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79 = d-dimension integer lattice; E, = {non-oriented nearest
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e Given a realization w = {ue : € € E4}, two random walks:

1. Variable speed random walk (VSRW), (X;), waits at x for an
exponential time with mean 1/py;
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exponential time with mean 1/py;
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The Random Conductance Model
79 = d-dimension integer lattice; E, = {non-oriented nearest

neighbor bonds}
e Environment: for a given distribution Q on [0, ),

pe ~ijig. Q, forall ee Ey;

e Given a realization w = {ue : € € E4}, two random walks:

1. Variable speed random walk (VSRW), (X;), waits at x for an
exponential time with mean 1/py;

2. Constant speed random walk (CSRW), (Y;), waits at x for an
exponential time with mean 1;

and then jumps to a neighboring site y with probability

X

y~x
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Transition Probabilities
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Examples
Eg 1:

e Q= d443, then e are constantly 1, and Y; is just the usual
nearest neighbor random walk

e Functional CLT (FCLT):
ﬁ = Bt.

Vvn
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nearest neighbor random walk
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Eg 2:

e Q = Bernoulli(p), then Y; is a simple random walk on the
connected component of percolation
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Examples
Eg 1:

e Q= d443, then e are constantly 1, and Y; is just the usual
nearest neighbor random walk

e Functional CLT (FCLT):

E?Bt.

Vvn
Eg 2:

e Q = Bernoulli(p), then Y; is a simple random walk on the
connected component of percolation

Eg 3:

e QQ supported on [1, c0) — what we shall focus on
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Two laws

e Two laws:

1. Quenched Law: For any given realization w, study the law P,
of (X;)/(Y:) under this realization
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1. Quenched Law: For any given realization w, study the law P,
of (X;)/(Y:) under this realization
2. Averaged (or Annealed) Law: the law by taking expectation
of the quenched law P, w.r.t. P
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of (X;)/(Y:) under this realization
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 Basic Questions: the long run behavior of (X;)/(Y?), e.g.,
1. does the quenched FCLT (QFCLT) hold?
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Two laws

e Two laws:

1. Quenched Law: For any given realization w, study the law P,
of (X;)/(Y:) under this realization

2. Averaged (or Annealed) Law: the law by taking expectation
of the quenched law P, w.r.t. P

e Focus on quenched law P,

 Basic Questions: the long run behavior of (X;)/(Y?), e.g.,

1. does the quenched FCLT (QFCLT) hold?
2. What about the fractal properties of the sample paths of

(X0)/(Y)?
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Introduction The Random Conductance Model Discrete Fractal Dimensions

e [Barlow and Deuschel(2010)] For the VSRW X, when d > 2,
for P-a.a. w, under Pg, X,2;/n = oy B, where oy is
non-random, and B; is a standard d-dimensional
Brownian-motion.
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QFCLT

e [Barlow and Deuschel(2010)] For the VSRW X, when d > 2,
for P-a.a. w, under P§, X2;/n = oy B;, where oy is
non-random, and B; is a standard d-dimensional
Brownian-motion.

e [Barlow and Deuschel(2010)] For the CSRW Y, when d > 2,
for P-a.a. w, under Py, Y2;/n = ocB,

V2dE e, if Eue < 0o,
where 7o = { o . if Eze = z
’ e — .
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QFCLT

e [Barlow and Deuschel(2010)] For the VSRW X, when d > 2,
for P-a.a. w, under P§, X2;/n = oy B;, where oy is
non-random, and B; is a standard d-dimensional
Brownian-motion.

e [Barlow and Deuschel(2010)] For the CSRW Y, when d > 2,
for P-a.a. w, under Py, Y2;/n = ocB,

V2dEue, ifE
Whereacz{g‘// dEpe, if Epe < oo,

« [Barlow and Cerny(2011)], [Cerny(2011)] For the CSRW Y,
when d > 2 and Q(ue > u) ~ C/u® for some a € (0, 1), then
for P-a.a. w, under P, Y 2/ ;/n converges to a multiple of the
fractional kinetics process;

, if Epe = 00.
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QFCLT

e [Barlow and Deuschel(2010)] For the VSRW X, when d > 2,
for P-a.a. w, under P§, X2;/n = oy B;, where oy is
non-random, and B; is a standard d-dimensional
Brownian-motion.

e [Barlow and Deuschel(2010)] For the CSRW Y, when d > 2,
for P-a.a. w, under Py, Y2;/n = ocB,

ov/v2dEue, if Eue < oo,

where o¢ = { 0

« [Barlow and Cerny(2011)], [Cerny(2011)] For the CSRW Y,
when d > 2 and Q(ue > u) ~ C/u® for some a € (0, 1), then
for P-a.a. w, under P, Y 2/ ;/n converges to a multiple of the
fractional kinetics process;

e [Barlow and Zheng(2010)] For the CSRW Y, when d > 3 and
Q is Cauchy tailed, then for P-a.a. w, under Pg, Y09 5)¢/N
converges to a multiple of a d-dimensional Brownian-motion.

