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This talk is to mainly study the following deformed random matrices:

Hn,α =
Xn√

n
+

1
nα/2


ξ1

ξ2
. . .

ξn


where Xn is standard Wigner matrix and is independent of the ξi’s,
and 0 < α < 1.

The focus is on the influence of the perturbation matrix upon the
eigenvalues of Xn
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1. Introduction

In this part we will quickly review some well-known results about the
Xn without perturbation matrix.
Assume Xn = (xij), and denote the eigenvalues by λ1, λ2, · · · , λn, i.e.,

det(Xn − λi) = 0

In particular, each λi is a function of (xij, 1 ≤ i, j ≤ n). Thus these λi

are not independent of each other.
Question: What can we say about the eigenvalues λi?
For simplicity, we only consider the cases of GOE and GUE below,
which are prototype of random matrix theory .



1.1 GOE and GUE
• GOE
Let A = (ξij)n×n, where

ξij ∼ N(0, 1), all ξij are independent

Define
X(1)

n =
1√
2
(A + A′)

Then X(1)
n is GOE

• GUE
Let A = (ξij)n×n, where

Reξij, Imξij ∼ N(0, 1), all ξij are independent

Define
X(2)

n =
1
2
(A + A∗)

Then X(2)
n is GUE



Let λ
(β)
1 , · · · , λ

(β)
n be the real eigenvalues of X(β)

n where β = 1, 2.
Then the j. p.d.f. due to Weyl is

pn(x1, · · · , xn) ∝
∏

1≤i<j≤n

|xi − xj|β ·
n∏

i=1

e−
β
4 x2

i , xi ∈ R

This shows that the eigenvalues have a nice dependence structure.

The red part is the product of independent normal densities;
The blue part is a Van de Monde determinant which implies there
exists pairwise interaction.
It is this Van de Monde determinant that cause both difficulty and
interest in the RMT.
In fact, as we will see, the eigenvalues repel each other and so are
arranged more regularly than the independent particles in the real line.



1.2 Wigner Semicircle Law

The first result of fundamental importance in RMT is as follows.

Let F(β)
n (x) be the empirical distribution of the eigenvalues defined by

F(β)
n (x) =

1
n

n∑
i=1

1
(λ

(β)
i ≤

√
nβx)

Then
F(β)

n
d−→ ρsc, in probability

where ρsc is the so-called Wigner semicircle law

ρsc(x) =
2
π

√
1− x2, |x| ≤ 1



1.3 Tracy-Widom Law

Let λ
(β)
(n) = maxi λ

(β)
i . Then

λ
(β)
(n)√
nβ

P−→ 1, Law of Large Numbers

And moreover, √
βn1/6(λ(β)

(n) −
√

nβ) d−→ Fβ

where Fβ is Tracy-Widom type distribution. In particular,

F2(x) = e−
∫∞

x (u−x)q2(u)du

and
F2

1(x) = F2(x)e−
∫∞

x q(u)du



• 1.4 CLT
Let ϕ be a certain smooth function, define a linear eigenvalue statistic

N(β)
n (ϕ) =

n∑
i=1

ϕ
( λ

(β)
i√
nβ

)
The following CLT holds: as n →∞

N(β)
n (ϕ)− EN(β)

n (ϕ) d−→ N(0, σ2
ϕ,β)

The centering constant ENn(ϕ) can be explicitly computed

1
n

EN(1)
n (ϕ) =

∫ 1

−1
ϕ(x)ρsc(x)dx +

1
n

error term

and
1
n

EN(2)
n (ϕ) =

∫ 1

−1
ϕ(x)ρsc(x)dx +

1
n2 error term



A remarkable point is that there is no normalizing constant.
In comparison, recall the classical CLT for sums of i.i.d.r.v.’s:

1√
n
(Sn − ESn)

d−→ N(0, σ2)

where Sn =
∑n

i=1 ξi and the ξi’s are i.i.d. with Var(ξi) = σ2.

This is mainly because that the eigenvalues are arranged more
regularly than i.i.d.r.v.s on the real line.

There are also similar CLTs for logarithm of determinant and the
number of eigenvalues in an interval after suitably scaled.



