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GENERAL THEORY

Types of Manifolds

All manifolds have local coordinates which are equivalent to the
usual rectilinear coordinates in an open subset of Euclidean space.

The type of manifold is determined by the consistency as we pass
from one chart to another. We deal with 3 types of manifolds:

TOPOLOGICAL MANIFOLDS: Overlap functions that are
homeomorphisms.
SMOOTH MANIFOLDS: Overlap functions are infinitely
differentiable.
PL MANIFOLDS: Overlap functions are simplicial on some
rectilinear subdivision.
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Relations between various types

Obviously, a smooth manifold or PL manifold is a topological
manifold.

Theorem

A smooth manifold has a natural PL structure.

Pf. Embed manifold smoothly in a Euclidean space, triangulate
very finely a neighborhood and intersect. This produces a linear
cell structure; a subdivision is a triangulation.

So we have

Theorem

SMOOTH => PL=> TOPOLOGICAL.

For surfaces and 3-manifolds all these arrows can be reversed. But
in higher dimensions, in general, none can be reversed.
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Sample High Dimensional Results

Robust understanding of these manifolds in terms of homotopy
theory.

Theorem

(Generalized Poincaré Conjecture): Suppose that Σn is a closed
topological, resp. PL, n-manifold homotopy equivalent to the
n-sphere, for n ≥ 5. Then Σ is homeomorphic, resp. PL
equivalent, to the n-sphere.

Theorem

For each n ≥ 5 the smooth n-manifolds (up to diffeomorphism)
homotopy equivalent to Sn form a finite abelian group under
connected sum, which is in principle at least, computable; e.g. for
n = 7 the group is Z/28.
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(Generalized Poincaré Conjecture): Suppose that Σn is a closed
topological, resp. PL, n-manifold homotopy equivalent to the
n-sphere, for n ≥ 5. Then Σ is homeomorphic, resp. PL
equivalent, to the n-sphere.

Theorem

For each n ≥ 5 the smooth n-manifolds (up to diffeomorphism)
homotopy equivalent to Sn form a finite abelian group under
connected sum, which is in principle at least, computable; e.g. for
n = 7 the group is Z/28.



GENERAL THEORY

Sample High Dimensional Results

Robust understanding of these manifolds in terms of homotopy
theory.

Theorem
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Triangulating Topological Manifolds

Theorem

If M is a topological n-manifold, n ≥ 5, there is one obstruction
θ ∈ H4(M; Z/2Z ) to triangulating M.
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Essential Point: Surgery theory

Given an embedded sphere Sk ⊂ M with a trivial normal bundle,
we remove a tubular neighborhood Sk × Dn−k and sew in
Sn−k−1 × Dk . This is a surgery on the k-sphere. It kills the
homology class of the sphere.
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Essential Point: Whitney trick

Suppose that X k and Y n−k are submanifolds of Mn and k and
n− k are both > 2. If M is simply connected, then we can arrange
that X and Y meet transversally and that the number of points of
intersection is equal to the absolute value of the homological
intersection number.
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A sample result

Consider Σ5 smooth and homotopy equivalent to S5.
Then by homotopy theory there is a W6 with trivial tangent bundle
and with ∂W 6 = Σ. Surgery on 0, 1, 2 spheres allows us to make
π1(W ) = {1} and H2(W ) = 0. Then H3(W ) has a skew
intersection form which is algebraically equivalent to a direct sum
of (

0 1
−1 0

)
.

By Whitney’s trick there is a family of embedded 3-spheres whose
homology classes are this basis and whose geometric intersection is
equal to the algebraic intersection. Surgery on half this basis
makes W homotopy equivalent to D6. Now we take a relative
Morse function; cancel all handles except those of dimensions 3
and 4. These also can be cancelled by Whitney’s trick.
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THE EXCEPTIONAL DIMENSIONS

Attention then (circa 1975) focused on dimensions 3 and 4.

Much was known in dimension 3; 4 was extremely mysterious.
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PART II. 4-DIMENSIONAL MANIFOLDS
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Dimension 4

PL <=> SMOOTH in dimension 4.

Huge dichotomy between TOPOLOGICAL and SMOOTH (or PL),
unlike what happens in other dimension.

HOMOTOPY THEORY OF 4-MANIFOLDS::

M closed, simply connected 4-manifold is determined up to
homotopy equivalence by H2(M; Z ) with its intersection form. This
form is integral and unimodular. There is an essentially complete
classification of these forms (except for definite ones) determined
by rank, signature, and whether or not the form is even. Theory of
definite forms is complicated: first non-diagonalizable form is E8 –
the Cartan matrix of the exceptional Lie group E8. It has rank 8,
signature 8 and is unimodular and even.

