

On the effective hydrodynamics of Quantum Hall fluids

Alexander Abanov

D.I. Diakonov memorial symposium, July 15, 2013

Reference: J. Phys. A: Math. Theor. 46 (2013) 292001 Acknowledgments: Paul Wiegmann

Saint Petersburg, Russia

Euler Symposium on Theoretical ...

Main Result

Collective behavior of the simplest FQHE fluid (Laughlin's state with $\nu = 1/\beta$) is captured by an effective theory of two scalar fields ρ and π

$$L = -\rho \partial_t \pi - H$$

$$H = \rho \left[A_0 + \frac{\tilde{\boldsymbol{v}}^2}{2} + \frac{1}{2} (\boldsymbol{\nabla} \times \boldsymbol{A}) \right]$$

with

$$\begin{split} \tilde{\boldsymbol{v}} &= \boldsymbol{\nabla} \pi + \boldsymbol{A} - \boldsymbol{\nabla}^* \left(\phi + \left(\frac{\beta}{4} - \frac{1}{2} \right) \ln \rho \right) \\ \rho &= \frac{1}{2\pi\beta} \Delta \phi \end{split}$$

1989, Read; Zhang, Hansson and Kivelson

$$L = \Phi^* \left(i\partial_t + a_0 + A_0 - \frac{1}{2m^*} \left(-i\boldsymbol{\nabla} - \boldsymbol{a} - \boldsymbol{A} \right)^2 \right) \Phi + \frac{1}{4\pi\beta} \epsilon^{\mu\nu\lambda} a_\mu \partial_\nu a_\lambda + V(|\Phi|^2)$$

Main Result

Collective behavior of the simplest FQHE fluid (Laughlin's state with $\nu = 1/\beta$) is captured by an effective theory of two scalar fields ρ and π

$$L = -\rho \partial_t \pi - H$$

$$H = \rho \left[A_0 + \frac{\tilde{\mathbf{v}}^2}{2} + \frac{1}{2} (\mathbf{\nabla} \times \mathbf{A}) \right]$$

with

$$\begin{split} \tilde{\boldsymbol{v}} &= \boldsymbol{\nabla} \pi + \boldsymbol{A} - \boldsymbol{\nabla}^* \left(\phi + \left(\frac{\beta}{4} - \frac{1}{2} \right) \ln \rho \right) \\ \rho &= \frac{1}{2\pi\beta} \Delta \phi \end{split}$$

1989, Read; Zhang, Hansson and Kivelson

$$L = \Phi^* \left(i\partial_t + a_0 + A_0 - \frac{1}{2m^*} \left(-i\boldsymbol{\nabla} - \boldsymbol{a} - \boldsymbol{A} \right)^2 \right) \Phi + \frac{1}{4\pi\beta} \epsilon^{\mu\nu\lambda} a_\mu \partial_\nu a_\lambda + V(|\Phi|^2)$$

Sasha Abanov (Stony Brook)

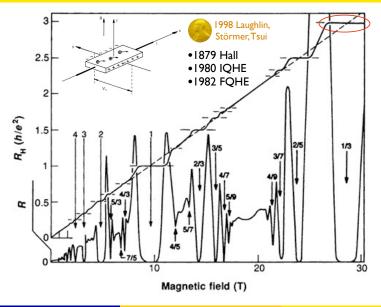
Recent Related Works

- Paul Wiegmann
 - ▶ arXiv:1305.6893, Anomalous Hydrodynamics of Fractional Quantum Hall States
 - ▶ arXiv:1211.5132, Quantum Hydrodynamics of Fractional Hall Effect: Quantum Kirchhoff Equations
 - ▶ Phys. Rev. Lett. 108, 206810 (2012), Non-Linear hydrodynamics and Fractionally Quantized Solitons at Fractional Quantum Hall Edge
- Dam Son
 - ▶ arXiv:1306.0638, Newton-Cartan Geometry and the Quantum Hall Effect
- Eldad Bettelheim
 - ▶ arXiv:1306.3782, Integrable Quantum Hydrodynamics in Two Dimensional Phase Space

