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The Poincaré conjecture

Conjecture (H. Poincaré 1904)
Every compact and simply connected 3-dimensional (smooth)
manifold is homeomorphic (diffeomorphic) to S3.

Higher dimensional Poincaré conjecture:

S. Smale proved the generalized Poincaré conjecture for
n ≥ 5. He was awarded the 1966 Fields Medal.
M. Freedman proved the generalized Poincaré conjecture
for n = 4. He was awarded the 1986 Fields Medal.

To prove the Poincaré conjecture for 3-dimensional manifolds,
R. Hamilton (JDG1982) initiated the method of using the Ricci
flow equation to deform the Riemannian metric on Riemannian
manifolds.



Hamilton’s Ricci flow

Let M be a compact manifold with a Riemannian metric g. The Ricci
flow (RF) is a nonlinear heat equation for the evolution of Riemannian
metric on M defined as follows:

∂

∂t
g(t) = −2Ricg(t),

g(0) = g.

More precisely, for all i , j = 1, . . . ,n,

∂gij (t)
∂t

= −2Rij(g(t)),

gij (0) = gij .

which is a system of nonlinear 2nd order weak parabolic equations.



Hamilton’s theorems

Theorem (Hamilton 1982)
Given a compact Riemannian manifold (M,g0), there exists
T > 0 such that the Ricci flow equation

∂

∂t
g(t) = −2Ricg(t), t ≥ 0

has a unique solution g(t , x) in [0,T )×M such that

g(0) = g0.



Hamilton’s theorems

Theorem (Hamilton 1982)
Let M be a 3-dimensional compact manifold, g0 a Riemannian
metric on M with positive Ricci curvature . Then the normalized
(i.e., the volume-preserving) Ricci flow equation

∂

∂t
g(t) =

2r
n

g(t)− 2Ricg(t),

where

r =

∫
M Rdv
V (M)

,

has a global solution g(t) on [0,∞)×M such that

g(0) = g0.

Moreover, g(t) converges to a Riemannian metric of constant
positive Ricci (and hence sectional) curvature.



Perelman’s W -entropy on Poincaré conjecture

In 2002-2003, G. Perelman posted three papers on Arxiv
for the proof of Poincaré conjecture and Thurston’s
geometrization conjecture.
In August 2006, Perelman was awarded the Fields medal
at ICM 2006 Madrid for for "his contributions to geometry
and his revolutionary insights into the analytical and
geometric structure of the Ricci flow." However, Perelman
declined to accept the award.
On 18 March 2010, it was announced that he had met the
criteria to receive the first Clay Millennium Prize for
resolution of the Poincaré conjecture.
On 1 July 2010, he turned down the prize of one million
dollars, saying that he considers his contribution to proving
the Poincaré conjecture to be no greater than that of
Richard Hamilton, who introduced the theory of Ricci flow
with the aim of attacking the geometrization conjecture



Perelman’s modified Ricci flow

G. Perelman: The entropy formula for the Ricci flow and its
geometric applications. http://arXiv.org/abs/maths0211159.

Let

M = {g : Riemannian metrics on M}.

Define
F :M× C∞(M) −→ R

F(g, f ) :=

∫
M

(R + |∇f |2)e−f dv ,

R = the scalar curvature of g.



Theorem (Perelman2002)
The gradient flow of F onM× C∞(M), with the constraint
condition that

dm
dx

= e−f
√

detg is fixed,

is given by the modified Ricci flow (MRF)

∂

∂t
g = −2(Ricg +∇2f ),

∂

∂t
f = −∆f − R.

Remark The quantity Ricg +∇2f is called the Bakry-Emery
Ricci curvature on (M,g,e−f dv). It was introduced by Bakry
and Emery in 1984 when they studied logarithmic Sobolev
inequalities and Poincaré inequalities for diffusion processes
on Riemannian manifolds with weighted volume measures.



Perelman’s modified Ricci flow

Theorem (Perelman2002)
Let (g(t), f (t)) be the solution of the Ricci flow (obtained via a
time-dependent change of diffeomorphism on M)

∂tg = −2Ricg ,

∂t f = −∆f + |∇f |2 − R.

