Fluctuations and Extreme Values in Multifractal Patterns¹

Yan V Fyodorov

School of Mathematical Sciences

Queen Mary

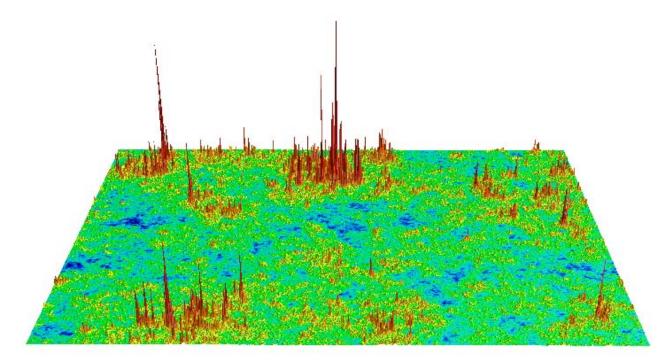
Project supported by the EPSRC grant EP/J002763/1

D.I. Diakonov memorial symposium, St. Petersburg, 13/08/2013

¹Based on: **YVF**, **P Le Doussal** and **A Rosso** J Stat Phys: **149** (2012), 898-920

Disorder-generated multifractals:

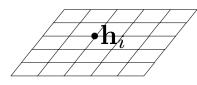
Disorder-generated multifractal patterns display high variability over a wide range of space or time scales, associated with huge fluctuations in intensity which can be visually detected. Another common feature is presence of certain long-ranged **powerlaw-type correlations** in data values.



Intensity of a multifractal wavefunction at the point of Integer Quantum Hall Effect. Courtesy of F. Evers, A. Mirlin and A. Mildenberger.

Multifractal Ansatz:

Consider a certain (e.g. hypercubic) lattice of linear extent L and lattice spacing a in d-dimensional space, with $M \sim (L/a)^d \gg 1$ being the total number of sites in the lattice. The multifractal patterns are then usually associated with a set of non-negative "heights" $h_i \ge 0$ attributed to every lattice site $i = 1, 2, \ldots, M$ such that the heights scale in the limit $M \to \infty$ differently at different sites:

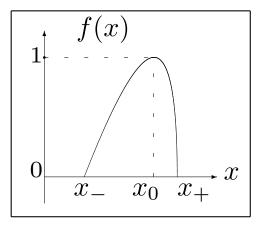


$$h_i \ge 0, \quad h_i \sim M^{x_i}$$

with exponents x_i forming a dense set such that

$$\rho_M(x) = \sum_{i=1}^M \delta\left(\frac{\ln h_i}{\ln M} - x\right) \approx c_M(x)\sqrt{\ln M} M^{f(x)}$$

We will refer below to the above form of the density as the **multifractal Ansatz**.



The major effort in the last decades was directed towards determining the shape and properties of the **singularity spectrum** function f(x). In contrast, our main object of interest will be understanding the sample-to-sample fluctuations of the prefactor $c_M(x)$ in disorder-generated multifractal patterns like those in the field of **Anderson localization**. Such fluctuations are reflected in statistics of the number of lattice points *i* satisfying $h_i > M^x$ which is given by the **counting function**

$$\mathcal{N}_M(x) = \int_x^\infty
ho_M(y) \, dy.$$

Thermodynamic formalism for multifractals:

When dealing with multifractal patterns it is frequently more convenient to characterize them by the set of exponents ζ_q describing the large-M scaling behaviour of the so-called **partition functions**

$$Z_q = \sum_{i=1}^M h_i^q \sim M^{\zeta_q}, \quad \ln M \gg 1$$

The counting function $\mathcal{N}_M(x)$ is related to the partition function Z_q via the common density $\rho_M(y)$ as

$$\mathcal{N}_M(x) = \int_x^\infty \rho_M(y) \, dy, \quad Z_q = \int_{-\infty}^\infty M^{qy} \rho_M(y) \, dy$$

Substituting for $\rho_M(y)$ the multifractal Ansatz form $\rho_M(y) \approx c_M(y) \sqrt{\ln M} M^{f(y)}$ we get for $\ln M \gg 1$

$$\mathcal{N}_M(x) \approx \frac{c_M(x)}{|f'(x)|\sqrt{\ln M}} M^{f(x)}, \quad Z_q \approx c_M(y_*) \sqrt{\frac{2\pi}{|f''(y_*)|}} M^{\zeta_q}$$

where $f'(y_*) = -q$ and $\zeta_q = f(y_*) + q y_*$ are related by the Legendre transform.