, if Epe = 00.
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Discrete Hausdorff Dimension

e Forany ne N, let V,, = V(0,2") be the cube of side length 2"
centeredat 0 € Z9, and S, := Vj, \ V,_1
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Discrete Hausdorff Dimension

e Forany ne N, let V,, = V(0,2") be the cube of side length 2"
centeredat 0 € Z9, and S, := Vj, \ V,_1

e For any set B C 79 let s(B) be its side length

e [Barlow and Taylor(1992)] For any measure function h and
any set A C 79, the discrete Hausdorff measure of A

w.rt his -
mp(A) = va(A, Sn).
n=1
where

vh(A, Sp) = min { zk:h(s(;’)) AN, C LKJ B,}.

i=1 i=1
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Discrete Hausdorff Dimension

e Forany ne N, let V,, = V(0,2") be the cube of side length 2"
centeredat 0 € Z9, and S, := Vj, \ V,_1

e For any set B C 79 let s(B) be its side length

e [Barlow and Taylor(1992)] For any measure function h and
any set A C 79, the discrete Hausdorff measure of A

w.rt his -
mp(A) = va(A, Sn).
n=1
where

(&, /s(B; )
vh(A, Sp) = min { iz_;h(s(zn)) tANS, C H B,}.

e For a > 0, define h(r) = r*, and let m,(A) = my(A). Then the
discrete Hausdorff dimension of A is given by
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Discrete Packing Dimension

e [Barlow and Taylor(1992)] For any measure function h, ¢ > 0,
and any set A C 79, the discrete packing measure of A

w.r.t his -
Z'Th A \Sn7
n=1

where

k
Th(A, Sn, €) = max { Z h(2r—’) 1 Xi € ANSy, V(x;, ) disjoint, 1 < r; < 2(178)"}

n
i=1
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Discrete Packing Dimension

e [Barlow and Taylor(1992)] For any measure function h, ¢ > 0,
and any set A C 79, the discrete packing measure of A

w.rt his -
Z'Th A \Sn7
n=1

where

k
Th(A, S, €) = max { Z h(%) 1 Xi € ANSy, V(x;, ) disjoint, 1 < r; < 2(178)"}
i=1

e Say that A C Z9 is h-packing finite if pp(A, <) < oo for all
€ (0,1).
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Discrete Packing Dimension

e [Barlow and Taylor(1992)] For any measure function h, ¢ > 0,
and any set A C 79, the discrete packing measure of A

w.r.t his -
Z'Th A \Sn7
n=1

where

k
(A, Sy, ) = max { }:h(%) £ X; € ANSn, V(x;, 1) disjoint, 1 < r; < 2“*8)”}
i=1

e Say that A C Z9 is h-packing finite if pp(A, <) < oo for all
€ (0,1).
e The discrete packing dimension of A is defined by

dim,A = inf {a > 0 : Ais r*-packing finite}.
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Discrete Dimensions of the Range of RCM

Theorem
[Xiao and Zheng(2013)] Let

R = {x e€Z%: X; = x forsome t > 0}

be the range of VSRW X (as well as that of CSRW Y ). Assume
thatd > 2 and Q(ue > 1) = 1. Then for P-almost every w € €,

dim,R = dim,R =2, Pj-a.s.

where dim,, and dim, denote respectively the discrete Hausdorff
and packing dimension.
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Recurrent/Transient Sets for RCM

Theorem

[Xiao and Zheng(2013)] Assume that d > 3 and P(ue > 1) = 1.
Let A c 79 be any (infinite) set. Then for P-almost every w € Q,
the following statements hold.

(i) Ifdim,A < d— 2, then
P§(X; € A for arbitrarily large t > 0) = 0.
(i) Ifdim,A > d — 2, then

P§(X; € A for arbitrarily large t > 0) = 1.
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Recurrent/Transient Sets for RCM

Theorem

[Xiao and Zheng(2013)] Assume that d > 3 and P(ue > 1) = 1.
Let A c 79 be any (infinite) set. Then for P-almost every w € Q,
the following statements hold.

(i) Ifdim,A < d— 2, then
P§(X; € A for arbitrarily large t > 0) = 0.
(i) Ifdim,A > d — 2, then

P§(X; € A for arbitrarily large t > 0) = 1.

Remark
Both theorems are also proven for the Bouchaud’s trap model.

11/14 Xinghua Zheng Fractal Dimensions of Range of RCM



Main Ingredients of Proof

e Basic idea: derive various estimates for ordinary random
walks used in [Barlow and Taylor(1992)],
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Main Ingredients of Proof

e Basic idea: derive various estimates for ordinary random
walks used in [Barlow and Taylor(1992)], by using general
Markov chain techniques

e Main ingredients:

1.

2.
3.