Then
d
dt
F(g(t), f (t)) = 2

∫
M
|Ric +∇2f |2e−f dv .

In particular, F(g(t), f (t)) is nondecreasing in time and the
monotonicity is strict except that

Ric +∇2f = 0 (steady Ricci soliton).



Perelman’s modified Ricci flow

(M,g) is called a Ricci soliton if there exist a function
f ∈ C∞(M) and some λ ∈ R such that

Ric +∇2f = λg.

λ > 0, shrinking Ricci soliton

λ = 0, steady Ricci soliton

λ < 0, expanding Ricci soliton.

Theorem (Hamilton1995, Ivey1993)
Every compact Riemannian Ricci steady or expanding soliton
must be Einstein.



Perelman’sW-entropy

To study shrinking solitons, Perelman introduced the following
important functional

W(g, f , τ) =

∫
M

[
τ(R + |∇f |2) + f − n

] e−f

(4πτ)n/2 dv

and called it the W -entropy associated with the Ricci flow.



Perelman’s W -entropy formula for Ricci flow

Theorem (Perelman2002)
Let M be a compact manifold. Let g(t), f (t), τ(t), t ∈ [0,T ) be the
solution of

∂tg = −2Ric,

∂t f = −∆f + |∇f |2 − R +
n
2τ
,

∂tτ = −1.

Then

d
dt
W(g, f , τ) = 2τ

∫
M

∣∣∣Ric +∇2f − g
2τ

∣∣∣2 e−f

(4πτ)n/2 dv .

In particular,W(g, f , τ) is nondecreasing in time and the monotonicity
is strict unless that (M,g) is a shrinking Ricci soliton

Ric +∇2f =
g
2τ
.



Application to the resolution of Poincaré conjecture

The monotonicity of the W -entropy plays a crucial role in
the proof of the no local collapsing theorem, which is
equivalent to the long time standing Hamilton’s Little Loop
Conjecture.

As pointed out by Perelman (2002), this ”removes the
major stumbling block in Hamilton’s approach to
geometrization”.



How to understand Perelman’sW-entropy

What is the hidden insight for Perelman when he
introduced his W -entropy functional?

W(g, f , τ) =

∫
M

[
τ(R + |∇f |2) + f − n

] e−f

(4πτ)n/2 dv .

What is the role of the Gaussian heat kernel in Perelman’s
W -entropy functional?
What is the role of the dimension n = dimM in Perelman’s
W -entropy functional?
Is there some relationship between Perelman’s entropy
and Boltzmann’s entropy?



Boltzmann equation and H-theorem

In 1872, Boltzmann introduced the kinetic equation of idea gas, now
called the Boltzmann equation. More precisely, let f (x , v , t) be the
probabilistic distribution of the ideal gas at time t , at position x and
with velocity v , then f satisfies the Bolztmann equation

∂t f + v · ∇x f = Q(f , f )

where the collision term is defined by

Q(f , f ) =

∫
R3

∫
S2

[f (x , v ′)f (x , v ′∗)− f (x , v)f (x , v∗)]B(v − v∗, θ)dv∗dS(u),

where dS denotes the surface measure on S2, v ′, v ′∗ are defined in
terms of v , v∗,u by

v ′ = v − [(v − v∗) · u]u, v ′∗ = v∗ + [(v − v∗) · u]u,

and B : R3 × S2 → (0,∞) is the collision kernel and is assumed to be
rotationally invariant, i.e., B(z,u) = B(|z|, |z · u|), ∀z ∈ R3 and u ∈ S2.



Boltzmann equation and H-theorem

In the same paper, Boltzmann introduced the H-quantity (now called
the Bolztmann H-entropy)

H(t) = −
∫
R6

f (x , v , t) log f (x , v , t)dxdv .