Introduction

FQHE

Fractional Quantum Hall Effect (FQHE)



- Two-dimensional electron gas in magnetic field forms a *new type of quantum fluid*
- Quantum condensation of *electrons coupled to vortices* ("flux quanta")
- Incompressible fluid
- Quasiparticles are gapped, have fractional charge and statistics
- Low energy dynamics is at the *boundary*
- Microscopics is captured by Laughlin's wave function

$$\Psi_{1/3} = \prod_{j < k} (z_j - z_k)^3 e^{-\frac{1}{4}\sum_j |z_j|^2}, \qquad z \equiv x + iy$$

Hydrodynamics of FQHE

Goal: effective <u>classical</u> hydrodynamic description of FQHE.

- Ideal 2D fluid (no dissipation, Hamiltonian formulation)
- Density-vorticity relation (FQHE constraint)
- Incompressibility
- Hall viscosity
- Linear response (Hall conductivity, etc)
- Nonlinear physics
- Chirality and dynamics of the boundary

Very brief (and incomplete) history

- 1983, Laughlin
 - ▶ Laughlin's wave function and plasma analogy
- 1986, Girvin, MacDonald, Platzman
 - ▶ Magnetoplasmon, structure factor, single mode approximation
- 1989, Read; Zhang, Hansson, Kivelson; <u>1990, Stone</u>; 1991, Lee and Zhang
 - ▶ Chern-Simons-Ginzburg-Landau theory of FQHE
 - ▶ Hydrodynamics of FQHE and FQHE constraint
- 1996, Simon, Stern, Halperin
 - Magnetization current
- 1992, Wen, Zee; 1995, Avron, Seiler, Zograf; 2007, Tokatly, Vignale; 2009, Read; Haldane
 - Hall viscosity
- 2006, Zabrodin, Wiegmann; 2005-9, Bettelheim, Wiegmann, AA
 - ▶ 2D Dyson gas
 - ▶ 1D hydrodynamics of Calogero-Sutherland model

Density, current, velocity

Microscopic fields:

m = e = c = 1

$$\rho(\mathbf{r}) = \sum_{\alpha} \delta(\mathbf{r} - \mathbf{r}_{\alpha})$$
(1)
$$\mathbf{j}(\mathbf{r}) = \sum_{\alpha} (\mathbf{p}_{\alpha} - \mathbf{A}_{\alpha}) \delta(\mathbf{r} - \mathbf{r}_{\alpha})$$
(2)

Poisson brackets (commutators), Landau, 1941

$$\{\rho, v'\} = \nabla \delta(\boldsymbol{r} - \boldsymbol{r}') \tag{3}$$

$$\{v_i, v'_j\} = \epsilon_{ij} \frac{\boldsymbol{\nabla} \times \boldsymbol{v} + B}{\rho} \delta(\boldsymbol{r} - \boldsymbol{r}')$$
(4)

Here the velocity is defined as $j = \rho v$.

Hamiltonian dynamics of ideal fluid

Hamiltonian:

$$H = \int d^2r \, \frac{\rho v^2}{2} + U[\rho]$$

$$\begin{split} U[\rho] &= \int d^2 r \, \left[\rho \epsilon(\rho) + A(\boldsymbol{\nabla} \rho)^2 \right] \\ &\quad \text{- the Boussinesq approximation.} \end{split}$$

Hamitlonian +Poisson brackets \longrightarrow Equations of motion

$$\dot{\rho} + \nabla(\rho v) = 0, \qquad \text{continuity} \\ \dot{v} + (v\nabla)v + \nabla w = E + v \times B. \qquad \text{Euler}$$

where $w = \delta U / \delta \rho$ - chemical potential

Dynamics does \underline{not} have to be vorticity free.