Which forms are realized? How many manifolds represent a given
form?
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Examples of 4-Manifolds

Rich source: complex algebraic surfaces. These are ‘classified’ in
some sense, though most are surfaces of general type which are
not really understood. The others are fairly well described.
Another source: Symplectic manifolds (include the algebraic
surfaces, since these have a Kahler form which is a symplectic
form). Are there more: connected sums of these.

What about non-simply connected 4-manifolds?
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Smooth 4-manifolds: Donaldson theory

P → M4 principle SU(2)-bundle. Then A(P) is the space of
connections; G group of gauge transformations. Acts on A(P),
essentially freely, except for reducible connections where the
stabilizers are S1.
If M has a Riemannian metric, then 2-forms on M decompose into
self-dual and anti-sel-dual parts. We have the ASD equation
F+
A = 0, where FA is the curvature of the connection A.

This is a non-linear equation, elliptic modulo the action of G. The
formal dimension (the Fredholm index of the linearization) is

8c2(P)− 3(1− b1(M) + b+
2 (M)).

For a generic metric it is a smooth manifold M(P) of this
dimension in A(P)/G, except at the reducible connections where it
is the quotient of a smooth manirfold by a semi-free S1-action.
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Donaldson theory

Consider M simply connected and negative definite and take
c2(P) = 1.
Then dim(M) = 5. The singularities are isolated points: one for
each topological reduction of P to an O(2)-bundle; i.e., one
singular point for each {±x} ∈ H2(M; Z ) with x2 = −1.

Near the
singular points the structure of M is C3/S1, which is the cone on
CP2. The moduli space is non-compact because the curvature of
the connection can concentrate in a bubble near a point of M. In
fact, this happens at each point and in a unique way, so that a
neighborhood of infinity in M is M × [0,∞).
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Donaldson theory

Thus, M produces a smooth 5-dimensional bordism from M to∐
k ±CP2, where k is the number of solutions, up to sign, to the

equation x2 = −1 in the form on H2(M). But this means that the
number of pairs of solutions is at least |signature(M)|, and this
implies that the form is diagonalizable over the integers.
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Moduli space as a bordism
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Donaldson theory

Theorem

(Donaldson) E8 ⊕ E8 does not occur as the intersection form of a
s.c. smooth 4-manifold.
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Donaldson theory

For s. c. smooth 4-manifolds that are not negative definite, the
moduli space M(P) will be a smooth manifold of dimension
8c2(P)− 3(1 + b+

2 ) sitting in Airr(P)/G. There is a natural map

H∗(M)→ H4−∗(Airr(P)/G).

Integrating cohomology classes over the fundamental class [M]
gives the Donaldson polynomial invariants

S∗(H∗(M))→ Z .

These can be used as invariants to show smooth manifolds are not
diffeomorphic.

Theorem

There are infinitely many pairwise non-diffeomorphic, s.c. algebraic
surfaces all homotopy equivalent to CP2 blown up at 9 points.
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Seiberg-Witten theory

This is another gauge theory inspired by physics whose moduli
space of classical solutions are be used to give invariants of
4-manifolds, the Seiberg-Witten invariants. It turns out that these
invariants carry equivalent information to the Donaldson
polynomial invariants but are simpler to work with.

Theorem

(Thom Conjecture) A smooth algebraic curve of degree d in CP2

has minimal genus in its homology class.
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SUMMARY OF SMOOTH 4-DIMENSIONAL MANIFOLDS

Invariants coming from gauge theories are powerful and show that
classification is not homotopy classification. Smooth 4-manifold
topology is rich.

No conjecture as to classification or what other invariants might be
needed.

NICE INVARIANTS SHOWING THINGS ARE COMPLICATED

LOTS OF QUESTIONS – FOR MOST WE DO NOT HAVE EVEN
CONJECTURAL ANSWERS
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Topological 4-Manifolds

Recall the Whitney disk idea. Given two n-dimensional
submanifolds of a 2n-dimensional manifold with excess intersection
points. embed a 2-disk with boundary arcs connecting a pair of
intersection points and use it to deform one manifold so as to
remove the pair of intersection points.
In dimension 4, one is dealing with surfaces and 2-disks, so trying
to embed the 2 disk and make it disjoint from the surfaces (except
along its boundary) is exactly the same as the problem it is
intended to solve.

