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Disorder-generated multifractals:

Disorder-generated multifractal patterns display high variability over a wide range
of space or time scales, associated with huge fluctuations in intensity which can
be visually detected. Another common feature is presence of certain long-ranged
powerlaw-type correlations in data values.

Intensity of a multifractal wavefunction at the point of Integer Quantum Hall Effect.

Courtesy of F. Evers, A. Mirlin and A. Mildenberger.



Multifractal Ansatz:

Consider a certain (e.g. hypercubic) lattice of linear extent L and lattice spacing a in d−dimensional

space, withM ∼ (L/a)d � 1 being the total number of sites in the lattice. The multifractal patterns

are then usually associated with a set of non-negative "heights" hi ≥ 0 attributed to every lattice site

i = 1, 2, . . . ,M such that the heights scale in the limit M →∞ differently at different sites:

t hi ≥ 0, hi ∼Mxi

with exponents xi forming a dense set such that

ρM(x) =
∑M
i=1 δ

(
lnhi
lnM − x

)
≈ cM(x)

√
lnMMf(x)

We will refer below to the above form of the density as the
multifractal Ansatz.
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The major effort in the last decades was directed towards determining the shape and properties of the

singularity spectrum function f(x). In contrast, our main object of interest will be understanding the

sample-to-sample fluctuations of the prefactor cM(x) in disorder-generated multifractal patterns like

those in the field of Anderson localization. Such fluctuations are reflected in statistics of the number

of lattice points i satisfying hi > Mx which is given by the counting function

NM(x) =
∫∞
x
ρM(y) dy.



Thermodynamic formalism for multifractals:

When dealing with multifractal patterns it is frequently more convenient to
characterize them by the set of exponents ζq describing the large-M scaling
behaviour of the so-called partition functions

Zq =
∑M
i=1 h

q
i ∼M ζq , lnM � 1

The counting function NM(x) is related to the partition function Zq via the common
density ρM(y) as

NM(x) =
∫∞
x

ρM(y) dy, Zq =
∫∞
−∞M

qyρM(y) dy

Substituting for ρM(y) the multifractal Ansatz form ρM(y) ≈ cM(y)
√

lnMMf(y)

we get for lnM � 1

NM(x) ≈ cM(x)

|f ′(x)|
√

lnM
Mf(x), Zq ≈ cM(y∗)

√
2π

|f ′′(y∗)|M
ζq

where f ′(y∗) = −q and ζq = f(y∗) + q y∗ are related by the Legendre transform.

Conclusion: The fluctuation properties of the counting function NM(x) and the
partition function Zq can be related to each other via the statistics of the common
prefactor cM(x).



From disorder-generated multifractals to log-correlated fields:

As discussed e.g. in Duplantier, Ludwig 1991 disorder-generated multifractal
patterns of intensities h(r) are typically self-similar

E {hq(r1)hs(r2)} ∝
(
L
a

)yq,s (|r1−r2|
a

)−zq,s
, q, s ≥ 0, a� |r1 − r2| � L

and spatially homogeneous

E {hq(r1)} = 1
M Zq, with M =

(
L
a

)d
and Zq =

∑
r h

q(r) ∝
(
L
a

)dζq
The consistency of the two conditions for |r1 − r2| ∼ a and |r1 − r2| ∼ L implies:

yq,s = d(ζq+s − 1), zq,s = d(ζq+s − ζq − ζs + 1)

If we now introduce the field V (r) = lnh(r)− E {lnh(r)} and exploit the identities
d
dsh

s|s=0 = lnh and ζ0 = 1 we arrive at the relation:

E {V (r1)V (r2)} = −g2 ln |r1−r2|
L , g2 = d ∂2

∂s∂qζq+s|s=q=0

Conclusion: logarithm of a multifractal intensity is a log-correlated random field.

Strategy: To understand statistics of high values and positions of extremes of
general logarithmically correlated random processes and fields we first consider the
simplest case of such process which is the Gaussian 1/f noise.



Ideal Gaussian periodic 1/f noise:

We will use a (regularized) model for ideal Gaussian periodic 1/f noise defined as

V (t) =
∑∞
n=1

1√
n

[
vne

int + vne
−int] , t ∈ [0, 2π)

where vn, vn are complex standard Gaussian i.i.d. with E{vnvn} = 1. It implies
the formal covariance structure:

E {V (t1)V (t2)} = −2 ln |2 sin t1−t2
2 |, t1 6= t2

Regularization procedure (YVF & Bouchaud 2008): subdivide the interval [0, 2π)
by a finite number M of observation points tk = 2π

M k where k = 1, . . . ,M , and
replace the function V (t), t ∈ [0, 2π) with a sequence of M random mean-zero
Gaussian variables Vk correlated according to the M ×M covariance matrix
Ckm = E {VkVm} such that the off-diagonal entries are given by

Ck 6=m = −2 ln |2 sin π
M (k −m)|, Ckk = E

{
V 2
k

}
> 2 lnM, ∀k = 1, . . . ,M

The model is well defined, and we will actually take Ckk = 2 lnM + ε, ∀k with
ε� 1. We expect that the statistical properties of the sequence Vk generated in this
way reflect for M →∞ correctly the universal features of the 1/f noise.

The multifractal pattern of heights is then generated by setting hi = eVi for each
i = 1, . . . ,M .



Circular-logarithmic model (YF & Bouchaud 2008):

An example of the 1/f signal sequence generated for M = 4096 according to the
above prescription is given in the figure.