Sasha Abanov (Stony Brook)

Hydro of FQHE fluid

Vorticity and FQHE constraint

 $\omega = \boldsymbol{\nabla} \times \boldsymbol{v}$ – vorticity

$$\partial_t(\omega + B) + \nabla ((\omega + B)v) = 0$$

 $\partial_t \rho + \nabla (\rho v) = 0$

Constraint $\omega + B = \zeta \rho$ is respected by equations of motion.

$$\boldsymbol{\nabla} imes \boldsymbol{v} = \zeta(\rho - \rho_0)$$

FQHE constraint; Stone, 1990; incompressibility! dimension: $[\zeta] = \left[\frac{\hbar}{m}\right]$

- might emerge in quantum physics! $\zeta = \frac{\hbar}{m} \frac{2\pi}{\nu}$.

Stress tensor T_{ik}

Dynamics of conserved quantities

$$\partial_t \rho + \partial_k j_k = 0,$$

$$\partial_t j_i + \partial_k T_{ik} = \rho F_i.$$

Linear expansion around
$$\rho = \rho_0, v = 0$$

Isotropic fluid: no shear
$$\delta T_{ik} \sim u_{ik}$$
.
Ideal fluid: no viscosity $\delta T_{ik} \sim v_{ik}$

$$u_{ik} = \frac{1}{2}(\partial_i u_k + \partial_k u_i)$$
$$v_{ik} = \frac{1}{2}(\partial_i v_k + \partial_k v_i)$$

 $T_{ik} = P(\rho)\delta_{ik} + \rho v_i v_k,$ $F_i = E_i + \epsilon_{ik} v_k B.$

 $j_k = \rho v_k,$

Hall viscosity
$$\delta T_{ik} \sim (\epsilon_{in} v_{ik} + \epsilon_{kn} v_{ni})$$

strain and strain rate

Hall viscosity (Lorentz shear modulus)

Isotropic non-dissipative fluid "Viscous" stress tensor (known in plasma physics)

$$\delta T_{ik} = \Lambda(\epsilon_{in}v_{nk} + \epsilon_{kn}v_{ni}).$$

Time-reversal invariance is broken! For Laughlin's states

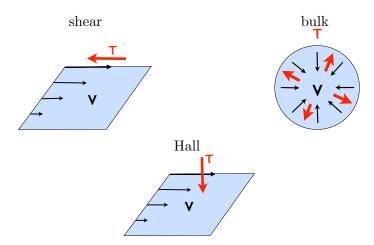
$$\Lambda = \frac{\hbar\rho_0}{4}\nu^{-1} = \frac{\hbar}{8\pi l_B^2} = \frac{1}{8\pi}\frac{eB}{c} \qquad -\text{Hall viscosity}$$

Generalization (Read, 2009)

$$\Lambda = \frac{\hbar\rho_0}{2} \left(\frac{\nu^{-1}}{2} + h_\psi\right)$$

Hall viscosity

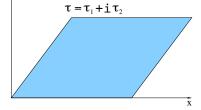
Hall viscosity



Stress forces are orthogonal to the motion \rightarrow no dissipation!

Hall viscosity from adiabatic metric deformation

Hall viscosity \rightarrow Berry's phase with respect to variations of the metric $ds^2 = \frac{1}{\tau_2} |dx + \tau dy|^2$. Avron, Seiler, Zograf, 1995 Read, 2009



 Ψ_{β} - Laughlin's function on torus $\tau = \tau_1 + i\tau_2$. Λ – adiabatic curvature!

$$\Lambda = \frac{2\hbar}{L^2} \operatorname{Im} \left\langle \frac{\partial \Psi_\beta}{\partial \tau_1} \Big| \frac{\partial \Psi_\beta}{\partial \tau_2} \right\rangle$$

Hall viscosity and Hall conductivity

Hall conductivity – non-dissipative part of conductivity tensor σ_{ik} Hall viscosity – non-dissipative part of viscosity tensor η_{ikmn} (Odd viscosity) (Lorentz shear modulus)

$$\Psi_{\beta}(\tau_1, \tau_2; \Phi_1, \Phi_2) = \frac{1}{\mathcal{N}} \prod_{i < j} \theta_1(z_{ij}/L_x | \tau) \ e^{-\frac{1}{2}\sum_j (\operatorname{Im} z_j)^2}$$