Freedman used this to make an infinitely recursive construction
that leads to an embedded topological, but highly non-smooth,
2-disk as required. Thus, he was able to push high dimensional
techniques down to dimension 4.
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Sample Topological Results

Theorem

(Freedman) 1. Any unimodular intersection form occurs for exactly
one or two homeomorphism classes simply connected 4 manifolds.
If there are two homeomorphism classes only one is stably
smoothable (i.e., it times S1 has a smooth structure).
2. Every homology class in H2(CP2) is represented by a
topologically embedded locally flat 2-sphere.
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The Dichotomy

Freedman’s theory and Donaldson theory are widely at odds. This
gives many striking consequences in dimension 4 unlike any other
dimension:

Theorem

There are compact simply connected 4-manifolds with infinitely
many differentiably distinct smooth structures. R4 has uncountably
many differentiably distinct smooth structures. (For all other n Rn

has a unique smooth structure up to diffeomorhism.)
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3-Dimensional Manifolds

Theorem

For 3-dimensional manifolds SMOOTH = PL = TOPOLOGICAL
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Fundamental group is a central feature.

Homogeneous Geometry is a central feature.
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Surfaces

All compact surfaces are uniformizable: either they are finitely
covered by S2, by a 2-torus, or they are hyperbolic: quotient of the
upper half-plane by a discrete subgroup of PSL(2,Z ) acting freely.
The plane, the 2-sphere, and the hyperbolic plane have
homogeneous geometries – the group of isometries acts
transitively. Homogeneous manifolds are of the form G/H where H
is a compact subgroup of G .
Thus, every surface is the quotient of S2, R2, or H2 by a discrete
group of symmetries preserving a homogeneous metric (round, flat,
or constant curvature −1). These are locally homogeneous
manifolds – covered by homogeneous manifolds with covering
transformations being isometries.
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or constant curvature −1). These are locally homogeneous
manifolds – covered by homogeneous manifolds with covering
transformations being isometries.
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Homogeneous 3-dimensional geometries

There are 8 homogeneous geometries in dimension 3:
Three of constant sectional curvature – round, flat, hyperbolic.
Products – S2 × R, H2 × R.
Three twisted products – P̃SL(2,R), Nil, Solv.

These give us 8 classes of locally homogeneous 3-manifolds.
Round, flat, and hyperbolic
Hyperbolic times S1, or S2 × S1

Nil, solv, or S1-bundles over hyperbolic surfaces.
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No direct analogue of uniformization

Theorem

Except for RP3#RP3, no non-trivial connected sum of closed
3-manifolds can be given a locally homogeneous metric.

Pf. The connecting sum sphere is a non-trivial element in π2.
Thus, π2(G/H) 6= 0, and hence G/H = S2 × R.
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No direct analogue of uniformization

Non-compact hyperbolic manifolds of finite volume have ends that
are cusps: topologically T 2 × [0,∞). We could glue two such
together to produce a new manifold that does not carry a metric
modeled on one of these 8.
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GEOMETRIATION CONJECTURE

Any closed 3-manifold has a two-fold decomposition: First is
connected sum decomposition (along a family of S2s) into its
prime factors. The second is cutting open along 2-tori (whose
fundamental groups inject into the manifold.) The result is a
collection of compact and open pieces, each of which has a
homogeneous metric of finite volume.
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GEOMETRIATION CONJECTURE

Conjecture

For any prime 3-manifold M there is a finite graph Γ with some of
the vertices of order 1 marked with K and a map f : M → Γ
transverse to the midpoints of the edges of Γ such that:

1 For each midpoint me of an edge e f −1(me) is a torus Te .

2 For every edge e the map π1(Te)→ π1(M) is injective.

3 The components of M \ ∪eTe are bijective with the vertices of
Γ.

4 The components corresponding to a vertex marked K are
twisted interval bundles over the Klein bottle.

5 Every other component has a locally homogeneous metric of
finite volume based on one of the 8 geometries.
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GEOMETRIATION CONJECTURE

Theorem

(Perelman, using Hamilton’s Ricci flow) The Geometrization
Conjecture is true.
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Method of Proof: Ricci flow with surgery

Ricci flow is an evolution equation for Riemannian metrics on a
smooth manifold.

∂g

∂t
= −2Ric(g(t)).