Conclusion: The fluctuation properties of the **counting function** $N_M(x)$ and the **partition function** Z_q can be related to each other via the statistics of the common prefactor $c_M(x)$.

From disorder-generated multifractals to log-correlated fields:

As discussed e.g. in **Duplantier**, **Ludwig** 1991 disorder-generated multifractal patterns of intensities $h(\mathbf{r})$ are typically **self-similar**

$$\mathbb{E}\left\{h^{q}(\mathbf{r_{1}})h^{s}(\mathbf{r_{2}})\right\} \propto \left(\frac{L}{a}\right)^{y_{q,s}} \left(\frac{|\mathbf{r_{1}}-\mathbf{r_{2}}|}{a}\right)^{-z_{q,s}}, \quad q,s \ge 0, \quad a \ll |\mathbf{r_{1}}-\mathbf{r_{2}}| \ll L$$

and spatially homogeneous

$$\mathbb{E}\left\{h^{q}(\mathbf{r_{1}})\right\} = \frac{1}{M}Z_{q}, \text{ with } M = \left(\frac{L}{a}\right)^{d} \text{ and } Z_{q} = \sum_{\mathbf{r}}h^{q}(\mathbf{r}) \propto \left(\frac{L}{a}\right)^{d\zeta_{q}}$$

The consistency of the two conditions for $|\mathbf{r}_1 - \mathbf{r}_2| \sim a$ and $|\mathbf{r}_1 - \mathbf{r}_2| \sim L$ implies:

$$y_{q,s} = d(\zeta_{q+s} - 1), \quad z_{q,s} = d(\zeta_{q+s} - \zeta_q - \zeta_s + 1)$$

If we now introduce the field $V(\mathbf{r}) = \ln h(\mathbf{r}) - \mathbb{E} \{\ln h(\mathbf{r})\}$ and exploit the identities $\frac{d}{ds}h^s|_{s=0} = \ln h$ and $\zeta_0 = 1$ we arrive at the relation:

$$\mathbb{E}\left\{V(\mathbf{r_1})V(\mathbf{r_2})\right\} = -g^2 \ln \frac{|\mathbf{r_1} - \mathbf{r_2}|}{L}, \quad g^2 = d\frac{\partial^2}{\partial s \partial q} \zeta_{q+s}|_{s=q=0}$$

Conclusion: logarithm of a multifractal intensity is a **log**-correlated random field.

Strategy: To understand statistics of **high values** and **positions of extremes** of general logarithmically correlated random processes and fields we first consider the simplest case of such process which is the **Gaussian** 1/f **noise**.

Ideal Gaussian periodic 1/f noise:

We will use a (regularized) model for ideal Gaussian periodic 1/f noise defined as

$$V(t) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left[v_n e^{int} + \overline{v}_n e^{-int} \right], \quad t \in [0, 2\pi)$$

where v_n, \overline{v}_n are complex standard Gaussian i.i.d. with $\mathbb{E}\{v_n\overline{v}_n\} = 1$. It implies the formal covariance structure:

$$\mathbb{E}\left\{V(t_1)V(t_2)\right\} = -2\ln|2\sin\frac{t_1-t_2}{2}|, \quad t_1 \neq t_2$$

Regularization procedure (YVF & Bouchaud 2008): subdivide the interval $[0, 2\pi)$ by a finite number M of observation points $t_k = \frac{2\pi}{M}k$ where $k = 1, \ldots, M$, and replace the function $V(t), t \in [0, 2\pi)$ with a sequence of M random mean-zero Gaussian variables V_k correlated according to the $M \times M$ covariance matrix $C_{km} = \mathbb{E} \{V_k V_m\}$ such that the off-diagonal entries are given by

