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1 Introduction

Most of statistical inferences are often associated with limit
theorems for random variables or stochastic processes.
Weak convergence of stochastic processes is a very important
and foundational theory in probability and statistics.
Billingsley (1999) gave a systematic classical theory of weak
convergence for stochastic processes.
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◮ Prove the relative compactness of the stochastic process
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◮ Identify the limiting process.
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For identifying the limiting process, there are serval methods.
Usually, when the limiting process is Guassian process, one can
identify the limiting process by proving the convergence of the
finite dimensional distributions.
When the finite dimensional distributions of limiting processes
are difficult to compute, this method can not be easily used.
An alternative method is martingale convergence method. This
method is based on the Martingale Problem of Semimartingales.
When the limiting processes are semimartingales, martingale
convergence method is effective.
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work of Stroock and Varadhan (Stroock and Varadhan (1969)).
In Jacod and Shiryaev (2003), they gave a whole system of this
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are very powerful.
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The idea of martingale convergence method originate in the
work of Stroock and Varadhan (Stroock and Varadhan (1969)).
In Jacod and Shiryaev (2003), they gave a whole system of this
method. When limiting process is a jump-process, their results
are very powerful.
Recently, martingale convergence method is usually used in the
study of convergence of processes, such as discretized processes
and statistics for high frequency data. (c.f. Jacod (2008),
Aït-Sahalia and Jacod (2009), Fan and Fan (2011)). However,
it is rarely used in the contents of time series.



To our knowledge, Ibragimov and Phillips (2008) firstly
introduced the martingale convergence method to the study of
time series. They studied the weak convergence of various
general functionals of partial sums of linear processes. The
limiting process is a stochastic integral. Their result was used
in the study for unit root theory.



To our knowledge, Ibragimov and Phillips (2008) firstly
introduced the martingale convergence method to the study of
time series. They studied the weak convergence of various
general functionals of partial sums of linear processes. The
limiting process is a stochastic integral. Their result was used
in the study for unit root theory.
When the limiting processes are jump-processes, their methods
may be useless, since they need that the residual in martingale
decomposition is neglected, which may not be satisfied in the
jump case.
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Now, we extend Ibragimov and Phillips’s results to two
directions. One is about causal processes.
Causal process {Xn, n ≥ 1} is defined by

Xn = g(· · · , εn−1, εn),

where {εn;n ∈ Z} is a sequence of i.i.d. r.v.’s with mean zero
and g is a measurable function. It contains many important
stochastic models, such as linear process, ARCH model,
threshold AR (TAR) model and so on.
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Wiener (1958) conjectured that for every stationary ergodic
process {Xn, n ≥ 1}, there exists a function g and i.i.d.
εn, n ≥ 1 such that

Xn =D g(· · · , εn−1, εn).

We study weak convergence of functional of causal processes.
The limiting process is the stochastic integral driven by the
Brownian motion. The result extends the results in Ibregimov
and Phillips (2008) to causal process, and our assumptions are
more wild than theirs.
We extend Ibregimov and Phillips’s work to another direction:
{Xn} is a sequence of heavy-tailed random variables.



We discuss an important class of heavy-tailed random variables.
A random variable X, the so-called regularly varying random
variables with index α ∈ (0, 2) if there exists a positive
parameter α such that

lim
x→∞

P (X > cx)

P (X > x)
= c−α, c > 0.

We study weak convergence of functionals of the i.i.d. regularly
varying random variables. The limiting process is the stochastic
integral driven by α−stable Lévy process.



Usually, people obtain the weak convergence of heavy-tailed
random variables by point process method. In this case, the
summation functional should be a continuous functional respect
to the Skorohod topology , and the limiting process should have
a compound Poisson representation.



Usually, people obtain the weak convergence of heavy-tailed
random variables by point process method. In this case, the
summation functional should be a continuous functional respect
to the Skorohod topology , and the limiting process should have
a compound Poisson representation.
However, if we want to extend Ibragimov and Phillips’s results
to the heavy-tailed random variables, the point process method
can not be used easily, since the limiting process has jumps.



Because the limiting process has jumps, we have to modify the
proof procedure in Ibragimov and Phillips (2008). Our method
is not only effective for the jump case but also simpler than that
of Ibragimov and Phillips (2008)(only for the continuous case).



We use the martingale approximation procedure, strong
approximation of martingale and the martingale convergence
method to prove our theorems.



