ASYMPTOTIC GEOMETRIC ANALYSIS

Euler International Mathematical Institute

SAINT PETERSBURG
June 20 – June 24, 2013
CONFERENCE PROGRAM

Thursday, June 20

10:30–11:10 Registration
11:10–11:20 Opening
11:20–11:50 V. Milman Geometric study of convex and quasi-concave functions in \mathbb{R}^n
11:50–12:30 Coffee Break
12:20–13:00 R. Adamczak The circular law under log-concavity
13:00–14:50 Lunch
14:50–15:30 O. Guédon Thin shell estimates for convex measures
15:30–16:10 O. Reynov Eigenvalues problems in spaces of nontrivial types and cotypes
16:10–16:40 Coffee Break
16:40–17:20 V. Yaskin Counterexamples to convexity of k-intersection bodies
17:30–18:00 B. Farrell Random unitary matrices with structure

Friday, June 21

10:30–11:10 R. Vershynin Smoothed analysis of random matrices
11:20–11:50 K. Tikhomirov Random vectors with i.i.d. coordinates: concentration and Dvoretzky’s theorem
11:50–12:20 Coffee Break
12:20–13:00 A. Lytova The central limit theorem for linear statistics of the sum of rank one matrices with log-concave distribution
13:00–14:50 Lunch
14:50–15:30 D. Chafaï Aspects of Coulomb gases
15:40–16:20 M. Naszódi Push forward measures and concentration Phenomena
Saturday, June 22

10:30–11:10 M. Rudelson Permanent estimators via random matrices
11:20–11:50 D. Alonso-Gutiérrez Some estimates for random polytopes and their perturbations
11:50–12:20 Coffee Break
12:20–13:00 A. Zvavitch Uniqueness questions in convex geometry
13:00–14:50 Lunch
14:50–15:30 C. Schütt Affine invariant points
15:40–16:10 A. Segal Steiner symmetrization of p-convex sets
16:10–16:40 Coffee Break
16:40–17:20 E. Werner L_p affine surface areas for log-concave functions
17:30–18:00 U. Caglar Divergence for s-concave and log-concave functions

Sunday, June 23

10:30–11:10 M. Madiman Entropy and the additive combinatorics of probability densities on \mathbb{R}^n
11:20–11:50 B. Khabibullin Helly’s Theorem and translation of convex sets
11:50–12:20 Coffee Break
12:20–13:00 M. Fradelizi Volume of polar of random sets and Blaschke–Santalo’s type inequalities
13:00–15:00 Lunch

Monday, June 24

Excursion
LIST OF PARTICIPANTS

Abakoumov Evgueni
Université Paris-Est, Marne-la-Vallée
Laboratoire Analyse et Mathématiques Appliquées
Marne-la-Vallée, 5 Bd Descartes, 77454, Marne-la-Vallée, Cedex 2
E-mail: evgueni.abakoumov@univ-mlv.fr

Adamczak Radoslaw
University of Warsaw
Faculty of Mathematics, Informatics, and Mechanics University of Warsaw
Banacha 2, 02-097, Warszawa, Poland
E-mail: R.Adamczak@mimuw.edu.pl

Alonso-Gutiérrez David
Universidad de Murcia
Facultad de Matematicas
Aulario General Campus de Espinardo
30100, Murcia, Spain
E-mail: davidalonsogutierrez@gmail.com

Bernues Julio
Universidad de Zaragoza
Departamento de Matematicas
Plaza San Francisco, s/n 50009, Zaragoza, Spain
E-mail: bernues@unizar.es

Brunel Victor-Emmanuel
ENSAE-CREST
ENSAE 3, Avenue Pierre Larousse, 92240, Malakoff
E-mail: victoremanuel.brunel@gmail.com

Caglar Umut
Case Western Reserve University
Department of Mathematics
OHIO 44106 USA
E-mail: uxc8@case.edu