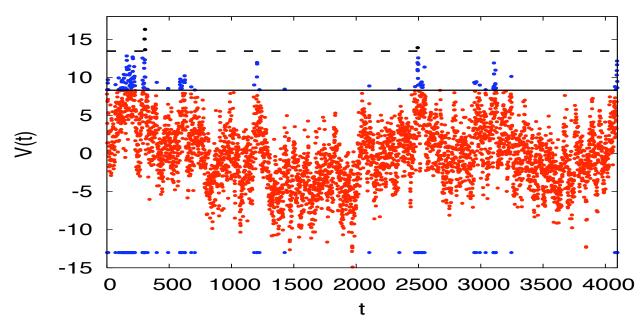
$$C_{k\neq m} = -2\ln|2\sin\frac{\pi}{M}(k-m)|, \quad C_{kk} = \mathbb{E}\left\{V_k^2\right\} > 2\ln M, \quad \forall k = 1, \dots, M$$

The model is well defined, and we will actually take $C_{kk} = 2 \ln M + \epsilon$, $\forall k$ with $\epsilon \ll 1$. We expect that the statistical properties of the sequence V_k generated in this way reflect for $M \to \infty$ correctly the universal features of the 1/f noise.

The multifractal pattern of heights is then generated by setting $h_i = e^{V_i}$ for each i = 1, ..., M.

Circular-logarithmic model (YF & Bouchaud 2008):

An example of the 1/f signal sequence generated for M = 4096 according to the above prescription is given in the figure.



The upper line marks the typical value of the **extreme value threshold** $V_m = 2 \ln M - \frac{3}{2} \ln \ln M$. The lower line is the level $\frac{1}{\sqrt{2}}V_m$ and blue dots mark points supporting $V_i > \frac{1}{\sqrt{2}}V_m$.

Questions we would like to answer: How many points are typically above a given level of the noise? How strongly does this number fluctuate for $M \to \infty$ from one realization to the other? How to understand the typical position V_m and statistics of the extreme values (maxima or minima), etc. And, after all, what parts of the answers are universal and what is the universality class?

Characteristic polynomial of random CUE matrix and periodic 1/f noise:

Let U_N be a $N \times N$ unitary matrix, chosen at random from the unitary group $\mathcal{U}(N)$. Introduce its characteristic polynomial $p_N(\theta) = \det (1 - U_N e^{-i\theta})$ and further consider $V_N(\theta) = -2\log |p_N(\theta)|$. Following Hughes, Keating & O'Connell 2001 one can employ the following representation

$$\begin{split} V_N^{(U)}(\theta) &= -2\log|p_N(\theta)| = \sum_{n=1}^\infty \tfrac{1}{\sqrt{n}} \left[e^{-in\theta} v_n^{(N)} + \text{comp. conj.} \right] \\ \text{where} \quad v_n^{(N)} &= \tfrac{1}{\sqrt{n}} \text{Tr} \left(U_N^{-n} \right). \end{split}$$

According to **Diaconis** & **Shahshahani** 1994 the coefficients $v_n^{(N)}$ for any fixed n tend in the limit $N \to \infty$ to i.i.d. complex gaussian variables with zero mean and variance $\mathbb{E}\{|\zeta_n|^2\} = 1$. We conclude that for finite N Log-Mod of the characteristic polynomial of CUE matrices is just a **certain regularization** of the stationary random **Gaussian Fourier series** of the form

$$V(t) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left[v_n e^{int} + \overline{v}_n e^{-int} \right], \quad t \in [0, 2\pi)$$

where v_n, \overline{v}_n are complex standard Gaussian i.i.d. with $\mathbb{E}\{v_n\overline{v}_n\}=1$.