We use the martingale approximation procedure, strong
approximation of martingale and the martingale convergence
method to prove our theorems.
Martingale approximation procedure. Let {Xn} be a sequence
of random variables, Sn =

∑n
k=1 Xk. We can structure a

martingale Mn, If the error Sn − Mn is small enough in some
sense, we can consider Mn instead of Sn.



We use the martingale approximation procedure, strong
approximation of martingale and the martingale convergence
method to prove our theorems.
Martingale approximation procedure. Let {Xn} be a sequence
of random variables, Sn =

∑n
k=1 Xk. We can structure a

martingale Mn, If the error Sn − Mn is small enough in some
sense, we can consider Mn instead of Sn.
Strong approximation of martingale. Let Mn, n = 1, 2, · · · , be a
sequence of martingales. Under some conditions, we can find a
Brownian motion (or Gaussian process) B such that
Mn − B → 0 a.s. with some rate.
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Martingale convergence method.
The following theorem makes out that the limiting process for
weak convergence of martingale sequence is still a martingale.
Theorem A (Jacod and Shiryaev (2003)) Let Y n be a càdlàg process
and Mn be a martingale on a same filtered probability space
(Ω, F , F = (Ft)t≥1, P ). Let M be a càdlàg process defined on the
canonical space (D([0, 1]), D([0, 1]),D). Assume that
(i) (Mn) is uniformly integrable;

(ii) Y n ⇒ Y for some Y with law P̃ = L (Y );
(iii)

Mn
t − Mt ◦ (Y n)

P−→ 0, 0 ≤ t ≤ 1

Then the process M ◦ (Y ) is a martingale under P̃ .



Let Mn, n = 1, 2, · · · , be a sequence of martingales. The
predictable characteristic of Mn is a triplet (Bn, Cn, νn). If
there exists limit (B,C, ν), then one can identify the limiting
process M by (B,C, ν).



2 Convergence to Stochastic Integral

Driven by Brownian Motion

Recall that Z ∈ Lp (p > 0) if ||Z||p = [E(|Z|p)]1/p < ∞ and
write ||Z|| = ||Z||2.
To study the asymptotic property of the sums of causal process

Xn = g(· · · , εn−1, εn),

martingale approximation is an effective method. We list the
notations used in the following part:



• Fk = σ(· · · , εk−1, εk).
• Projections PkZ = E(Z|Fk) − E(Z|Fk−1), Z ∈ L1.
• Dk =

∑∞
i=k PkXi, Mk =

∑k
i=1 Di.

Mk is a martingale, we will use Mk to approximate sum Sk.
• θn,p = ||P0Xn||p, Λn,p =

∑n
i=0 θi,p, Θm,p =

∑∞
i=m θi,p .

• B: standard Brownian motion.



Assumption 1. X0 ∈ Lq, q ≥ 4, and Θn,q = O(n−1/4(log n)−1).
Assumption 2.

∞∑

k=1

||E(D2
k|F0) − σ2||2 < ∞,

where σ = ||Dk||.
Assumption 3.

∞∑

k=0

∞∑

i=1

||E(XkXk+i|F0) − E(XkXk+i|F−1)||4 < ∞,

and

||
∞∑

k=0

∞∑

i=1

E(XkXk+i|F0)||3 < ∞.



Remark 1 If we consider linear process to replace the causal
process, Assumptions 1 ∼ 3 can easily be implied by the
conditions in Ibragimov and Phillips (2008).



Theorem 1 Let f : R → R be a twice continuously
differentiable function satisfying |f ′(x)| ≤ K(1 + |x|α) for some
positive constants K and α and all x ∈ R. Suppose that Xt is a
causal process satisfying Assumptions 1∼3. Then

1√
n

[n·]∑

t=2

f(
1√
n

t−1∑

i=1

Xi)Xt ⇒ λ

∫ ·

0

f ′(B(v))dv + σ

∫ ·

0

f(B(v))dB(v),

(2.1)

where λ =
∑∞

j=1 EX0Xj.



Remark 2 When f(x) = 1, Theorem 1 is the classical
invariance principle, when f(x) = x, (2.1) is important in the
unit root theory.



Remark 2 When f(x) = 1, Theorem 1 is the classical
invariance principle, when f(x) = x, (2.1) is important in the
unit root theory.
Let

Yn = αYn−1 + Xn,

where {Xn}n≥0 is a causal process, and want to estimate α

from {Yt} .