Chafaï Djalil
Université Paris-Est, Marne-la-Vallée
Laboratoire Analyse et Mathématiques Appliquées
Marne-la-Vallée, 5 Bd Descartes, 77454, Marne-la-Vallée, Cedex 2
E-mail: djalil.chafai@univ-mlv.fr

Farrell Brendan
California Institute of Technology
Caltech MC 305-16 1200 E.California Blvd Pasadena, CA 91125
E-mail: farrell1@cms.caltech.edu
Fradelizi Matthieu
Université Paris-Est, Marne-la-Vallée
Laboratoire Analyse et Mathématiques Appliquées
Marne-la-Vallée, 5 Bd Descartes, 77454, Marne-la-Vallée, Cedex 2
E-mail: matthieu.fradelizi@univ-mlv.fr

Giladi Ohad
University of Alberta
Department of Mathematical and Statistical Sciences
632 Central Academic Building University of Alberta
Edmonton AB T6G 2G1 Canada
E-mail: giladi@ualberta.ca

Gluskin Efim
Tel Aviv University
School of Mathematical Sciences
Ramat Aviv, 69978, Tel Aviv, Israel
E-mail: gluskin@post.tau.ac.il

Guédon Olivier
Université Paris-Est, Marne-la-Vallée
Laboratoire Analyse et Mathématiques Appliquées
Marne-la-Vallée, 5 Bd Descartes, 77454, Marne-la-Vallée, Cedex 2
E-mail: olivier.guedon@univ-mlv.fr

Jurczak Kamil
Ruhr-Universität Bochum
Lehrstuhl für Stochastik Mathematik III
Universitätsstraße, 150, 44801, Bochum, Germany
E-mail: kamil.jurczak@rub.de

Kalita Eugene
Institute of Applied Mathematics and Mechanics
74, Roza Luxemburg st., 83114, Donetsk, Ukraine
E-mail: ekalita@mail.ru

Khabibullin Bulat
Bashkir State University
Department of Mathematics and Information Technologies
Zaki Validi Str., 32, Ufa, Bashkortostan, Russia
E-mail: Khabib-Bulat@mail.ru

Khrabrov Alexander
St. Petersburg State University
Universitetskaya pr., 28, 198504, Peterhof, St. Petersburg, Russia
E-mail: aikhrabrov@mail.ru
Kononova Anna
St. Petersburg State University
Universitetsky pr., 28, 198504, Peterhof, St. Petersburg, Russia
E-mail: anya.kononova@gmail.com

Lehec Joseph
Université Paris-Dauphine
Ceremade
Place de Lattre de Tassigny, 75016, Paris
E-mail: lehec@ceremade.dauphine.fr

Litvak Alexander
University of Alberta
Department of Mathematical and Statistical Sciences
632 Central Academic Building University of Alberta
Edmonton AB T6G 2G1 Canada
E-mail: alexandr@math.ualberta.ca

Lounici Karim
Georgia Tech School of Mathematics
Georgia Institute of Technology
686 Cherry Street Atlanta, GA 30332-0160, USA
E-mail: klounici@math.gatech.edu

Lytova Anna
B.I. Verkin Institute for Low Temperature Physics & Engineering
47 Lenina Ave., 61103, Kharkov, Ukraine
E-mail: anna.lytova@gmail.com

Madiman Mokshay
University of Delaware and Yale University
501 Ewing Hall, Mathematical Sciences – UD, Newark, DE 19716, USA
E-mail: mokshay@litbombay.org

Milman Vitali
Tel Aviv University
School of Mathematical Sciences
Ramat Aviv, 69978, Tel Aviv, Israel
E-mail: milman@post.tau.ac.il

Naeem Awais
University of Lahore
Abdus Salam School of Mathematical Sciences
68-B, New Muslim Town, Lahore, 54600, Pakistan
E-mail: awais.naeem786@yahoo.com
Naszódi Márton
Lorand Eotvos University
Budapest Department of Geometry
Pazmany Peter Setany 1/C Budapest, Hungary 1117
E-mail: nmarci@math.elte.hu