Laughlin's function on torus $\tau = \tau_1 + i\tau_2$ with fluxes $\Phi_{1,2}$ through torus' cycles. $(z = x - \Phi_2 + \tau(y + \Phi_1))$ σ_{xy}, Λ – adiabatic curvatures!

$$\sigma_{xy} \sim \operatorname{Im} \left\langle \frac{\partial \Psi_{\beta}}{\partial \Phi_{1}} \Big| \frac{\partial \Psi_{\beta}}{\partial \Phi_{2}} \right\rangle \qquad \Lambda \sim \operatorname{Im} \left\langle \frac{\partial \Psi_{\beta}}{\partial \tau_{1}} \Big| \frac{\partial \Psi_{\beta}}{\partial \tau_{2}} \right\rangle$$

Avron, Seiler, Zograf, 1995 Read, 2009

Sasha Abanov (Stony Brook)

Hall viscosity (Hamiltonian)

What is the Hamiltonian generating dynamics with Hall viscosity?

$$H = \int d^2 r \,
ho \left[rac{1}{2} oldsymbol{v}^2 + \eta \, oldsymbol{
abla} imes oldsymbol{v}
ight] + U[
ho].$$

Hall viscosity $\Lambda = \eta \rho_0$.

$$H = \int d^2 r \,\rho \, \frac{1}{2} \Big(\boldsymbol{v} + \eta \boldsymbol{\nabla}^* \log \rho \Big)^2 + U'[\rho].$$

Here $\nabla^* = -\hat{z} \times \nabla$.

 η -term can be absorbed into v but Poisson's brackets will change.

$$\int d^2 x \left(\boldsymbol{r} \times \rho \boldsymbol{v} + \mu \rho \right) = \int d^2 x \, \boldsymbol{r} \times \left(\rho \boldsymbol{v} + \frac{\mu}{2} \boldsymbol{\nabla}^* \rho \right)$$

Hall viscosity (Hamiltonian)

What is the Hamiltonian generating dynamics with Hall viscosity?

$$H = \int d^2 r \,
ho \left[rac{1}{2} oldsymbol{v}^2 + \eta \, oldsymbol{
abla} imes oldsymbol{v}
ight] + U[
ho].$$

Hall viscosity $\Lambda = \eta \rho_0$.

$$H = \int d^2 r \,\rho \, \frac{1}{2} \Big(\boldsymbol{v} + \eta \boldsymbol{\nabla}^* \log \rho \Big)^2 + U'[\rho].$$

Here $\nabla^* = -\hat{z} \times \nabla$.

 η -term can be absorbed into v but Poisson's brackets will change.

$$\int d^2x \left(\boldsymbol{r} \times \rho \boldsymbol{v} + \mu \rho \right) = \int d^2x \, \boldsymbol{r} \times \left(\rho \boldsymbol{v} + \frac{\mu}{2} \boldsymbol{\nabla}^* \rho \right)$$

Hall viscosity (Hamiltonian)

What is the Hamiltonian generating dynamics with Hall viscosity?

$$H = \int d^2 r \,
ho \left[rac{1}{2} oldsymbol{v}^2 + \eta \, oldsymbol{
abla} imes oldsymbol{v}
ight] + U[
ho].$$

Hall viscosity $\Lambda = \eta \rho_0$.

$$H = \int d^2r \,\rho \, \frac{1}{2} \Big(\boldsymbol{v} + \eta \boldsymbol{\nabla}^* \log \rho \Big)^2 + U'[\rho].$$

Here $\nabla^* = -\hat{z} \times \nabla$.

