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1. Introduction

In this talk, we consider the following stochastic differential

equations (SDE)

Xt = x0 +

∫ t

0

f(Xs−)dYs (1)

where f is a continuous function, Y is a semimartingale with

jumps.
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1. Introduction

Numerical methods for SDEs are hot topics due to the need of

practice and theory.

Usually, Euler method is a widely used numerical method for

SDE.

According to the formula

Xn
0 = x0, Xn

i/n = Xn
(i−1)/n + f(Xn

(i−1)/n)(Y n
i/n − Y n

(i−1)/n),

the approximated solution of (1) is defined at the time i/n by

induction on the integer i.
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1. Introduction

This scheme is called as Euler scheme.

To find an approximation of the law of the path, we need to

study the asymptotic error distributions for numerical methods.

The main gap is to find a rate un, a sequence going to ∞,

such that

unUn
t = un(X

n
[nt]/n − X[nt]/n)

admits nondegenerate limiting process.



Asymptotic error distributions of numerical methods for SDEs with jumps

1. Introduction

It is worth notice that Jacod and Protter (1998) provided

some fundamental results on the asymptotic error distributions

for euler methods of SDEs.



Asymptotic error distributions of numerical methods for SDEs with jumps

1. Introduction

It is worth notice that Jacod and Protter (1998) provided

some fundamental results on the asymptotic error distributions

for euler methods of SDEs.

They gave the sharp rate un =
√

n when the continuous

martingale part presented in Lévy processes. When continuous

martingale part vanish, the results are quite different.
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1. Introduction

Jacod (2004) studied the SDEs driven by the pure jump Lévy

processes. He gave the rates in terms of the concentration of

the Lévy measure.

He employed the independent and stationary properties of

increments of Lévy processes to obtain the results. However,

when we study same problem for more general Itô

semimartingale, it is more difficult to get the similar results

following the same line.
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1. Introduction

The first work in this talk is to extend the results in Jacod

(2004) to more general Itô semimartingales.

Milstein method modifies the Euler method to improve its rate

convergence.

According to the formula

X̃n
0 = x0,

X̃n
i/n = X̃n

(i−1)/n + f(X̃n
(i−1)/n)(Y n

i/n − Y n
(i−1)/n)

+ f ′f(X̃n
(i−1)/n)

∫ i/n

(i−1)/n

(Ys − Y(i−1)/n)dYs

Milstein scheme is defined.
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1. Introduction

Yan (2005) studied the asymptotic error distribution of SDEs

driven by continuous process. The second work in this talk is

to study the case of SDEs driven by semimartingale with

jump, i.e., to study the weak convergence of

Ũn
t = un(X̃n

[nt]/n − X[nt]/n)
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2. Euler scheme for stochastic differential equation

driven by pure jump semimartingales

Assumption 1:

Yt =

∫ t

0

σs−dZs

where

a) Z is a non-homogeneous Lévy process with spot

characteristics (bZ
t , 0, Gt), b′Zt = bZ

t −
∫
{|x|≤1}

xGt(dx) there

are constant α ∈ (0, 2) and two functions θ+
t , θ−t ≥ 0 on R+

such that,
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lim
x↓0

sup
0≤t≤1

|xαG
±

t (x) − θ±t | = 0,

where G
+

t (x) = Gt((x,∞)), G
−

t (x) = Gt((−∞,−x))and bZ
t

is locally bounded, θ+
t , θ−t are Riemann integrable over each

finite interval.
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b) The process σ is an Itô semimartingale with spot

characteristics (bσ
t , cσ

t , F
σ
t ), which are such that the processes

bσ
t , cσ

t and
∫

(x2 ∧ 1)F σ
t (dx) are locally bounded.
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Assumption 2 f is a C3 (three times differentiable)

function.
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Theorem 1: Under Assumption 2 and in the following cases,

the sequence (Y, unU
n) converges in law to (Y, U), where U is

the unique solution of the linear equation

Ut =

∫ t

0

f ′(Xs−)Us−dYs − Wt

and where W can be described as follows:
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Case I. Under Assumption 1 with α > 1, then un = ( n
log n

)1/α,

and

Wt =

∫ t

0

f(Xs−)f ′(Xs−)σ2
s−dVs

where V is another Lévy process, independent of Z, with spot

characteristics (bV
t , 0, GV

t ) given by

bV
t =

−α(θ′t)
2

2(1−α)(α − 1)
,

GV
t (dx) =

α(θ′t)
2

21−α
[((θ+

t )2+(θ−t )2)1{x>0}+2θ+
t θ−t 1{x>0}]

1

|x|1+α
dx.
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Case II. Under Assumption 1 with α = 1, then un = n
(log n)2

,

and

Wt =
−θ′2t

4

∫ t

0

f(Xs−)f ′(Xs−)σ2
s−ds.
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Case III. Under Assumption 1, α < 1 with b′Zt = 0 then

un = ( n
log n

)1/α, and

Wt =

∫ t

0

f(Xs−)f ′(Xs−)σ2
s−dVs

where V is another Lévy process, independent of Z, with spot

characteristics (bV
t , 0, GV

t ) given by

bV
t = 0, GV

t (dx) =
θ2

t α

4|x|1+α
dx.
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3. Milstein scheme for SDEs driven by

semimartingale with jumps

Assumption 3:

Yt =

∫ t

0

σs−dZ̃s

where

(a) Z̃ is a Lévy process with spot characteristics (b, c, F ),

where b ∈ R, c > 0, F is a positive measure on R with∫
(x2 ∧ 1)F (dx) < ∞. The continuous local martingale part of