Let

α̂ =

∑n
t=1 Yt−1Yt∑n
t=1 Y 2

t−1

denote the ordinary least squares estimator of α.
Let tα be the regression t−statistic:

tα =
(
∑n

t=1 Y 2
t−1)

1
2 (α̂ − 1)√

1
n

∑n
t=1(Yt − α̂Yt−1)

.

Using Theorem 1 with f(x) = x, we get the asymptotic
distribution of n(α̂ − 1) and tα as follows.



Theorem 2
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σ2
∫ 1
0 B2(v)dv
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0 B2(v)dv)
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2
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Under Assumptions 1-3, we have

n(α̂ − 1)
d−→ λ + σ2

∫ 1
0 B(v)dB(v)

σ2
∫ 1
0 B2(v)dv

, (2.1)

tα
d−→ λ + σ2

∫ 1
0 B(v)dB(v)

(
∫ 1
0 B2(v)dv)

1
2

. (2.2)

We can construct the confidence interval of α for the unit root
testing.



3 Convergence to Stochastic Integral
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3 Convergence to Stochastic Integral

Driven by Lévy α−Stable Process

Let E = [−∞,∞]\{0} and Mp(E) be the set of Radon measures
on E with values in Z+, the set of positive integers.
For µn, µ ∈ Mp(E), we say that µn vaguely converge to the
measure µ, if

µn(f) → µ(f)

for any f ∈ C+
K , where C+

K is the class of continuous functions

with compact support, denoted by µn
v−→ µ.



Theorem 3 Let f : R → R be a continuous differentiable
function such that

|f(x) − f(y)| ≤ K|x − y|a (3.1)

for some positive constants K, a and all x, y ∈ R. Suppose that
{Xn}n≥1 is a sequence of i.i.d. random variables. Set

Xn,j =
Xj

bn
− E(h(

Xj

bn
)) (3.2)

for some bn → ∞, where h(x) is a continuous function satisfying
h(x) = x in a neighbourhood of 0 and |h(x)| ≤ |x|1|x|≤1.



Define ρ by

ρ((x,+∞]) = px−α, ρ([−∞,−x)) = qx−α (3.3)

for x > 0, where α ∈ (0, 1), 0 < p < 1 and p + q = 1. Then

[n·]∑

i=2

f(

i−1∑

j=1

Xn,j)Xn,i ⇒
∫ ·

0
f(Zα(s−))dZα(s), (3.4)

in D[0, 1], where Zα(s) is an α−stable Lévy process with Lévy
measure ρ iff

nP[
X1

bn
∈ ·] v−→ ρ(·) (3.5)

in Mp(E).



Remark 3 Condition (3.5) implies that Xi is regularly varying
random variable. bn is the the normalization factor, it is
determined by the quantile of Xi.



Remark 4 To discuss the weak convergence of heavy-tailed
random variables, X1 is usually assumed to be symmetric, but
we don’t have such assumption. In order to use the martingale
convergence method, we study the asymptotic properties of

Xn,j =
Xj

bn
− E(h(

Xj

bn
))

instead of
Xj

bn
.



Remark 5 The limiting process in Theorem 2 is stochastic
integral driven by α−stable Lévy process. The main difference
between this result and Theorem 1 is the continuity of the
limiting process. For the heavy-tailed case, the limiting process
is discontinuous. It will be more complex than the continuous
case, we should modify the martingale convergence method.



Remark 6 When Xn is a stationary sequence instead of an
i.i.d. sequence, we have the following theorem.



Theorem 4 Let f : R → R be a continuous differentiable
function satisfying (3.1), for some constants K > 0, a > 0 and
all x, y ∈ R. Suppose that {Xn}n≥1 is a sequence of stationary
random variables, defined on the probability space (Ω,F , P).
Set

Xn,j =
Xj

bn
− E(h(

Xj

bn
)|Fj−1) (3.6)

for some bn → ∞. Define ρ as (3.3) for α ∈ (0, 1).



Then
[n·]∑

i=2

f(

i−1∑

j=1

Xn,j)Xn,i ⇒
∫ ·

0
f(Zα(s−))dZα(s), (3.7)

in D[0, 1], where Zα(s) is an α−stable Lévy process with Lévy
measure ρ if

[nt]∑

j=1

P[Xn,j > x|Fj−1]
P−→ tρ(x,∞) if x > 0 (3.8)

and
[nt]∑

j=1

P[Xn,j < x|Fj−1]
P−→ tρ(−∞, x) if x < 0. (3.9)



Remark 7 The condition (3.5) is crucial for the proof of
Theorem 3, it depicts the convergence of compensator jump
measure. Conditions (3.8), and (3.9) also depict the the
convergence of compensator jump measure respectively, so the
proofs of Theorem 3 is similar based on the convergence of
compensator jump measure.