 η -term can be absorbed into v but Poisson's brackets will change.

$$\int d^2x \left(\boldsymbol{r} \times \rho \boldsymbol{v} + \mu \rho \right) = \int d^2x \, \boldsymbol{r} \times \left(\rho \boldsymbol{v} + \frac{\mu}{2} \boldsymbol{\nabla}^* \rho \right)$$

FQHE constraint + Hall viscosity

$$H = \int d^2 r \, \frac{\rho(\boldsymbol{v} + \eta \boldsymbol{\nabla}^* \log \rho)^2}{2} + U[\rho] \qquad \quad a_i^* \equiv \epsilon^{ij} a_j$$

with $(\boldsymbol{\nabla}^* W = -\boldsymbol{A})$

$$\rho = \frac{1}{2\pi\beta} \Delta\phi, \qquad \boldsymbol{v} = \boldsymbol{\nabla}\pi - \boldsymbol{\nabla}^*(\phi - W), \qquad \{\pi, \rho'\} = \delta(\boldsymbol{r} - \boldsymbol{r}')$$

gives equations of motion with Hall viscosity

$$\Lambda = \eta \rho_0.$$

FQHE constraint is automatically satisfied

$$\boldsymbol{\nabla} \times \boldsymbol{v} = 2\pi\beta(\rho - \rho_0).$$

Classical Hydrodynamics I

Classical Hamiltonian

$$H_{cl} = \int d^2 z \,\rho \, \frac{1}{2m} \left(\boldsymbol{\nabla} \boldsymbol{\pi} - \boldsymbol{\nabla}^* \left(\phi - W + \frac{\beta - 2}{4} \ln \rho \right) \right)^2$$

produces correct static structure factor $s(k) = \frac{1}{2}k^2\left(1 + \frac{\beta-2}{4}k^2\right)$ and FQHE constraint but wrong Hall viscosity.

Quantum fluctuations should be incorporated into classical (effective) Hamiltonian!

Quantum zero motion \rightarrow Landau diamagnetism!

Classical Hydrodynamics II

$$\begin{array}{l} \text{diamagnetic current } \boldsymbol{j}_{B} = -\frac{1}{2}\boldsymbol{\nabla}^{*}\rho\\ H_{cl} = \int d^{2}z \,\rho \,\left[\frac{1}{2}\left(\boldsymbol{v} - \boxed{\frac{\beta - 2}{4}}\boldsymbol{\nabla}^{*}\ln\rho\right)^{2} + \boxed{\frac{1}{2}}\hbar\omega_{B}\right] \end{array}$$

$$\rho = \frac{1}{2\pi\beta}\Delta\phi$$
 $\{\pi, \rho'\} = \delta(\mathbf{r} - \mathbf{r}'),$

 $\boldsymbol{v} \equiv \boldsymbol{\nabla} \pi - \boldsymbol{\nabla}^*(\phi - W) \rightarrow \text{FQHE constraint: } \boldsymbol{\nabla} \times \boldsymbol{v} = 2\pi\beta(\rho - \rho_0)$

Static structure factor + Hall viscosity $s(k) = \frac{1}{2}k^2 \left(1 + \left[\frac{\beta - 2}{4}\right]k^2\right) \qquad \Lambda = \left(\left[\frac{\beta - 2}{4}\right] + \left[\frac{1}{2}\right]\right)\hbar\rho_0 = \frac{\beta}{4}\hbar\rho_0$

Classical Hydrodynamics II

diamagnetic current
$$\boldsymbol{j}_B = -\frac{1}{2} \boldsymbol{\nabla}^* \rho$$

$$H_{cl} = \int d^2 z \, \rho \, \left[\frac{1}{2} \left(\boldsymbol{v} - \boxed{\frac{\beta - 2}{4}} \boldsymbol{\nabla}^* \ln \rho \right)^2 + \boxed{\frac{1}{2}} \hbar \omega_B \right]$$

$$\rho = \frac{1}{2\pi\beta}\Delta\phi \qquad \qquad \{\pi, \rho'\} = \delta(\boldsymbol{r} - \boldsymbol{r}'),$$

 $\boldsymbol{v} \equiv \boldsymbol{\nabla} \pi - \boldsymbol{\nabla}^*(\phi - W) \rightarrow \text{FQHE constraint: } \boldsymbol{\nabla} \times \boldsymbol{v} = 2\pi\beta(\rho - \rho_0)$