Z̃ is
√

cW ′, W ′ is a standard Brownian motion.
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b) The process σ is an Itô semimartingale with spot

characteristics (bσ
t , cσ

t , F
σ
t ), which are such that the processes

bσ
t , cσ

t and
∫

(x2 ∧ 1)F σ
t (dx) are locally bounded, and∫ 1

0
σ6

t−dt < ∞ a.s..
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Theorem 2: Under Assumptions 2 and 3, the sequence

(Y, nŨn) converges in law to (Y, Ũ), where Ũ is the unique

solution of the linear equation

Ũt =

∫ t

0

f ′(Xs−)Ũs−dYs − Mt

and where M can be described as follows:
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Mt =

√
6cc

6

∫ t

0
f2(Xs−)f ′(Xs−)σ3

s−dBs

+

√
3cc

6

∫ t

0
f2(Xs−)f ′′(Xs−)σ3

s−dWs

+

√
c

2

∑

n:Sn≤t

[
√

χnN ′
n(f2f ′)(XSn−)

+
√

1 − χnN ′′
nf2(XSn−)

∫ 1

0
f ′(XSn− + u∆XSn)du](∆YSn)2

+

√
c

2

∑

n:Sn≤t

[
√

χnN ′
n(f2f ′′)(XSn−)

+
√

1 − χnN ′′
nf2(XSn−)

∫ 1

0
f ′′(XSn− + u∆XSn)du](∆YSn)2
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B, W are independent standard Brownian motions, and

independent of W ′, and

W =
√

2B +

√
3

2
W ′ +

1

2
W ;
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3. Milstein scheme for SDEs driven by semimartingale with jumps

B, W are independent standard Brownian motions, and

independent of W ′, and

W =
√

2B +

√
3

2
W ′ +

1

2
W ;

(N ′
n)n≥1 and (N ′′

n)n≥1 are two sequence of standard normal

variables.
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3. Milstein scheme for SDEs driven by semimartingale with jumps

(χn)n≥1 is a sequence of uniform variables on (0, 1).

(N ′
n)n≥1, (N ′′

n)n≥1, (χn)n≥1 are mutually independent, and

independent of Y .
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3. Milstein scheme for SDEs driven by semimartingale with jumps

(χn)n≥1 is a sequence of uniform variables on (0, 1).

(N ′
n)n≥1, (N ′′

n)n≥1, (χn)n≥1 are mutually independent, and

independent of Y .

(Sn)n≥1 is an arbitrary ordering of all jump times of Z̃.
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4. The outline of proof

For Theorem 1: note that,

Un
t =

[nt]∑

i=1

∫ i/n

(i−1)/n
(f(Xn

(i−1)/n) − f(X(i−1)/n))dYs

−
[nt]∑

i=1

∫ i/n

(i−1)/n
(f(Xs−) − f(X(i−1)/n))dYs

and set Y
n
t = Y[nt]/n, X

n
t = X[nt]/n, and

W n
t =

[nt]∑

i=1

∫ i/n

(i−1)/n
(f(Xs−) − f(X(i−1)/n))dYs.

We obtain

Un
t =

∫ t

0
(f(X

n
s− + Un

s−) − f(X
n
s−))dY

n
s − W n

t .
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By Theorem 2.2 in Jacod (2004), the convergence of

(Y, unW
n) can implies weak convergence of (Y, unU

n).

we need to introduce a sequence υn → 0,

Case I υn = log n
n1/(2α) , Case II υn = log n

n
, Case III υn = ( log n

n
)1/α.
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4. The outline of proof

By Theorem 2.2 in Jacod (2004), the convergence of

(Y, unW
n) can implies weak convergence of (Y, unU

n).

we need to introduce a sequence υn → 0,

Case I υn = log n
n1/(2α) , Case II υn = log n

n
, Case III υn = ( log n

n
)1/α.

Denote the successive jump times of Z, after i−1
n

and of size

bigger than or equal to υn by T (n, i)p. Let K(n, i) be the

integer such that T (n, i)K(n,i) ≤ i
n

< T (n, i)K(n,i)+1.
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I : unff ′(X(i−1)/n)∆YT (n,i)1M̃
n,i
i/n1{K(n,i)≥1},

II : unff ′(X(i−1)/n)

∫

I(n,i)

(Ãn,i
s− + ∆YT (n,i)11{K(n,i)≥1})dÃυn

s ,

III : unff ′(X(i−1)/n)∆YT (n,i)1∆YT (n,i)21{K(n,i)≥2}.

are the main convergence parts of W n,



Asymptotic error distributions of numerical methods for SDEs with jumps

4. The outline of proof

where

Aυn = bZ − x1{υ≤|x|≤1} ∗ νZ , Mυn = x1{|x|≤υ} ∗ (µZ − νZ),

Ãυn
t =

∫ t

0

σs−dAυn
s , M̃n,i

i/n =

∫ i/n

(i−1)/n

σs−dMυ
s .



Asymptotic error distributions of numerical methods for SDEs with jumps

4. The outline of proof

For Theorem 2:

dŨn
t = Ũn

t−f ′(Xt−)dYt

−f 2f ′(Xt−)d(nGn
t ) − 1

2
f 2f ′′(Xt−)d(nHn

t )

is the key to prove, where

Gn
t =

∫ t

0

∫ s

n(s)

(Yr − Yn(r))dYrdYs, H
n
t =

∫ t

0

(Ys − Yn(s))
2dYs,

n(s) = k/n if k/n < s ≤ (k + 1)/n.
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For the jump part, the main convergence parts are

∫ t

0

∫ s

n(s)

(Aε
r − Aε

n(r))dAε
rdZ̃c

s ,

∫ t

0

(Aε
r − Aε

n(r))
2dZ̃c

s ,

where Aε is the jump part of Z̃ and of size bigger than or

equal to ε, Z̃c is the continuous local martingale part of Z̃.

For the continuous part, Yan (2005) have already proved.
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