Gaussian heat kernel bounds for the VSRW

([Barlow and Deuschel(2010)]);

Hitting probability estimates;

Tail probability estimates of the sojourn measure for the

discrete time VSRW;

Tail probability estimates of the maximal displacement of
VSRW;

A SLLN for dependent events;

A zero-one law as a consequence of an elliptic Harnack

inequality that the VSRW satisfies.
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Proof Sketch for Theorem 1

e dim,R < 2 Pg-a.s.: first moment argument;
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Proof Sketch for Theorem 1

e dim,R < 2 Pg-a.s.: first moment argument;
e dim,R > 2 P§-a.s.: let R be the range of the discrete time VSRW
(Yn) := (Ya), and show that dim,R > 2.
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Proof Sketch for Theorem 1

e dim,R < 2 Pg-a.s.: first moment argument;
e dim,R > 2 P§-a.s.: let R be the range of the discrete time VSRW
(Ya) := (Yn), and show that dim,R > 2.
e Let u be the counting measure on R. Show that
1(Q(x)) < cn2® forevery x € S, and 0 < k < n.
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e dim,R < 2 Pg-a.s.: first moment argument;
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e dim,R < 2 Pg-a.s.: first moment argument;
e dim,R > 2 P§-a.s.: let R be the range of the discrete time VSRW
(Yn) := (Y»), and show that dim,R > 2.
e Let i be the counting measure on R. Show that
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e Hitting probability estimate =
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e dim,R < 2 Pg-a.s.: first moment argument;
e dim,R > 2 P§-a.s.: let R be the range of the discrete time VSRW
(Yn) := (Y»), and show that dim,R > 2.
e Let i be the counting measure on R. Show that
1(Q(x)) < cn2® forevery x € S, and 0 < k < n.
e Frostman’s lemma =
v2(R,Sn) > ¢ ' n712727 (Sy)
e Hitting probability estimate =
Eo (M(Sn)) > c2%"
and hence Ef (mz(R)) =
o To further prove mz(R) = oo PO -a.s.,
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Proof Sketch for Theorem 1

e dim,R < 2 Pg-a.s.: first moment argument;
e dim,R > 2 P§-a.s.: let R be the range of the discrete time VSRW
(Yn) := (Y»), and show that dim,R > 2.
e Let 1 be the counting measure on R. Show that
1(Q(x)) < cn2® forevery x € S, and 0 < k < n.
e Frostman’s lemma =
v2(R,Sn) > ¢ ' n712727 (Sy)
e Hitting probability estimate =
E0 (M(sn)) > c2%"
and hence Ef (mz(R)) =
e To further prove my (f{) 00 PO -a.s., let ny = [Mklog k| for A >0
TBD, and define
me=inf{n>0: X ¢ v(0,2%)}.
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e dim,R < 2 Pg-a.s.: first moment argument;
e dim,R > 2 P§-a.s.: let R be the range of the discrete time VSRW
(Yn) := (Y»), and show that dim,R > 2.
e Let 1 be the counting measure on R. Show that
1(Q(x)) < cn2® forevery x € S, and 0 < k < n.
e Frostman’s lemma =
v2(R,Sn) > ¢ ' n712727 (Sy)
e Hitting probability estimate =
E0 (M(sn)) > c2%"
and hence Ef (mz(R)) =
e To further prove my (f{) 00 PO -a.s., let ny = [Mklog k| for A >0
TBD, and define
me=inf{n>0: X ¢ v(0,2%)}.
Show that
1. Pg(|XTk_1| > 2"*‘3) < cexp(—ck); and

2. On the event {|)A(Tk_1\ < 2m3Y,

Py (u(S) = c2™) > p.
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Proof Sketch for Theorem 1

e dim,R < 2 Pg-a.s.: first moment argument;
e dim,R > 2 P§-a.s.: let R be the range of the discrete time VSRW
(Ya) := (Yn), and show that dim,R > 2.
e Let u be the counting measure on R. Show that
1(Q(x)) < cn2® forevery x € S, and 0 < k < n.
e Frostman’s lemma =
v2(R,Sn) > ¢ ' n712727 (Sy)
e Hitting probability estimate =
E0 (M(sn)) > c2%"
and hence E§ (mz(R)) =
e To further prove my (f{) 00 PO -a.s., let ny = [Mklog k| for A >0
TBD, and define
me=inf{n>0: X ¢ v(0,2%)}.
Show that
1. PB”(|)A(Tk_1| > 2"*‘3) < cexp(—ck); and
2. Onthe event {|X;, ,| <2%%},
Py (u(S) = c2™) > p.

3. The SLLN for dependent event concludes.
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Summar

Summary
0. QFCLT for the VSRW/CSRW
1. Discrete fractal dimensions of the range of VSRW/CSRW
2. Characterization of recurrent/transient sets for VSRW/CSRW
3. Similarly for Bouchaud’s trap model.
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Summar

Summary

0. QFCLT for the VSRW/CSRW

1. Discrete fractal dimensions of the range of VSRW/CSRW

2. Characterization of recurrent/transient sets for VSRW/CSRW
3. Similarly for Bouchaud’s trap model.

Thank you!
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