Static structure factor + Hall viscosity $s(k) = \frac{1}{2}k^2\left(1 + \left[\frac{\beta - 2}{4}\right]k^2\right) \qquad \Lambda = \left(\left[\frac{\beta - 2}{4}\right] + \left[\frac{1}{2}\right]\right)\hbar\rho_0 = \frac{\beta}{4}\hbar\rho_0$

Hydrodynamic Lagrangian

$$egin{aligned} L_{cl} &= & -\int d^2x\,
ho\,\left[\dot{\pi}+rac{1}{2}m{v}_{lpha}^2+rac{1}{2}(m{
abla} imesm{A})
ight] & ext{ Main Result} \ m{v}_{lpha} &\equiv m{
abla}\pi+m{A}-m{
abla}^*\left(\phi+lpha\ln
ho
ight). \ &lpha&=rac{eta-2}{4}, \quad \eta=rac{eta}{4}. \end{aligned}$$

True e/m current: $\boldsymbol{j} = \rho \boldsymbol{v}_{\eta}$ FQHE constraint: $\boldsymbol{\nabla} \times \boldsymbol{v}_{\alpha} = 2\pi\beta(\rho - \rho_0) + \alpha\Delta\ln\rho$.

Linear response

- $s(k) = \frac{1}{2}k^2 \left(1 + \frac{\beta 2}{4}k^2\right)$ • Static structure factor 1986 Girvin, MacDonald, Platzman
- Hall viscosity 1995 Avron, Seiler, Zograf; 2007 Tokatly, Vignale; 2009 Read
- Electromagnetic response, e.g., 2011 Hoyos, Son

 $\Lambda = \frac{\beta}{4} \hbar \rho_0$

$$\sigma_H = \frac{1}{2\pi\beta} \left(1 + \frac{\beta - 4}{4} k^2 \right)$$

• other E&M and dynamic response 2006 Tokatly

Linear response

Change of density under small variations of \boldsymbol{E} and \boldsymbol{B}

$$\frac{\delta\rho}{\rho_0} = \frac{\omega_0^2}{\omega^2 - \Omega_k^2} \left[\frac{e}{m\omega_0^2} (\boldsymbol{\nabla} \boldsymbol{E}) - \left(1 - \frac{\eta k^2}{m\omega_0} \right) \frac{\delta\omega_c}{\omega_0} \right]$$

with magnetoplasmon dispersion

$$\frac{\Omega_k^2}{\omega_0^2} = 1 - \frac{\beta - 2}{2} \frac{k^2}{m\omega_0} + \dots$$

Chern-Simons-Ginzburg-Landau theory

1989, Read; Zhang, Hansson and Kivelson

$$L = \Phi^* \left(i\partial_t + a_0 + A_0 - \frac{1}{2m^*} \left(-i\boldsymbol{\nabla} - \boldsymbol{a} - \boldsymbol{A} \right)^2 \right) \Phi + \frac{1}{4\pi\beta} \epsilon^{\mu\nu\lambda} a_\mu \partial_\nu a_\lambda + V(|\Phi|^2)$$

Hydrodynamic form:

Change $\Phi = \sqrt{\rho} e^{i\theta}$ and solve for constraints $\boldsymbol{a} = \boldsymbol{\nabla}(\pi - \theta) + \boldsymbol{\nabla}^* \phi, \qquad \Delta \phi = 2\pi\beta \rho$ $L = -\rho \left[\dot{\pi} + \frac{1}{2} \left(\boldsymbol{\nabla}\pi - \boldsymbol{\nabla}^* \left(\phi - W - \frac{1}{2} \ln \rho \right) \right)^2 + A_0 + \epsilon(\rho) \right]$

UV regularization is missing $\left(-\frac{1}{2} \rightarrow \frac{\beta-2}{4}\right)$.