The Bolztmann H-Theorem states that: if f (x , v , t) is the solution of
the Boltzmann equation, which is “sufficiently well-behaved”, then the
following formula holds

dH
dt

=
1
4

∫
S2

∫
R3

(f ′f ′∗ − ff∗)[log(f ′f ′∗)− log(ff∗)]B(v − v∗, θ)dv∗dS(u),

where f = f (·, v , ·), f ′ = f (·, v ′, ·), f∗ = f (·, v∗, ·), f ′∗ = f (·, v ′∗, ·).



Boltzmann entropy and H-theorem
By the Boltzmann formula for the H-entropy formula and using the
elementary inequality

(x − y)(log x − log y) ≥ 0, ∀x , y ∈ R+,

one can conclude that H is always nondecreasing in time, i.e.,

dH
dt
≥ 0, ∀t > 0,

and the equality holds if and only if

f ′f ′∗ = ff∗, ∀v , v∗ ∈ R3,u ∈ S2,

which implies that f is a local Maxwell distribution, i.e.,

f (x , v , t) = n(x , t)
(

m
2πkT (x , t)

)3/2

exp
(
−|v − v̄(x , t)|2

2kmT (x , t)

)
,

where the parameters m is the mass of particle, n(x , t) ∈ R3 is the
particle density at (x , t), v̄(x , t) ∈ R3 and T (x , t) > 0 are the mean
velocity and the local temperature at (x , t).



Boltzmann’s statistical interpretation of entropy

In 1877, L. Boltzmann gave the statistical definition of entropy S by
the formula

S = k log W ,

where k is the so-called Boltzmann constant, and W is the number of
possible microstates corresponding to the macroscopic state of a
system.

The Bolztmann entropy formula gives the logarithmic connection
between Clausius’ thermodynamic entropy S and the number W of
the most probable microstates consistent with the given macrostate.

Max Planck 1901



Canonical ensemble with density of state measure

Let us consider a canonical ensemble with the Maxwell-Boltzmann
distribution

dµβ(E) =
1

Zβ
g(E)e−βEdE ,

where dE denotes the Lebesgue measure on R+, g(E) is called the
"density of states" so that g(E)dE represents the number of states
with energy between E and E + dE per unit volume, and the partition
function at the temperature β−1 is defined by

Zβ =

∫
R+

g(E)e−βEdE

.



Entropy of the Maxwell-Boltzmann distribution

By Boltzmann’s statistical mechanics interpretation of the entropy,

S = lim
N→∞

log W
N

= log Zβ + β〈E〉,

where
〈E〉 = − ∂

∂β
log Zβ .

In other words, the entropy of the Maxwell-Boltzmann distribution is
given by

S = log Zβ − β
∂

∂β
log Zβ .

Moreover, the fluctuation of the energy E with respect to the
Maxwell-Boltzmann distribution µβ is given by

〈(E − 〈E〉)2〉 =
∂2

∂β2 log zβ .



Perelman’s statistical interpretation of W -entropy
Let M be a closed manifold, (gij ) and f be the solution of the modified
Ricci flow equation and the conjugate heat equation. Suppose that
there exists a canonical ensemble with a “density of states” measure
for which the partition function is given by

log Zβ =

∫
M

(n
2
− f
)

dm,

where

dm = udV , u = (4πτ)−n/2e−f , β−1 = τ = T − t , t ∈ (0,T ).

By the Boltzmann entropy formula

S = log Zβ − β
∂

∂β
log Zβ ,

Perelman proved that

S = −
∫

M

(
τ(R + |∇f |2) + f − n

)
dm.

Therefore
W = −S.



H-theorem vs W -entropy formula

The Boltzmann H-entropy formula and the Perelman W -entropy
formula are in the same spirit in the following three points.

The Boltzmann H-entropy formula gives the time derivative
formula of the Boltzmann H-entropy along the solutions of the
Boltzmann equation, and the Perelman W - entropy formula
gives the time derivative formula of the Perelman W -entropy
along the solutions of the Ricci flow equation and the conjugate
heat equation.

The Boltzmann H-entropy is monotone along the Boltzmann
equation, and the Perelman W -entropy is monotone along the
Ricci flow and the conjugate heat equation.