2. Deformed Random Wigner Matrices

• Basic Models
Let Xn = (xij) be a GUE or GOE matrix

xij, 1 ≤ i ≤ j ≤ n, independent

and
Exij = 0, Ex2

ii < ∞, E|xij|2 = 1

Let ξn, n ≥ 1 be a sequence of i.i.d random variables,

Eξn = 0, Var(ξn) = σ2

Assume further that Xn and ξn’s are independent of each other.
Define the deformed matrix

Hn,α =
Xn√
nβ

+
1

nα/2 diag(ξ1, ξ2, · · · , ξn), 0 < α < 1 (1)



2.1 Average Spectral Distribution

• The Wigner semi-circle law still holds:
Let λ1, λ2, · · · , λn be the n real eigenvalues of Hn,α and define

Fn,α(x) =
1
n

n∑
k=1

1(λk≤x), x ∈ R

Then

Fn,α(x) d−→ ρsc(x) in P (2)

This can be seen from a more general result about the perturbation of
random matrix due to Pastur:

A simple approach to the global regim of Gaussian ensembles of
random matrices, Ukranian Math. J. 2005



Define for any z ∈ C \ R the Green functions

mn,α(z) =
∫

1
x− z

dFn,α(x), m(z) =
∫ 1

−1

1
x− z

ρsc(x)dx

then (2) can be equivalently expressed as

mn,α(z) P−→ m(z) (3)

where
m(z) = −z +

√
z2 − 1

The addition of a diagonal matrix has no influence upon the global
limiting behaviors!



2.2 The Largest Eigenvalue Distribution

Let α = 1
3 . Assume Xn is GUE model (β = 2) and E|ξn|7 < ∞, then

n1/6(λ(n) − cn)
d−→ ξ + η, n →∞ (4)

where cn ∼
√

n is a centering constant, ξ and η are independent,

ξ ∼ F2 Tracy-Widom law, η ∼ N(0, σ2)

Johansson, From Gumbel to Tracy-Widom, PTRF, 2007

The addition of a perturbation matrix does change the limiting
distribution of largest eigenvalue of GUE.

We do not know any result about the perturbed GOE case yet.



2.3 The Linear Eigenvalue Statistics
In this part we shall see what changes the perturbation matrix will
make in linear eigenvalue statistics.
• Rate of Convergence in Stieltjes Transformations
• The CLT for Linear Eigenvalue Statistics



It is known by (3) that

mn,α(z) P→ m(z)

What is the rate of convergence?
We only consider the X(1)

n case (GOE case) below
(i) α = 1.

Hn,α =
X(1)

n√
n

+
1√
n


ξ1

ξ2
. . .

ξn



=


x11 + ξ1 x12 · · · x1n

x21 x22 + ξ2 · · · x2n

· · · · · · . . . · · ·
· · · · · · · · · xnn + ξn





This was studied by Khorunzhy, Khoruzhenko and Pastur:
On Asymptotic properties of large random matrices with independent
entries (1996)

Emn,1(z) = m(z) +
m3(z)

(1− m2(z))2 ·
1
n

+ O(n−3/2)

and

Var(mn,1(z)) =
|m2(z)|2

|1− m2(z)|2
· 1

n2 + o(n−2)

This shows that the extra diagonal matrix does not affect the rate of
convergence.



(ii) 0 < α < 1, We prove

Theorem

Assume that X(1)
n is GOE,

ξn, n ≥ 1 is i.i.d. Eξn = 0, Var(ξn) = σ2 > 0, and
E|ξn|q+2 < ∞ where qα > 2.
Then for each z = E + iη, η 6= 0

Emn,α(z) = m(z) +
m3(z)

1− m2(z)
· σ2

nα
+ O(n−min(3α,2)/2)

and

Var(mn,α) =
|m2(z)|2

|1− m2(z)|
· σ2

n1+α
+ O(n−min(1+3α,3+α)/2)

The addition of a diagonal matrix deteriorates the precision of
estimating m(z) by mn,α(z).



• The CLT for Linear Eigenvalue Statistics
We can also prove mn,α(z)− Emn,α(z) follows after properly scaled
the normal distribution. More generally, the CLT for linear statistics
for deformed matrices still holds.
For a roughly q-integrable test function φ, define

Nn,α(φ) =
n∑

k=1

φ(λk)

Then we have

Theorem
1

n(1−α)/2 (Nn,α(φ)− ENn,α(φ)) d−→ N(0, σ2
φ)

where σ2
φ can be given explicitly.