Pajor Alain
Université Paris-Est, Marne-la-Vallée
Laboratoire Analyse et Mathématiques Appliquées
Marne-la-Vallée, 5 Bd Descartes, 77454, Marne-la-Vallée, Cedex 2
E-mail: alain.pajor@univ-mlv.fr

Prochno Joscha
Johannes Kepler University Linz
Institute of Analysis
Altenbergerstrasse 69, 4040 Linz, Austria
E-mail: joscha.prochno@jku.at

Reynov Oleg
St. Petersburg State University
28, Universitetskii pr., Petrodvorets, St. Petersburg, 198504 Russia
E-mail: orein51@mail.ru

Rohde Angelika
Ruhr-Universitat Bochum
Fakultat fur Mathematik
44780, Bochum, Germany
E-mail: angelika.rohde@ruhr-uni-bochum.de

Rudelson Mark
University of Michigan
Department of Mathematics
530 Church St., Ann Arbor, MI 48109, USA
E-mail: rudelson@umich.edu

Schütt Carsten
Christian Albrechts University
Mathematisches Seminar
Ludewig Meyn Str. 4 D-24098, Kiel, Germany
E-mail: schuett@math.uni-kiel.de

Segal Alexander
Tel Aviv University
Tel-Aviv University P.O.B.
39040 Tel-Aviv, 69978
E-mail: segalale@gmail.com

Struchkova Anna
St. Petersburg State University
Universitetsky pr., 28, 198504, Peterhof, St. Petersburg, Russia
E-mail: anstr94@mail.ru
Tikhomirov Konstantin
University of Alberta
Department of Mathematical and Statistical Sciences
632 Central Academic Building University of Alberta
Edmonton AB T6G 2G1 Canada
E-mail: ktikhomirov@yandex.ru

Tucci Gabriel
Bell Labs
600 Mountain Avenue, 2a-426, Murray Hill, NJ 07974
E-mail: gabrieltucci@gmail.com

Vershynin Roman
University of Michigan
Department of Mathematics
530 Church St., Ann Arbor, MI 48105, USA
E-mail: romanv@umich.edu

Videnskii Ilya
St. Petersburg State University
Universitetsky pr., 28, 198504, Peterhof, St. Petersburg, Russia
E-mail: ilya.viden@gmail.com

Werner Elisabeth
Case Western Reserve University
Department of Mathematics
Cleveland, Ohio, 44106, USA
E-mail: elisabeth.werner@case.edu

Yaskin Vladyslav
University of Alberta
Department of Mathematical and Statistical Sciences
632 Central Academic Building University of Alberta
Edmonton AB T6G 2G1 Canada
E-mail: vladyaskin@math.ualberta.ca

Zhou Jiazu
Southwest University
School of Mathematics and Statistics
Bebei, Chongqing, 400715, China
E-mail: zhoujz@swu.edu.cn

Zvavitch Artem
Kent State University
The Department of Mathematical Sciences
Kent, OH, USA, 44242
E-mail: zvavitch@math.kent.edu
ABSTRACTS

Adamczak Radoslaw, University of Warsaw, Warsaw, Poland
The circular law under log-concavity

I will discuss the circular law theorem for two models of random matrices in which independence of the entries is replaced by log-concavity:

1) matrices with independent isotropic log-concave columns,
2) matrices distributed according to a log-concave unconditional isotropic distribution (unconditionality and isotropy are considered with respect to the standard basis in the space of matrices). This part will be based on recent joint work with Djalil Chafaï.