From the Boltzmann H-entropy formula and the Perelman
W -entropy formula, we can derive that the equilibrium state of
the Boltzmann H-entropy is the local Maxwell distribution, and
the equilibrium state of the Perelman W -entropy is the shrinking
Ricci solitons.



H-theorem vs W -entropy formula

The problem of the convergence rate of the solutions of the
Boltzmann equation towards the equilibrium state is the
famous Cercignani conjecture: .... C. Villani (2010 Fields
Medal).
The longtime behavior of the Ricci flow via Perelman’s
W -entropy.

Problem (Perelman2002)
If the flow is defined for all sufficiently large τ (that is, we have
an ancient solution to the Ricci flow, in Hamilton’s terminology),
we may be interested in the behavior of the entropy S as
τ →∞. A natural question is whether we have a gradient
shrinking soliton whenever S stays bounded.



Ni’s entropy formula

Theorem (Ni 2005)
Let (M,g) be a compact Riemannian manifold with a fixed metric. Let

u =
e−f

(4πt)n/2

be a positive solution of
∂tu = ∆u.

Let

W (u, t) =

∫
M

(
t |∇f |2 + f − n

) e−f

(4πt)n/2 dv .

Then

d
dt

W (u, t) = −2
∫

M
t
(∣∣∣∇2f − g

2t

∣∣∣2 + Ric(∇f ,∇f )

)
e−f

(4πt)n/2 dv .

In particular, if Ric ≥ 0, then W (u, t) is decreasing in time t.



Witten Laplacian and Bakry-Emery Ricci curvature

Let (M,g) be a complete Riemannian manifold, φ ∈ C2(M). Let
us consider a weighted volume measure on M:

dµ = e−φdvol .

Then the integration by parts formula holds: ∀u, v ∈ C∞0 (M)∫
M
〈∇u,∇v〉dµ =

∫
M

(−Lu)vdµ =

∫
M

u(−Lv)dµ.

where L is the weighted Laplacian (called the Witte Laplacian)
with respect to µ, i.e.,

L = ∆−∇φ · ∇.



W -entropy for the Witten Laplacian
Inspired by the works of Perelman (2002) and Ni (2005), we have

Theorem (L. Math Ann2012)

Let u = e−f

(4πt)m/2 be a positive solution of ∂tu = Lu. Let

Hm(u, t) := −
∫

M
u log udµ− m

2
(log(4πt) + 1) ,

and
W (u, t) :=

d
dt

(tHm(u, t)).

Then
d
dt

Hm(u, t) = −
∫

M

(
L log u +

m
2t

)
udµ,

and

W (u, t) =

∫
M

(
t |∇f |2 + f −m

) e−f

(4πt)m/2 dµ.



Li-Yau Harnack inequality

Theorem (L. JMPA2005, Math Ann2012)
Let u be a positive solution of the heat equation(

∂

∂t
− L
)

u = 0.

Suppose that

Ricm,n(L) := Ric +∇2φ− ∇φ⊗∇φ
m − n

≥ 0.

Then the Li-Yau Harnack inequality holds

L log u +
m
2t
≥ 0.

Equivalently
|∇u|2

u2 − ∂tu
u
≤ m

2t
.



Probabilistic interpretation of Perelman’s W -entropy

The Boltzmann H-entropy of the Gaussian heat kernel measure on
Rm

dµt (x) = f (x , t)dx =
e−
‖x‖2

4t

(4πt)m/2 dx , t > 0

is given by

H(µt ) = −
∫
Rm

f (x , t) log f (x , t)dx

=
m
2

(1 + log(4πt)).



Probabilistic interpretation of Perelman’s W -entropy

Hence

Hm(u, t) = −
∫

M
u log udµ− m

2
(log(4πt) + 1)

is the difference of the Boltzmann H-entropy

H(u, t) = −
∫

M
u log udµ

of the heat equation ∂tu = Lu on M and the Boltzmann H-entropy
H(µt ) of the Gaussian heat kernel on Rm.

Moreover, the definition formula

W (u, t) =
d
dt

(tHm(u, t))

gives the probabilistic interpretation of Perelman’s W -entropy for the
Witten Laplacian. See Li (Math Ann2012).