The normalizing factor is no longer a constant.



Remarks:
(i) The case without diagonal matrix was studied by Lyvota and
Pastur:
Central limit theorem for linear eigenvalue statistics of random
matrices with independent entries. Ann. Probab. (2009)
They proved

Nn(φ)− ENn(φ) d−→ N(0, σ2
φ)

with a different σ2
φ.

(ii) In the case α < 1, there is 1
n(1−α)/2 normalization, which is

between constant and 1√
n .



3. Ideas of the Proofs
• The proof of rate of convergence
A basic tool is the Stein equation
(i) Assume that ξ ∼ N(0, σ2), and f a differentiable function. Then

Eξf (ξ) = σ2Ef ′(ξ)

(ii) Assume that ξ is a random variable with finite (q + 2)-th moment,
and f is a differentiable function of order (q + 1). Then

Eξf (ξ) = EξEf (ξ) + Var(ξ)Ef ′(ξ) + · · ·+
κq+1

q!
Ef (q)(ξ) + εq

where κl is the (l + 1)-th cumulant of ξ, εq is an error term.

How do we apply the Stein equation?



We need another basic tool:
Fix z with Imz 6= 0. Let Gn =: (Gij(z)) = 1

Hn,α−z . Then
(i) resolvent identity:

Gn = −1
z

+
1
z

GnHn,α recursive relation

Gij(z) = −
δij

z
+

1
z

n∑
k=1

Gik(z)Hkj

(ii) differentiable formula

∂Gpq(z)
∂Hii

= −Gpi(z)Gqi(z),

and
∂Gpq(z)

∂Hij
= −Gpi(z)Gqj(z)− Gpj(z)Gqi(z), i 6= j



By the resolvent identity,

Emn,α(z) =
1
n

ETrGn = −1
z

+
1
nz

∑
i,k

EGik(z)Hki

Thus the stein equation and differentiable formula are applicable.
The result is very clean and simple under the case: yn’s are normal.
we obtain

Emn,α(z) = −1
z
− 1

z
(Emn,α(z))2 − 1

z
Var(mn,α(z))

− σ2

zn1+α

∑
i

E(Gii(z))2 − 1
zn2 E

∑
i,k

(Gii(z))2

Emn,α(z) = −1
z
− 1

z
(Emn,α(z))2 + error term



It suffice to figure out a precise upper bound for Var(mn,α(z)) and∑
i E(Gii(z))2.

Repeating the above argument!



• The proof of the CLT
The proof is basically along the idea of Lyvota and Pastur (2009).
Write

N0
n =

1
n(1−α)/2 (Nn,α(φ)− ENn,α(φ))

We shall prove that for every x

Zn(x) =: EeixN0
n → e−

Vφx2

2 , n →∞

This is in turn proved using the subsequence technique. Namely,
(i) Zn(x), Z′n(x), n ≥ 1 are relatively compact uniformly in x

(ii) If Zn(x) → Z(x), then Z′n(x) → −VφxZ(x).
Then we have

Z′(x) = −VφxZ(x) ⇒ Z(x) = e−
Vφx2

2



Write
φ(λ) =

∫ ∞

−∞
eitλφ̂(t)dt

where φ̂(t) is the Fourier transform of φ.
Then

Nn,α(φ) =
n∑

k=1

φ(λk) =
∫ ∞

−∞

n∑
k=1

eitλk φ̂(t)dt

=
∫ ∞

−∞
TreitHn,α φ̂(t)dt

Let
U(t) = eitHn,α , t ∈ R



We need the following basic facts.
(i)

|U(t)ij| ≤ 1,
∑

k

U(s)jkU(t)kj = U(s + t)jj

(ii) Duhamel identity

U(t) = 1 + i
∫ t

0
U(s)Hnds recursive relation

In particular,

U(t)jl = δjl + i
∑

k

∫ t

0
U(s)jk(Hn)klds



(iii) differential formula

∂U(t)pq

∂Hjj
= iUpj ∗ Uqj(t)

and
∂U(t)pq

∂Hjk
= i(Upj ∗ Uqk(t) + Upk ∗ Uqj(t)), j 6= k

(iv)

∂Trφ(U(Hn))
∂Hjj

= φ′(Hn)jj,
∂Trφ(U(Hn))

∂Hjk
= 2φ′(Hn)jk, j 6= k



The End!