Alonso-Gutiérrez David, Universidad de Murcia, Murcia, Spain
Some estimates for random polytopes and their perturbations

Let X_1, \ldots, X_N be independent random vectors in \mathbb{R}^n distributed according to an isotropic log-concave probability measure and let K_N be the random polytope $K_N = \text{conv}\{\pm X_1, \ldots, \pm X_N\}$. Also, given a vector $y \in \mathbb{R}^N$ we denote by $K_{N,y} = \text{conv}\{\pm y_1 X_1, \ldots, \pm y_N X_N\}$. We will give estimates for the expected value of the mean outer radii of K_N as well as some high probability results. We will also estimate the expected value of the mean width of $K_{N,y}$ when y is a random vector distributed with respect some probability measures. This estimate will hold with high probability for y due to concentration of measure results.

Caglar Umut, Case Western Reserve University, Cleveland, OH, USA
Divergence for s-concave and log-concave functions

In information theory, probability theory and statistics, an f-divergence is a function that measures the difference between two (probability) distributions. It is a generalization of commonly used divergences such as relative entropy (Kullback–Leibler divergence), Rényi divergences, total variation distance, etc. In this paper we introduce f-divergence for s-concave and for log-concave functions. This is based on a joined work with C. Schütt and E. Werner.

Chafaï Djalil, Université Paris-Est, Marne-la-Vallée, France
On Calogero-Sutherland gases

We will present certain systems of interacting particles confined by an external field and experiencing pair repulsion. Such systems appear naturally in random matrix models. The first order global asymptotics of the empirical measure of the particles is captured by a large deviation principle. The convexity of the rate function is related to harmonic analysis. Its minimum is related to potential theory. We will also present various related problems, including the universality of the behavior at the edge of the gas.

Farrell Brendan, California Institute of Technology, Pasadena, CA, USA
Random unitary matrices with structure

Matrices with uniform distribution on the set of unitary matrices are the canonical type of matrix to work with in many settings. For example, selecting a random subset of the columns of such a matrix gives a uniform distribution on subspaces
of a certain dimension. Yet, there are distributions on the set of unitary matrices that allow for more structure and less randomness while still retaining important properties of uniformly distributed random unitary matrices. We present recent results for unitary matrices constructed using a Hadamard matrix and a signed permutation matrix or Kronecker products of a uniformly distributed unitary matrix. The structured approach also very naturally leads to formulations of discrete uncertainty principles. This is a joint work with G. Anderson and R. R. Nadakuditi.

Fradelizi Matthieu, Université Paris-Est, Marne-la-Vallée, France

Volume of polar of random sets and Blaschke–Santaló’s type inequalities

We prove a dual version of Groemer’s inequality on the volume of random convex sets: we establish that the volume of the polar of random sets is maximized when you are sampling from the Euclidean ball. The proof uses the rearrangement inequality of Brascamp–Lieb–Luttinger and an extension of the Campi–Gronchi inequality on the volume of the polar of shadow systems of symmetric convex sets. The result is applied to give a probabilistic proof of a generalized Blaschke–Santaló inequality and other affine isoperimetric inequalities. This is a joint work with Dario Cordero-Erausquin, Grigoris Paouris and Peter Pivovarov.

Guédon Olivier, Université Paris-Est, Marne-la-Vallée, France

Thin shell estimates for convex measures

We present some recent developments about high dimensional concentration phenomena in convex geometry. We discuss the extensions of thin shell estimates to the case of s-concave measures for s < 0, which corresponds to some heavy tailed measures.

Khabibullin Bulat, Bashkir State University, Ufa, Russia

Helly’s Theorem and translation of convex sets

As usual, denote by \(\mathbb{R} \) the set of real numbers, and \(n \geq 1 \) is integer. For \(C, S \subset \mathbb{R}^n \),

- the set-theoretic difference \(C \setminus S := \{ c \in C : c \notin S \} \);
- the vector difference \(C - S := \{ c - s : c \in C, s \in S \} \);
- the geometrical difference \(C^* - S := \{ x \in \mathbb{R}^n : S + x \subset C \} \).