Probabilistic interpretation of Perelman’s W -entropy

Let

Hn(u, τ) = −
∫

M
u(τ) log u(τ)dvolg(τ) −

n
2

(log(4πτ) + 1)

be the difference of the Boltzmann H-entropy

H(u, t) = −
∫

M
u log udvolg(τ)

of the conjugate heat equation on M with Ricci flow metric g(τ)

∂τu = ∆u + Ru,

and the Boltzmann H-entropy H(µt ) on Rn. Then

W (u, τ) =
d
dτ

(τHn(u, τ)).



Probabilistic interpretation of Perelman’s W -entropy

The above probabilistic interpretation is equivalent to Perelman’s
statistical interpretation using the Boltzmann formula in statistical
mechanics:
Indeed, let β = τ−1 and notice that log Zβ = −Hn(u, t). Now

d
dτ

=
d

dβ
dβ
dτ

= − 1
τ2

d
dβ

= −β2 d
dβ

.

Hence

W (u, τ) = − d
dτ

(τHn(u, τ))

= β2 d
dβ

(
1
β

log Zβ

)
= − log Zβ + β

∂

∂β
log Zβ

= −S.



Perelman’s W -entropy formula for Witten Laplacian

Theorem (L. Math Ann2012)
Let M be a complete Riemannian manifold with bounded
geometry condition, φ ∈ C4(M) with ∇φ ∈ C3

b(M). Let

u(t , x) =
e−f

(4πτ)m/2

be the fundamental solution of the heat equation

∂tu = Lu.

Then

dW (u, t)
dt

= −2
∫

M

(
τ
∣∣∣∇2f − g

2τ

∣∣∣2 + Ricm,n(L)(∇f ,∇f )

)
udµ

− 2
m − n

∫
M
τ

(
∇φ · ∇f +

m − n
2τ

)2

udµ.



Perelman’s W -entropy formula for Witten Laplacian

Corollary (L. Math Ann. 2012)
Suppose that there exists a constant m ≥ n such that

Ricm,n(L) := Ric +∇2φ− ∇φ⊗∇φ
m − n

≥ 0.

Then W (u, t) is monotone decreasing along the heat equation

(∂t − L)u = 0.

That is
dW (u, t)

dt
≤ 0.



A rigidity theorem for Perelman’s W -entropy

Note that

dW
dt

= 0 ⇐⇒


∇2

ij f =
gij
2t , ∀i , j = 1, . . . ,n,

Ricm,n(L)(∇f ,∇f ) = 0,
∇φ · ∇f + m−n

2t = 0,

=⇒
{

Ricm,n(L)(log u, log u) = 0,
L log u + m

2t = 0.

This is the case when

M = Rn, m = n, φ(x) = C, u(x , t) =
e−
|x|2

4t

(4πt)n/2 .

Question
Can we prove a rigidity theorem for the W-entropy under the condition
Ricm,n(L) ≥ 0 on n-dimensional complete Riemannian manifolds?

The following result gives an affirmative answer to this question.



A rigidity theorem for Perelman’s W -entropy

Theorem (L. Math Ann2012)
Let (M,g) be an n-dimensional complete Riemannian manifold
with bounded Riemannian curvature as well as its derivatives,
and φ ∈ C3

b(M). Suppose that there exist a constant m ≥ n and
a point o ∈ M such that

Ricm,n(L) ≥ 0.

Then dW
dt = 0 for some t > 0 if and only if

M = Rn, m = n, φ(x) = C, u(x , t) =
e−

|x|2
4t

(4πt)n/2 .



W -entropy for time dependent Witten Laplacian

Theorem (S.-Z. Li, L. 2012)
Let M be a compact manifold, {g(t), φ(t), t ∈ [0,T ]} be such
that

∂φ

∂t
=

1
2

Tr
∂g
∂t
.