Extra term is needed: $\sim \frac{\beta}{4} |\Phi|^2 \nabla \times (\boldsymbol{a} + \boldsymbol{A}).$

Quantum Hydrodynamics

$$H = \int d^2x \, \frac{1}{2} \bar{V} \rho V$$
 acts on $\Psi[\rho]$

where

$$V = \bar{\partial} \left[\pi + i \left(\phi - W + \frac{\beta - 2}{4} \ln \rho \right) \right], \qquad \pi = -i \frac{\delta}{\delta \rho}$$

Ground state: $V\Psi_{\beta} = 0$ for

$$\Psi_{\beta}[\rho] = e^{-\frac{1}{2}E_{\beta}[\rho]}$$

with

$$E_{\beta}[\rho] = -\beta \int d^2 z \, d^2 z' \, \rho(z) \ln |z - z'| \rho(z') + 2 \int d^2 z \, \rho \, W + \frac{2 - \beta}{2} \int d^2 z \, \rho \, \ln \rho.$$

The norm of the GS wave function: $||\Psi_{\beta}||^2 = \int [D\rho] e^{-E_{\beta}[\rho]}$

Dyson's argument (2006 Zabrodin, Wiegmann)

Ground state: Laughlin's wave function for filling fraction $\nu = \frac{1}{\beta}$:

$$\Psi_{\beta} = \prod_{j < k} (z_j - z_k)^{\beta} e^{-\sum_j W(z_j, \bar{z}_j)}, \qquad W = \frac{1}{4} |z|^2 + \boxed{W_1(z)}$$

Laughlin's plasma in collective variables

$$\begin{split} \sum_{j \neq k} \ln |z_j - z_k| &\to \int d^2 z \, d^2 z' \, \rho(z) \ln |z - z'| \rho(z') - \int d^2 z \, \rho \, \ln \frac{1}{\sqrt{\rho}} \\ \prod_j d^2 z_j &\to [D\rho] \, \prod_j \frac{1}{\rho(z_j)} \to [D\rho] \, \exp\left[-\int d^2 z \, \rho \ln \rho\right] \end{split}$$

2d Coulomb plasma

Norm - partition function for plasma $||\Psi_{\beta}||^2 = \int [D\rho] e^{-E_{\beta}[\rho]}$ with

$$E_{\beta}[\rho] = -\beta \int d^2 z \, d^2 z' \, \rho(z) \ln |z - z'| \rho(z') + 2 \int d^2 z \, \rho \, W + \frac{2 - \beta}{2} \int d^2 z \, \rho \ln \rho.$$

Sasha Abanov (Stony Brook)

Hydro of FQHE fluid

Equilibrium density

Electrostatic energy

$$E_{\beta}[\rho] = -\beta \int d^2 z \, d^2 z' \, \rho(z) \ln |z - z'| \rho(z') + 2 \int d^2 z \, \rho \, W + \frac{2 - \beta}{2} \int d^2 z \, \rho \, \ln \rho.$$

Electrostatic potential

$$\phi(z) = \beta \int d^2 z' \, \ln |z - z'| \, \rho(z') \qquad \Delta \phi = 2\pi\beta \, \rho$$

Equilibrium

$$\frac{\delta E_{\beta}}{\delta \rho} = 0 \qquad \qquad \phi = W + \frac{2 - \beta}{4} \ln \rho \qquad \qquad \Delta W = B = 2\pi\beta \,\rho_0$$

$$\rho = \rho_0 + \frac{2-\beta}{8\pi\beta} \Delta \ln \rho$$

$$\rho = \rho_0 = \frac{B}{2\pi\beta} = \frac{1}{\beta} \frac{1}{2\pi l_0^2}$$

$$\nu = 1/\beta \text{- filling fraction}$$

Sasha Abanov (Stony Brook)

Hydro of FQHE fluid

July 15, 2013 26 / 31

QFT wave function

Identity for Laughlin's function:

$$\left[\pi + i\left(\phi - W - \frac{2-\beta}{4}\ln\rho\right)\right]\Psi_{\beta} = 0$$
$$\pi = -i\frac{\delta}{\delta\rho} \qquad [\pi(x), \phi(x')] = -i\delta^{(2)}(x - x')$$

