Gaussian Processes and Intrinsic Volumes

Dmitry Zaporozhets (joint work with Zakhar Kabluchko, Ulm University)

Russian Academy of Sciences

June 11, 2013

Notations

- H is a Hilbert space
- **2** K is a convex set in \mathbb{R}^n or in H
- $\bullet \ \kappa_k = \operatorname{Vol}_k(B_K)$
- **5** $Minkowski sum: <math>A + B = \{x + y \mid x \in A, y \in B\}$

Intrinsic volumes in \mathbb{R}^n

Steiner's formula

$$\operatorname{Vol}_n(K+rB_n)=\sum_{i=0}^n r^{n-k}\kappa_{n-k}V_i(K), \quad r>0.$$

Alternative definition

$$V_k(K) = \frac{\binom{n}{k} \kappa_n}{\kappa_k \kappa_{n-k}} \int_{L_k^n} \operatorname{Vol}_k(K|L) \, \mu_k(dL).$$

In particular, $V_0=1, V_n=\mathrm{Vol}, 2V_{n-1}=$ the surface area, $(2\kappa_{n-1}/n\kappa_n)V_1=$ the mean width.

Intrinsic volumes in Hilbert space

Definition (Sudakov '71, Chevet '76)

The supremum of the intrinsic volumes of inscribed finitely dimensional convex sets.

,

Intrinsic volumes and Gaussian Processes

Theorem (Sudakov '71)

Let $X_t, t \in T$, be a centered Gaussian process and $K = \text{conv}\{X_t \in H \mid t \in T\}$. Then

$$V_1(K) = \sqrt{2\pi} \mathbb{E} \sup_{t \in T} X_t.$$

Theorem (Tsirelson '85)

Let X_t^1, \ldots, X_t^k be independent copies of X_t . Then

$$V_k(K) = \frac{(2\pi)^{k/2}}{k!\kappa_k} \mathbb{E} \operatorname{Vol}_k(\operatorname{conv}\{(X_t^1,\ldots,X_t^k) \in \mathbb{R}^k | t \in T\})$$

Finite dimension

Sudakov-Tsirelson's result in Euclidian space

Let $X, X_1, \dots, X_k \in \mathbb{R}^n$ be independent standard Gaussian vectors. For any convex $K \subset \mathbb{R}^n$

$$V_k(K) = \frac{(2\pi)^{k/2}}{k!\kappa_k} \mathbb{E} \operatorname{Vol}_k((\langle X_1, x \rangle, \dots, \langle X_n, x \rangle) | x \in K\})$$

In particular,

$$V_1(K) = \sqrt{2\pi} \, \mathbb{E} \, \sup_{x \in K} \langle X, x \rangle.$$

Mean width of a regular simplex

Theorem (Schneider '92)

Let e_1, \ldots, e_n be an orthonormal basis in \mathbb{R}^n . Let K be a regular simplex:

$$K = \operatorname{conv}\{e_1, \ldots, e_n\}.$$

Then

$$V_1(K) = \sqrt{2\pi}\sqrt{2\ln n}\cdot(1+o(1)), \quad n\to\infty.$$

Theorem (very old)

Let $\xi_1, \dots, \xi_n \in \mathbb{R}^1$ be independent standard Gaussian variables. Then

$$\mathbb{E} \max_{i=1}^{n} \xi_i = \sqrt{2 \ln n} \cdot (1 + o(1)), \quad n \to \infty.$$

Gaussian polytope

Definition

Let $X_1, \ldots, X_n \in \mathbb{R}^k$ be independent standard Gaussian vectors. Their convex hull is called a Gaussian polytope:

$$P_{k,n} = \operatorname{conv}\{X_1,\ldots,X_n\}.$$

Theorem (Affentranger '91)

$$\mathbb{E} \operatorname{Vol}_k(P_{k,n}) = \kappa_k(\ln n)^{k/2} \cdot (1 + o(1)), \quad , n \to \infty.$$

Corollary

If K is a regular simplex in \mathbb{R}^n , then

$$V_k(K) = \frac{(2\pi)^{k/2}}{k!} (\ln n)^{k/2} \cdot (1 + o(1)), \quad , n \to \infty.$$

Regular crosspolytope

Definition

Let $X_1, \ldots, X_n \in \mathbb{R}^k$ be independent standard Gaussian vectors. Their symmetrized convex hull is called a symmetric Gaussian polytope:

$$P_{k,n}^s = \operatorname{conv}\{\pm X_1, \dots, \pm X_n\}.$$

Theorem (Hug, Munsonius, Reitzner '04)

$$\mathbb{E} \operatorname{Vol}_k(P_{k,n}^s) = C_{k,n}(\ln n)^{k/2} \cdot (1 + o(1)), \quad n \to \infty.$$

Corollary (Finch '11 for k=1)

If K is a regular crosspolytope in \mathbb{R}^n defined by $\operatorname{conv}\{\pm e_1,\ldots,\pm e_n\}$, then

$$V_k(K) = C'_{k,n}(\ln n)^{k/2} \cdot (1 + o(1)), \quad n \to \infty.$$

Wiener spiral

Definition (Kolmogorov '40)

Let H = L([0,1]). Wiener spiral is a curve in H defined as

$$w = \{1_{[0,t]} \in H \mid t \in [0,1]\}.$$

Theorem (Gao, Vitale '03)

$$V_k(\operatorname{conv}(w)) = \frac{\kappa_k}{k!}.$$

Theorem (Eldan, '12)

Let $W_t, t \in [0, 1]$, be a Brownian motion in R^k . Then

$$\mathbb{E}\operatorname{Vol}_k(\operatorname{conv}\{W_t, t \in [0,1]\}) = \left(\frac{\pi}{2}\right)^{k/2} \frac{1}{\Gamma(k/2+1)^2}.$$

Spiral for Brownian bridge

Notation

Consider a curve in H = L([0,1])

$$b = \{1_{[0,t]} - t \in H \mid t \in [0,1]\}.$$

Theorem (Gao '03)

$$V_k(\operatorname{conv}(b)) = \frac{2\kappa_k^2}{k!\kappa_{k+1}}.$$

Corollary (Randon-Furling, Majumdar, Comtet '09 for k=2)

Let $B_t, t \in [0,1]$, be a Brownian bridge in \mathbb{R}^k . Then

$$\mathbb{E}\operatorname{Vol}_{k}(\operatorname{conv}\{B_{t}, t \in [0, 1]\}) = \frac{2\kappa_{k}^{3}}{(2\pi)^{k/2}\kappa_{k+1}}.$$

Final slide

THANK YOU!