The outline of identifying the limiting process



The outline of identifying the limiting process

Set

Yn(t) =

[nt]∑

i=2

f(

i−1∑

j=1

Xn,j)Xn,i,

Y (t) =

∫ t

0
f(Zα(s−))dZα(s),

Sn(t) =

[nt]∑

i=1

Xn,i.



We set

µn(ω; ds, dx) =
n∑

i=1

ε
( i

n
,
Xi(ω)

bn
)
(ds, dx),

then

νn(ω; ds, dx) :=

n∑

i=1

ε( i
n

)(ds)P(
Xi

bn
∈ dx)

is the compensator of µn by the independence of {Xi}i≥1. Set

ζn(ω; ds, dx) =

n∑

i=1

ε
( i

n
,
Xi(ω)

bn
−cn)

(ds, dx),

we have

ϕn(ω; ds, dx) :=

n∑

i=1

ε( i
n

)(ds)P(
Xi

bn
− cn ∈ dx)

is the compensator of ζn(ω; ds, dx), where cn = E[h(X1
bn

)].



For Sn(t),

Sn(t) =

∫ t

0

∫
h(x)(µn(ds, dx) − νn(ds, dx)) +

[nt]∑

i=1

(
Xi

bn
− h(

Xi

bn
))

=: S̃n(t) +

[nt]∑

i=1

(
Xi

bn
− h(

Xi

bn
)).

The predictable characteristics of S̃n(t) are

B2
n(t) = 0,

C22
n (t) =

∫ t

0

∫
h2(x)νn(ds, dx) −

∑

s≤t

(

∫
h(x)νn({s}, dx))2.



For Yn(t),

Yn(t)

=

∫ t

0

∫
h(f(

[ns]−1∑

j=1

Xn,j)x)(µn(ds, dx) − νn(ds, dx))

+

∫ t

0

∫
(h(f(

[ns]−1∑

j=1

Xn,j)x) − f(

[ns]−1∑

j=1

Xn,j)h(x))νn(ds, dx)

+

[nt]∑

i=2

(f(

i−1∑

j=1

Xn,j)
Xi

bn
− h(f(

i−1∑

j=1

Xn,j)
Xi

bn
))

=: Ỹn(t) +

[nt]∑

i=2

(f(

i−1∑

j=1

Xn,j)
Xi

bn
− h(f(

i−1∑

j=1

Xn,j)
Xi

bn
)).



The predictable characteristics of Ỹn(t) are

B1
n(t) =

∫ t

0

∫
(h(f(

[ns]−1∑

j=1

Xn,j)x)− f(

[ns]−1∑

j=1

Xn,j)h(x))νn(ds, dx),

C11
n (t) =

∫ t

0

∫
h2(f(

[ns]−1∑

j=1

Xn,j)x)νn(ds, dx)−
∑

s≤t

(

∫
h(f(

[ns]−1∑

j=1

Xn,j)x)ν

C12
n (t) = C21

n (t)

=

∫ t

0

∫
h(f(

[ns]−1∑

j=1

Xn,j)x)h(x)νn(ds, dx)

−
∑

s≤t

(

∫
h(f(

[ns]−1∑

j=1

Xn,j)x)νn({s}, dx))(

∫
h(x)νn({s}, dx))



We need to prove

(Bn, Cn, λn) − (B ◦ Sn(t), C ◦ Sn(t), λ ◦ Sn(t))
P−→ 0(c.f.Theorem A),

where λn is the compensated jump measure of Ỹn. It implies the

tightness of Ỹn, which means that the subsequence of distribution of

Ỹn weakly converges to a limit. The predictable characteristics of

different limiting processes are (B, C, λ) by the Theorem A.

Furthermore, since (3.1), the martingale problem

ς(σ(Y0), Y |L0, B, C, λ) has unique solution, P̃, by Theorem 6.13 in

Applebaum (2009). We obtain the limiting process is unique, On the

other hand, the predicable characteristics of
∫ ·

0
f(Zα(s−))dZα(s)

under P are (B, C, λ). We can identify the limiting process,∫ ·

0 f(Zα(s−))dZα(s), under P.
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