Let

u(x , t) =
e−f (x ,t)

(4πt)m/2

be the solution of the heat equation ∂tu = Lu. Then

dW(u, t)
dt

= −2
∫

M
t
[∣∣∣∇2f − g

2t

∣∣∣2 +

(
1
2
∂g
∂t

+ Ricm,n(L)

)
(∇f ,∇f )

]
udµ

− 2
m − n

∫
M

t
(
∇φ · ∇f +

m − n
2t

)2

udµ.



W -entropy formula on Perelman’s super m-Ricci flow

Theorem (S.-Z. Li, L. 2012)
Let M be a compact manifold. Suppose that {g(t), φ(t), t ∈ [0,T ]}
satisfies

∂g
∂t

≥ −2
(

Ric +∇2φ− ∇φ⊗∇φ
m − n

)
,

∂φ

∂t
=

1
2

Tr
∂g
∂t
.

Let u(x , t) = e−f (x,t)

(4πt)m/2 be the solution of the heat equation ∂tu = Lu.
Then

dW (u, t)
dt

≤ 0.

Remark: We can further extend the above results to complete
Riemannian manifolds with bounded geometry condition, and prove a
rigidity theorem for the W -entropy on complete Riemannian manifold
with time dependent Witten Laplacian.



Open problem

In his statistical interpretation of W -entropy, Perelman assumed that
there exists a canonical ensemble with a "density of states" measure
such that its partition function is given by

log Zβ =

∫
M

(
n
2
− f )dm

=
n
2

(1 + log(4πτ)) +

∫
M

u log udv

= −Hn(u, τ),

where g(τ) satisfies the modified forward Ricci flow equation

∂tg = 2(Ric +∇2f ),

and

dm =
e−f

(4πτ)n/2 dv .



Open problem

The following problem is naturally arising from Perelman’s
statistical interpretation of the W -entropy for Ricci flow.

Problem
Is there a canonical ensemble with a density of state measure
g(E)dE whose Bolztmann S-entropy is indeed the negative
Perelman’s W-entropy? If such a canonical ensemble exists,
how to explicitly construct it?

This problem is closely related to the constructive conformal
field theory (CFT). If such a canonical ensemble exists, it will
naturally indicate which Riemannian metric is the canonical
metric.



Open problem

Suppose that there is a certain canonical ensemble Ω and an
energy function E : Ω→ R such that the density of state
measure g(E)dE exists and satisfies

log
∫
R

e−βEg(E)dE =
n
2

(1 + log(4πτ)) +

∫
M

u log udv .

The left hand side is the logarithmic Laplace transform of the
density of state measure g(E)dE .



Observation

Under some technical conditions which need to be verified, if such
g(E)dE exists, then by the analytic extension of the partition function

β → Z (β) :=

∫
R

e−βEg(E)dE ,

and using the inverse Fourier transformation, we have (Li arxiv2013)

g(E) =
1

2πi

∫ Reβ+
√
−1∞

Reβ−
√
−1∞

eβEZ (β)dβ,

where β = Reβ +
√
−1Imβ, and for τ = β−1

log Z (β) =
n
2

(1 + log(4πτ)) +

∫
M

u(τ) log u(τ)dvolg(τ).



To complete the above program, the first step is to prove that the
solution of the Ricci flow and the conjugate equation

∂τg(τ) = 2Ricg(τ),

∂τu(τ) = ∆g(τ)u(τ) + Rg(τ)u(τ)

admit a unique analytic continuation from τ ∈ [0,T ) to τ ∈ C. Then to
prove the integral

g(E) =
1

2πi

∫ Reβ+
√
−1∞

Reβ−
√
−1∞

eβEZ (β)dβ,

is convergent.

The difficulty for proving the existence is due to the nonlinearity of the
Ricci flow. However, the above discussion proves the uniqueness of
the density of state measure g(E)dE whose Boltzmann S-entropy is
the negative Perelman’s W -entropy for Ricci flow.



Perelman’s W -entropy and LDP via CFT

To end this talk, let us mention that, there is (or there might be)
some deep connection between Perelman’s W -entropy and the
Sanov type theorem in the large deviation theory via the
conformal field theory (CFT). We will develop this in future.



Thank you !
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