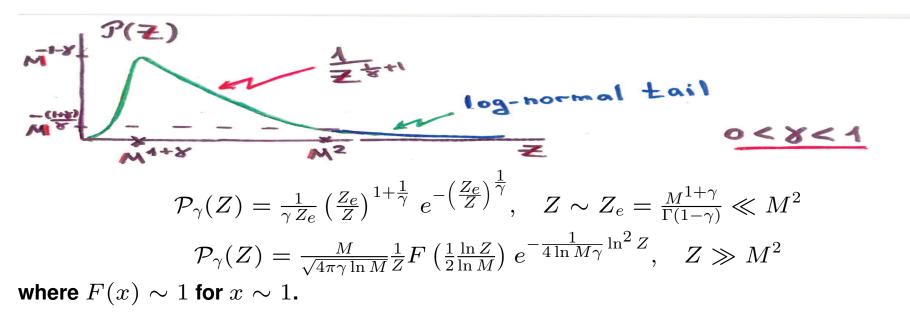
Random characteristic polynomials provide natural models for 1/f noise!

The distribution of the partition function $Z_q = \sum_{i=1}^M h_i^q$, $h_i = e^{V_i}$: For $M \gg 1$ the positive integer moments $\mathbb{E}\{Z_q^n\}$ for $q^2 < 1$ are given by $\mathbb{E}\left\{Z_q^n\right\}|_{M\gg 1} \approx \begin{cases} e^{n\ln M(1+q^2)} S_n(q^2) , & n < 1/q^2 \\ e^{\ln M(1+n^2q^2)} O(1) , & n > 1/q^2 \end{cases}$

where

$$S_n(q^2) = \frac{n!}{\pi^n} \int_0^{\pi} d\theta_1 \int_{\theta_1}^{\pi} d\theta_2 \int_{\theta_2}^{\pi} d\theta_3 \dots \int_{\theta_{n-1}}^{\pi} d\theta_n \prod_{p < q}^{n} \left[2\sin\left(\theta_p - \theta_q\right) \right]^{-2q^2}$$
$$= \frac{\Gamma(1 - nq^2)}{\Gamma^n(1 - q^2)} \quad \text{for } 1 < n < 1/q^2 \quad \text{- Dyson-Morris-Selberg integral.}$$

One can use the above moments to restore the shape of the probability density $\mathcal{P}_q(Z)$ for the partition function $Z = Z_q$ in the whole domain $\gamma = q^2 < 1$:



Statistics of the counting function $\mathcal{N}_M(x)$ and threshold of extreme values:

Applying the thermodynamic formalism in our particular case we conclude that the probability density for the (scaled) counting function $n = N_M(x)/N_t(x)$ is given by:

$$\mathcal{P}_x(n) = \frac{4}{x^2} n^{-\left(1 + \frac{4}{x^2}\right)} e^{-n^{-\frac{4}{x^2}}}, \quad n \ll n_c, \quad 0 < x < 2.$$

with $n_c \to \infty$ for $M \to \infty$ and the characteristic scale $\mathcal{N}_t(x)$ given by

$$\mathcal{N}_t(x) = rac{M^{f(x)}}{x\sqrt{\pi \ln M}} rac{1}{\Gamma(1-x^2/4)}$$
 with the singularity spectrum $f(x) = 1 - x^2/4$.

In particular, the position x_m of the **threshold of extreme values** is determined from the condition $\mathcal{N}_t(x) \sim 1$. This results in

$$x_m = 2 - c \frac{\ln \ln M}{\ln M} + O(1/\ln M)$$
 with $c = 3/2$.

Note that $\mathcal{N}_t(x) = \mathbb{E} \{\mathcal{N}_M(x)\} \frac{1}{\Gamma(1-x^2/4)}$. Had we instead decided to use the condition $\mathbb{E} \{\mathcal{N}_M(x)\} \sim 1$ that would give $x_m = 2 - c \frac{\ln \ln M}{\ln M} + O(1/\ln M)$ with c = 1/2. The latter value is typical for **short-ranged** random sequences. The difference is due to the fact that for $x \to 2$ the **typical** value $\mathcal{N}_t(x)$ of the counting function is parametrically smaller than the **mean** value $\mathbb{E} \{\mathcal{N}_M(x)\}$. We conjecture that this mechanism is common to all **logarithmically-correlated** processes and fields.