More general solution for $V\Psi = 0$ gives Chiral constraint

$$\bar{\partial} \left[\pi + i \left(\phi - W - \frac{2-\beta}{4} \ln \rho \right) \right] = 0$$

This is valid for any "holomorphic" wave function

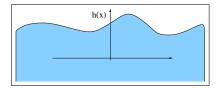
Remarks

Boundary dynamics

Boundary dynamics

(dispersionless case)

$$\bar{\partial} \left[\pi + i \left(\phi - W - \frac{2 - \beta}{4} \ln \rho \right) \right] = 0 - \text{chiral constraint}$$
$$\pi + i \left(\phi - W - \frac{2 - \beta}{4} \ln \rho \right) = V(z, t) - \text{analytic}$$



$$V(z,t) \rightarrow h(x,t)$$
 – boundary
 $H = \int d^2 r \, \rho \, A_0$ – dynamics

 $h_t + A'_0 h_x + A''_0 h h_x = 0$ – incompressible droplet Iso, Rey, 1995 Hall viscosity \rightarrow boundary profile \rightarrow dispersive corrections!

Hydro of FQHE fluid

1D Calogero-Sutherland model

Calogero model in harmonic potential

$$H = \frac{1}{2} \sum_{j} (p_j^2 + x_j^2) + \frac{1}{2} \sum_{j < k} \frac{\lambda(\lambda - 1)}{(x_j - x_k)^2}$$

The ground state wave function

$$\Psi_0 = \prod_{j < k} (x_j - x_k)^{\lambda} e^{-\frac{1}{2}\sum_j x_j^2}$$

Collective field theory

$$H = \int dx \, \left(\frac{\rho v^2}{2} + \rho \epsilon(\rho)\right)$$

$$\epsilon(\rho) = \frac{1}{2} \left[\pi \lambda \rho^H - (\lambda - 1) \partial_x \ln \sqrt{\rho} + x \right]^2$$

Sasha Abanov (Stony Brook)

Hydrodynamics of 1D Calogero-Sutherland model

Hydrodynamics for Calogero model in harmonic potential

$$H = \int dx \; \rho \, \frac{1}{2} |\partial_x \Phi|^2$$

$$\Phi = \pi - i\left(\phi - W + \frac{\lambda - 1}{2}\ln\rho\right)$$

Here $\phi = \int dx' \log |x - x'| \rho(x')$, $W = x^2/2$ and λ is Calogero coupling constant ($\lambda = 1$ for free fermions).

FQHE

$$\Phi = \pi - i\left(\phi - W + \frac{\beta - 2}{4}\ln\rho\right)$$

Conclusions

() Hamiltonian formulation for FQHE hydrodynamics is constructed

- ► FQHE constraint
- Hall viscosity
- Linear response
- ▶ Correspondence to Chern-Simons-Ginzburg-Landau
- ▶ Connection to Laughlin's function and quantum hydro

2 Chiral constraint and boundary dynamics of FQHE droplet

³ Analogies with Calogero-Sutherland model

Conclusions

() Hamiltonian formulation for FQHE hydrodynamics is constructed

- ► FQHE constraint
- Hall viscosity
- Linear response
- ▶ Correspondence to Chern-Simons-Ginzburg-Landau
- ▶ Connection to Laughlin's function and quantum hydro
- **2** Chiral constraint and boundary dynamics of FQHE droplet

3 Analogies with Calogero-Sutherland model

Conclusions

() Hamiltonian formulation for FQHE hydrodynamics is constructed

- ► FQHE constraint
- Hall viscosity
- Linear response
- ▶ Correspondence to Chern-Simons-Ginzburg-Landau
- ▶ Connection to Laughlin's function and quantum hydro
- **2** Chiral constraint and boundary dynamics of FQHE droplet
- **③** Analogies with Calogero-Sutherland model