Let \(A \) and \(B \) are index sets. Suppose all sets \(C_\alpha, \alpha \in A \), are convex in \(\mathbb{R}^n \), and \(S_\beta, \beta \in B \), are arbitrary sets in \(\mathbb{R}^n \). Let

\[
C := \bigcap_{\alpha \in A} C_\alpha, \quad S := \bigcup_{\beta \in B} S_\beta.
\]

We investigate the following problems. What relations will be between \(C \) and \(S \), if for any sets of indexes \(\{\alpha_0, \ldots, \alpha_n\} \subset A \), \(\{\beta_0, \ldots, \beta_n\} \subset B \)

- \(\bigcap_{k=0}^n C_{\alpha_k} \setminus S_{\beta_k} \) is non-empty set?
- \(\bigcap_{k=0}^n (C_{\alpha_k} - S_{\beta_k}) \) is non-empty set?
- \(\bigcap_{k=0}^n (C_{\alpha_k}^* - S_{\beta_k}) \) is non-empty set?

Our research essentially uses the Helly’s Theorem on the intersection of convex sets.
This work are supported by the grant RFBR, 13-01-00030a, and the Ministry of Education and Science (Russia), the agreement 14.B37.21.0358.

Lytova Anna, Institute for Low Temperature Physics, Kharkov, Ukraine

The central limit theorem for linear statistics of the sum of rank one matrices with log-concave distribution

We consider \(n \times n \) real symmetric random matrices \(M_n = \sum_{\alpha=1}^{m} \tau_{\alpha} P_{y_{\alpha}} \), where \(\tau_{\alpha} \in \mathbb{R}, P_{y_{\alpha}} = y_{\alpha} \otimes y_{\alpha} \) are the rank one operators determined by i.i.d. isotropic random vectors \(\{y_{\alpha}\}_{\alpha=1}^{m} \) with log-concave common probability law. In [2] it was shown that if \(m, n \to \infty, m/n \to c \in [0, \infty) \), and the normalized counting measures of amplitudes \(\{\tau_{\alpha}\}_{\alpha=1}^{m} \) converge weakly, then the distributions of eigenvalues of \(M_n \) converge weakly in probability to a non-random limit found in [1]. Here we show that if, in addition, the probability law of \(y_{\alpha} \) is even with respect to the each component \(y_{\alpha j}, j = 1, \ldots, n \), and

\[
\mathbb{E}\{y_{\alpha j}^2 y_{\alpha k}^2\} = n^{-2} + O(n^{-3}), \quad j \neq k, \quad \mathbb{E}\{y_{\alpha j}^4\} = O(n^{-2}),
\]

\[
\mathbb{E}\{(A_n y_{\alpha}, y_{\alpha}) - n^{-1} \text{Tr} A_n |^4\} = o(n^{-1}), \quad n \to \infty,
\]

for any matrix \(A_n \) independent of \(y_{\alpha} \) and having the uniformly bounded in \(n \) norm, then a wide class of linear eigenvalue statistics of \(M_n \) satisfies the CLT provided that the limiting distribution of \(\{\tau_{\alpha}\}_{\alpha=1}^{m} \) vanishes sufficiently at infinity. The above conditions on the components of \(y_{\alpha} \) hold, for example, for vectors uniformly distributed over the unit ball of \(\ell_{n}^{p}, B_{p}^{n} = \{x \in \mathbb{R}^{n} : \sum_{i=1}^{n} |x_{i}|^p \leq 1\} \).

