universality class” as the original Markov chain.



Harmonic function (4).

Under the conditions of Theorem 1, V generated by U from the previous slide, satisfies

(1) V (x) = U(x) + CeR(x) + o(eR(x)), asx→∞.

Without the convergence of third moments we have less information on V :

V (x) = U(x) + o(U(x)).

Using (1) we obtain

Eξ̂(x) ∼ µ+ b

x
and

Eξ̂2(x) ∼ b.

Consequently,

X̂n is transient.



Renewal theorem (1).

Let X̂n be a transient chain with

Eξ̂(x) ∼ µ̂

x
, Eξ̂2(x) ∼ b̂.

Then we have
X̂2
n

n
⇒ γ,

where γ has the Γ-distribution with mean 2µ̂+ b̂ and variance 2b̂(2µ̂+ b̂).



Renewal theorem (2).

H(x) : =
∞∑
n=1

P(X̂n ≤ x) ≥
Tx2∑
n=1

P(X̂2
n/n ≤ x2/n)

=
Tx2∑
n=1

P(γ ≤ x2/n) + o(x2)

= x2

∫ T

0

P(γ ≤ 1/z)dz + o(x2).

Noting that

lim
T→∞

∫ T

0

P(γ ≤ 1/z)dz =
1

2µ̂− b̂
,

we obtain

lim inf
x→∞

H(x)
x2

≥ 1

2µ̂− b̂
.



Renewal theorem (3).

We can generalise the lower bound to the asymptotics:

H(x) ∼ x2

2µ̂− b̂
as x→∞.



Proof of Theorem 1:

π(x,∞) = c0

∫ ∞
x

H(dy)
V (y)

∼ c0
∫ ∞
x

H(dy)
U(y)

= c0

(
−H(x)
U(x)

+
∫ ∞
x

H(y)U ′(y)
U2(y)

dy

)
∼ c x2

U(x)
.



Harmonic functions vs Lyapunov functions.

Lyapunov functions. We choose an explicit function: xa, ehx, x2 log x. Therefore, there

are no problems with regularity properties. Usually one hopes to get either submartingale

or supermartingale, which can be used to obtain lower and upper bounds.

Harmonic functions. Explicit expressions are known in special cases only. One has to

derive all needed properties. Harmonic functions lead to martingales and, therefore, can

be used by deriving asymptotics.
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Further developments.

We are going to consider a problem with the following moment conditions:

m1(x) ∼ − 1
xβ
, β ∈ (0, 1) and m2(x) ∼ b.

Here one expects that

π(x,∞) ≈ exp{−cx1−β}

and, respectively,

V (x) ≈ exp{cx1−β}.