Parabolic equation (modulo the action of the diffeomorphism
group).
Hamilton proved short-time existence and uniqueness of solutions
when the manifold is compact.
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In general there are finite-time singularities.
Perelman gave a qualitative description of these in dimension 3 and
established some geometric control near where the siingularities are
occurring – namely regions of sufficiently high curvature..
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Ricci flow with surgery

One cuts away the singularity regions contained in necks and
degenerate necks, glues in 3-balls, and one removes the round
components shrinking to points. After these surgeries, one
continues (or more precisely restarts) the flow. This forms a Ricci
flow with surgery defined for all t ∈ [0,∞).
Surgeries do connected sum decomposition and remove
components that have metrics of constant positive curvature.

Perelman was then able to analyze the long-term nature of the
solution.
There are regions where the volume, rescaled by t−3/2, does not
collapse.
These are converging geometrically to complete hyperbolic
manifolds of finite volume.
The rest of the manifold is volume collapsing.
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Collapsed Regions

Basic Idea: Collapsed regions are close to lower dimensional spaces
with curvature bounded below (Alexandrov spaces) and the theory
of Alexandrov spaces can be used to understand the topology of
these regions.
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Gromov-Hausdorff convergence

Two compact metric spaces X ,Y are within ε in the G-H distance
if there is a metric on X

∐
Y extending the given metrics on X

and Y so that X is in the ε-neighborhood of Y and Y is is the
ε-neighborhood of X .
If the G-H distance from X to Y is 0 then X and Y are isometric.

We say that a sequence (Xn, xn) converges in the G-H sense to
(Y , y) if the balls closed balls B(x,R + εn) converge in the G-H

sense to B(y ,R)
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Alexandrov spaces with curvature ≥ k

These are metric spaces which are length spaces (isometric
intervals connecting any two points).
Given any 3 points x , y , z construct in the surface of constant
curvature k points x̃ , ỹ , z̃ with the same pairwise distances. Then
∠̃xyz is defined to be ∠x̃ ỹ z̃ . If every time we have p; a, b, c in X
and ∠̃apb + ∠̃bpc + ∠̃cpa ≤ 2π, then X is said to be an
Alexandrov space with curvature ≥ k.
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Alexandrov spaces

An Alexandrov space has a tangent cone at every point and
scalings of (X , x) tending to infinity converge in the
Gromo-Hausdorff sense to the tangent cone.
An Alexandrov space has a dimension (its Hausdorff dimension). It
is an integer and there is an open dense set that is a manifold of
that dimension.
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Alexandrov spaces as limits

Theorem

Let Mn
i be a sequence of complete Riemannian manifolds of

dimension n with sectional curvature ≥ k. Then after passing to a
subsequence there is a G-H limit. This limit is an Alexandrov space
of dimension ≤ n and curvature ≥ k.
If the volumes of the manifolds in the sequence are tending to
zero, then the limit is lower dimensional
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Alexandrov limits of balls in Ricci flow

In the collapsing regions of Ricci flow, we rescale at the negative
curvature scale, so that at each point we have B(x , 1) with
sectional curvature ≥ −1. Any sequence of these balls then have a
G-H limit which is an Alexandrov ball of dimension 1 or 2.
When the Alexandrov space limit is 2-dimensional, it is a manifold
away from a finite number of cone-like singularities. The ball in the
3-manifold fibers by circles over the base, with exceptional fibers
over the cone-like singularities.

When the Alexandrov space limit is 1-dimensional, it is an interval
and the manifold fibers over either an interval or a circle with fiber
a T 2 or S2.
These regions are understood topologically and from this
information one can establish the geometrization conjecture.
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Ricci flow and Geometrization

In fact Ricci flow performs exactly the topological steps required by
Geometrization:
The finite-time singularities perform the connected sum
decomposition and remove the components with postively curved
metrics.

The division between collapsed and non-collapsed at infinity is the
torus division of the hyperbolic pieces from the other geometric
pieces.
The tori dividing up the other geometric peices are not produced
by Ricci flow: here one uses a priori topological knowledge.
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Invariants of 3-manifolds

Geometrization is not the end of the story for 3-manifolds. There
are many invariants defined for 3-manifolds and for knots in them.
So are combinatorially defined (Jones Polynomial, various algebraic
generalizations of the Jones polynomial, Khovanov homology),
some come from physics (Witten’s generalization of the Jones
polynomial), ASD and SW Floer homology, and some come from
topology (Heegaard Floer homology).
The relationship of these invariants to the classification of
3-manifolds is a mystery.
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