Madiman Mokshay, University of Delaware, Newark, DE, USA and Yale University, New Haven, CT, USA

Entropy and the additive combinatorics of probability densities on \(\mathbb{R}^{n} \)

Several functional or probabilistic analogues of interesting results in convex geometry have been obtained over the years, replacing subsets of \(\mathbb{R}^{n} \) by functions or probability densities, Minkowski summation of sets by various kinds of operations involving the functions or densities, and the volume of a set by some functional (in our instance, the Boltzmann–Shannon entropy). We will discuss some further work along these lines, particularly motivated by analogies with sunset estimates in additive combinatorics, whose original setting was the integers or other discrete groups. Our results include the fact that for independent, identically distributed random vectors \(X \) and \(X' \), the entropies of \(X + X' \) and \(X - X' \) strongly constrain each other; new Plunnecke–Ruzsa-type inequalities for the volumes of Minkowski sums of convex sets; and a probabilistic analogue for log-concave densities of the Rogers–Shephard difference body inequality. Based on joint works with Sergey Bobkov (University of Minnesota) and Ioannis Kontoyiannis (AUEB).
Milman Vitali, Tel Aviv University, Tel Aviv, Israel

Geometric study of convex and quasi-concave functions in \mathbb{R}^n

We will discuss extension of Minkowski polarization result to log-concave and quasi-concave functions as well as mixed integrals.

Naszódi Márton, Lorand Eotvos University, Budapest, Hungary

Push forward measures and concentration phenomena

We discuss how a concentration phenomenon can be transferred from one measure μ to another measure ν. First, we push forward μ by $\pi : \text{supp}(\mu) \to \mathbb{R}^n$, where $\pi(x) = \frac{x}{\|x\|_K} \|x\|_L$, and obtain a concentration inequality in terms of the medians of the given norms (with respect to μ) and the Banach–Mazur distance between them. This approach is finer than simply bounding the concentration of the push forward measure in terms of the Banach–Mazur distance between K and L. Then we show that any normed probability space with exponential type concentration is far (even in an average sense) from subspaces of ℓ_∞. The sharpness of this result is shown by considering ℓ_p spaces. This is a joint work with C. Hugo Jiménez and Rafael Villa.

Reynov Oleg, Saint Petersburg State University, Saint Petersburg, Russia

Eigenvalues problems in spaces of nontrivial types and cotypes

It is known that for some s-nuclear operators ($s \in (0, 1]$) acting in L_p-spaces (or subspaces of L_p-spaces), the nuclear trace is well defined and equals the sum of all eigenvalues of the corresponding operators. All subspaces (or quotients) of L_p-spaces, for $p \in (1, \infty)$, are of nontrivial “type-cotype” and, as consequence, have some good approximation properties. In this talk, we mainly consider a Johnson–König–Maurey–Retherford case of (1)-nuclear operators in L_p-spaces and its generalization to the cases of quotient of subspaces of L_p-spaces.

It is known that all $T \in N(L_p)$, for $p \geq 2$, are of spectral type r with $1/r = 1/p + 1/2$ (such L_p’s have type 2 and cotype p). We note that the same is true for all subspaces of quotient (equivalently: for all quotient of subspaces) of corresponding L_p-spaces. The natural question is arised: let X be a Banach space of cotype q (resp., 2) and of type 2 (resp., p); is it true that every nuclear operator in X is of spectral type r where $1/r = 1/p + 1/2$ (resp., $1/r = 1/2 + 1/p'$)?

We give some (difficult) examples which show that the answer is negative. E.g., we show that there exists a Banach space X with sup type $X = 2$, inf cotype $X = 2$ and with the property that there is an $\epsilon > 0$ so that $N(X)$ is not of spectral type $1 + \epsilon$. Moreover, this space does not have the Grothendieck approximation property.

This is a joint work with Qaisar Latif. The research was supported by the Higher Education Commission of Pakistan.

Rudelson Mark, University of Michigan, Ann Arbor, MI, USA

Permanent estimators via random matrices

The permanent of a square matrix is defined similarly to the determinant. It is the sum of products of entries over all “generalized diagonals”, only without signs in front of the products. The evaluation of the determinant is computationally efficient, while the evaluation of the permanent is an NP-hard problem. Since the
deterministic methods are not available, permanents are estimated probabilistically. One of such estimators constructed by Barvinok evaluates the permanent of a deterministic matrix via the determinant of a random matrix associated to it. Barvinok proved that the multiplicative error of this estimator is at most exponential, and this result cannot be improved for general matrices. We provide conditions on the matrix, under which the Barvinok estimator yields a subexponential error. This is a joint work with Ofer Zeitouni.