Distribution of the absolute maximum: partition function approach:

Given the sequence $\{V_i, i = 1, ..., M\}$ we are interested in finding the **distribution** of $V_{(m)} = \max(V_1, ..., V_M)$ that is

$$P(v) = \operatorname{Prob}(V_{(m)} < v) = \operatorname{Prob}(V_i < v, \forall i) = \mathbb{E}\left\{\prod_{i=1}^M \theta(v - V_i)\right\}$$

Next we use:
$$\lim_{q \to \infty} \exp\left[-e^{-q(v - V_i)}\right] = \left\{\begin{array}{cc}1 & v > V_i\\0 & v < V_i\end{array} \equiv \theta(v - V_i)\right\}$$

which immediately shows that:

$$P(v) = \operatorname{Prob}(V_{(m)} < v) = \lim_{q \to \infty} \mathbb{E} \{ \exp[-e^{-qv}Z_q] \}, \text{ where } Z_q = \sum_{i=1} e^{qV_i}$$

From our previous knowledge of statistics of Z_q we can readily extract the function $G_q(v) = \mathbb{E}\left\{\exp\left[-e^{-qv}Z_q\right]\right\}$ for q < 1. In the limit $\ln M \gg 1$ that function turns out to be of the form:

$$G_q(v) = g_q \left(v - c_q \ln M \right) \text{ where } c_q = \left(q + \frac{1}{q} \right) \text{ and } g_q(v) = \int_0^\infty dt \exp\left\{ -t - e^{-qv} t^{-q^2} \right\}$$

One may further notice that not only $c_q = c_{q-1}$ but the whole function satisfies a quite remarkable duality relation

$$g_{q}(v) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \left[e^{-nqv} \Gamma(1 - nq^{2}) + e^{-n\frac{v}{q}} \Gamma\left(1 - \frac{n}{q^{2}}\right) \right] = g_{\frac{1}{q}}(x)$$

THIS HOWEVER STILL DOES NOT ALLOW TO CONTINUE TO q > 1!

Freezing conjecture and the distribution of extremes:

Using certain analogy with the **Derrida-Spohn** model of polymers on disordered trees we conjecture the following **freezing scenario**: for the log-circular model the same sort of **freezing transition** takes place at q = 1. Namely, the function

$$g_{q<1}(v) = \int_0^\infty dt \exp\left\{-t - e^{-qv}t^{-q^2}\right\}$$

freezes to the q-independent profile $g_{q=1}(v) = 2e^{-v/2}K_1(2e^{-v/2})$ in the whole "glassy" phase q > 1.

Consequences:

(i) The latter profile then is precisely the distribution P(v) of the (shifted) absolute maximum: $V_m = 2 \ln M - \frac{3}{2} \ln \ln M + v$. This distribution is manifestly **non-Gumbel**, and shows the tail behaviour: $P(v \to -\infty) \approx 1 - |v|e^v$

(ii) The probability density of the partition function Z_q in the whole regime q > 1 must display a power-law forward tail of the form:

$$\mathcal{P}_{q>1}(Z) \propto Z^{-\left(1+\frac{1}{q}\right)} \ln Z$$

This shape, including the meaningful **log-factor**, is believed to be **universal** for the whole class of logarithmically correlated processes.

Numerics for the maxima of CUE characteristic polynomials:

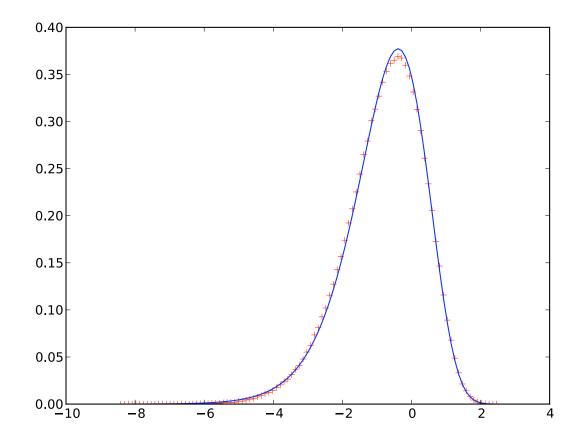


Figure 1: Density of maxima for CUE polynomials ($N = 50, 10^6$ samples) compared to periodic 1/f noise prediction $p(v) = 2e^v K_0 (2e^{v/2})$.

Threshold of extreme values for self-similar multifractal fields:

Conjecture: the value $c = \frac{3}{2}$ is a universal feature of systems with **logarithmic** correlations.

Apart from 1/f noise and its incarnations (characteristic polynomials of random matrices, Riemann zeta-function along the critical line, and random Young diagrams sampled with the Plancherel measure) the new universality class is believed to include the 2D Gaussian free field, branching random walks & polymers on disordered trees, some models in turbulence and financial mathematics and, with due modifications the **disorder-generated multifractals**.

Namely, consider a multifractal random probability measure $p_i \sim M^{-\alpha_i}$, $i = 1, \ldots, M$ such that $\sum_{i=1}^{M} p_i = 1$ characterized by a general non-parabolic singularity spectrum $f(\alpha)$ with the left endpoint at $\alpha = \alpha_- > 0$. Then very similar consideration based on insights from Mirlin & Evers 2000 suggests that the extreme value threshold should be given by $p_m = M^{-\alpha_m}$, where α_m is given by

$$\alpha_m \approx \alpha_- + \frac{3}{2} \frac{1}{f'(\alpha_-)} \frac{\ln \ln M}{\ln M} \quad \Rightarrow -\ln p_m \approx \alpha_- \ln M + \frac{3}{2} \frac{1}{f'(\alpha_-)} \ln \ln M$$

For branching random walks this was recently rigorously proved: L. Addario-Berry & B. Reed2009; E. Aidekon 2012

Threshold of extreme values for self-similar multifractal fields:

Work in progress: testing such a prediction for multifractal eigenvectors of a $N \times N$ random matrix ensemble introduced by E. Bogomolny & O. Giraud, *Phys. Rev. Lett.* **106** 044101 (2011) based on **Rujsenaars-Schneider** model of N interacting particles. Preliminary numerics is supportive of the theory.

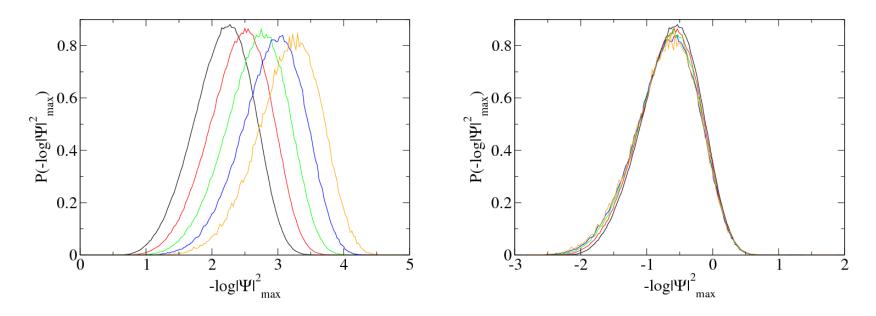


Figure 2: Statistics of maxima for eigenvectors of RS model for sample sizes $M = 2^n$ with n = 8, ..., 12. left: raw data right: each curve is shifted by $\alpha_{-} \ln M + \frac{3}{2} \frac{1}{f'(\alpha_{-})} \ln \ln M$; data by Olivier Giraud

OTHER FACETS OF THE SAME STORY:

- Statistics of high values of Riemann $\zeta(1/2 + it)$ YVF, G Hiary, J Keating Phys.Rev.Lett. 108, 170601 (2012) & arXiv:1211.6063
- Fluctuations of the shape of Young diagrams sampled with the Plancherel measure. YF & S. Nechaev, in progress.