Schütt Carsten, Christian Albrechts University, Kiel, Germany

Affine invariant points

We answer in the negative a question by Grünbaum who asked if there exists a finite basis of affine invariant points. We give a positive answer to another question by Grünbaum about the “size” of the set of all affine invariant points. Related, we show that the set of all convex bodies \(K \), for which the set of affine invariant points is all of \(\mathbb{R}^n \), is dense in the set of convex bodies. Crucial to establish these results, are new affine invariant points, not previously considered in the literature. This is joint work with Mathieu Meyer and Elisabeth M. Werner.

Segal Alexander, Tel Aviv University, Tel Aviv, Israel

Isomorphic Steiner symmetrization of \(p \)-convex sets

We show that given a \(p \)-convex set \(K \subset \mathbb{R}^n \), there exist \(5n \) Steiner symmetrizations that transform it into an isomorphic Euclidean ball. That is, if \(|K| = |D_n| = \kappa_n\), we may symmetrize it, using \(5n \) Steiner symmetrizations, into a set \(K' \) such that \(c_p D_n \subset K' \subset C_p D_n \), where \(c_p \) and \(C_p \) are constants dependent on \(p \) only.

Tikhomirov Konstantin, University of Alberta, Edmonton, AB, Canada

Random vectors with i. i. d. coordinates: concentration and Dvoretzky’s theorem

Several results are proved regarding concentration of random vectors with i. i. d. coordinates in normed spaces. We apply these results to the study of random subspaces.

Vershynin Roman, University of Michigan, Ann Arbor, MI, USA

Smoothed analysis of random matrices

Smoothed analysis is a paradigm in computer science, which postulates that objects become better (less singular) when they are randomly perturbed. This talk will focus on random perturbations of matrices and their invertibility properties. There was a significant recent progress on perturbations by matrices with independent entries, symmetric, unitary and orthogonal matrices. In spite of this, there are natural phenomena that are not yet understood.

Werner Elisabeth, Case Western Reserve University, Cleveland, OH, USA

\(L_p \) affine surface areas for log-concave functions

We give a new proof of a reverse log Sobolev inequality for log-concave functions due to Artstein, Klartag, Schütt and Werner. We introduce \(L_p \) affine surface areas for log-concave functions.
Yaskin Vladyslav, University of Alberta, Edmonton, AB, Canada

Counterexamples to convexity of k-intersection bodies

It is a well-known result due to Busemann that the intersection body of an origin-symmetric convex body is also convex. Koldobsky introduced the notion of k-intersection bodies. We show that the k-intersection body of an origin-symmetric convex body is not necessarily convex if $k > 1$.

Zvavitch Artem, Kent State University, Kent, OH, USA

Uniqueness questions in convex geometry

Classical theorems in Convex geometry (and Harmonic Analysis) tell us that a symmetric star-shaped body is uniquely determined by the volumes of its hyperplane sections, moreover, if in addition to symmetricity we would also require convexity, then volume of orthogonal projections can be used instead of sections. It is also well know that in both cases symmetricity is required. A very natural question is what information on section/projections we need to require to have uniqueness for non-symmetric case? Volume of projections and Sections? Volume of “maximal” hyperplane section in all fixed directions?

We will start this talk with the discussion on some open problems related to those questions. We will also present a couple, recently constructed, counterexamples: we show that in all dimensions higher then 2, there exists an asymmetric convex body of revolution all of whose maximal hyperplane sections have the same volume. In addition we will show that if we fix even dimension greater or equal then 4, then one can find two essentially different convex bodies such that the volumes of their maximal sections, central sections, and projections coincide for all directions. The talk is combination of joint works with R. Gardner, F. Nazarov, D. Ryabogin and V. Yaskin.