-15

-10

-5

 0

 5

 10

 15

 0  500  1000 1500  2000 2500 3000 3500 4000

V(t
) 

t

The upper line marks the typical value of the extreme value threshold Vm = 2 lnM − 3
2 ln lnM .

The lower line is the level 1√
2
Vm and blue dots mark points supporting Vi > 1√

2
Vm.

Questions we would like to answer: How many points are typically above a given level of

the noise? How strongly does this number fluctuate for M → ∞ from one realization to the other?

How to understand the typical position Vm and statistics of the extreme values (maxima or minima),

etc. And, after all, what parts of the answers are universal and what is the universality class?



Characteristic polynomial of random CUE matrix and periodic 1/f noise:

Let UN be aN×N unitary matrix, chosen at random from the unitary group U(N).
Introduce its characteristic polynomial pN(θ) = det

(
1− UN e−iθ

)
and further

consider VN(θ) = −2 log |pN(θ)|. Following Hughes, Keating & O’Connell 2001
one can employ the following representation

V
(U)
N (θ) = −2 log |pN(θ)| =

∑∞
n=1

1√
n

[
e−inθv

(N)
n + comp. conj.

]
where v

(N)
n = 1√

n
Tr
(
U−nN

)
.

According to Diaconis & Shahshahani 1994 the coefficients v(N)
n for any fixed n

tend in the limit N → ∞ to i.i.d. complex gaussian variables with zero mean and
variance E{|ζn|2} = 1. We conclude that for finite N Log-Mod of the characteristic
polynomial of CUE matrices is just a certain regularization of the stationary random
Gaussian Fourier series of the form

V (t) =
∑∞
n=1

1√
n

[
vne

int + vne
−int] , t ∈ [0, 2π)

where vn, vn are complex standard Gaussian i.i.d. with E{vnvn} = 1.

Random characteristic polynomials provide natural models for 1/f noise!



The distribution of the partition function Zq =
∑M
i=1 h

q
i , hi = eVi:

For M � 1 the positive integer moments E{Zn
q } for q2 < 1 are given by

E
{
Zn
q

}
|M�1 ≈

{
en lnM(1+q2) Sn(q2) , n < 1/q2

elnM(1+n2q2)O(1) , n > 1/q2

where

Sn(q2) = n!
πn

∫ π
0
dθ1

∫ π
θ1
dθ2

∫ π
θ2
dθ3 . . .

∫ π
θn−1

dθn
∏n

p<q [2 sin (θp − θq))]−2q2
.

= Γ(1−nq2)

Γn(1−q2)
for 1 < n < 1/q2 - Dyson-Morris-Selberg integral.

One can use the above moments to restore the shape of the probability density Pq(Z) for the
partition function Z = Zq in the whole domain γ = q2 < 1:

Pγ(Z) = 1
γ Ze

(
Ze
Z

)1+1
γ e
−
(
Ze
Z

)1
γ

, Z ∼ Ze = M1+γ

Γ(1−γ) �M2

Pγ(Z) = M√
4πγ lnM

1
ZF
(

1
2

lnZ
lnM

)
e
− 1

4 lnMγ
ln2 Z

, Z �M2

where F (x) ∼ 1 for x ∼ 1.



Statistics of the counting function NM(x) and threshold of extreme values:

Applying the thermodynamic formalism in our particular case we conclude that the
probability density for the (scaled) counting function n = NM(x)/Nt(x) is given by:

Px(n) = 4
x2 n

−
(

1+ 4
x2

)
e−n

− 4
x2
, n� nc, 0 < x < 2 .

with nc →∞ for M →∞ and the characteristic scale Nt(x) given by

Nt(x) = Mf(x)

x
√
π lnM

1
Γ(1−x2/4)

with the singularity spectrum f(x) = 1− x2/4.

In particular, the position xm of the threshold of extreme values is determined from
the condition Nt(x) ∼ 1. This results in

xm = 2− c ln lnM
lnM +O(1/ lnM) with c = 3/2.

Note that Nt(x) = E {NM(x)} 1
Γ(1−x2/4)

. Had we instead decided to use the

condition E {NM(x)} ∼ 1 that would give xm = 2 − c ln lnM
lnM + O(1/ lnM) with

c = 1/2. The latter value is typical for short-ranged random sequences. The
difference is due to the fact that for x → 2 the typical value Nt(x) of the counting
function is parametrically smaller than the mean value E {NM(x)}. We conjecture
that this mechanism is common to all logarithmically-correlated processes and
fields.



Distribution of the absolute maximum: partition function approach:

Given the sequence{Vi, i = 1, . . . ,M} we are interested in finding the distribution
of V(m) = max(V1, . . . , VM) that is

P (v) = Prob(V(m) < v) = Prob(Vi < v, ∀i) = E
{∏M

i=1 θ(v − Vi)
}

Next we use: limq→∞ exp
[
−e−q(v−Vi)

]
=
{

1 v > Vi
0 v < Vi

≡ θ(v − Vi)

which immediately shows that:

P (v) = Prob(V(m) < v) = limq→∞E {exp [−e−qvZq]} , where Zq =
∑
i=1 e

qVi

From our previous knowledge of statistics of Zq we can readily extract the function Gq(v) =

E
{

exp
[
−e−qvZq

]}
for q < 1. In the limit lnM � 1 that function turns out to be of the form:

Gq(v) = gq (v − cq lnM) where cq =
(
q + 1

q

)
and gq(v) =

∫∞
0
dt exp

{
−t− e−qvt−q

2
}

One may further notice that not only cq = cq−1 but the whole function satisfies a quite remarkable

duality relation

gq(v) = 1 +
∑∞

n=1
(−1)n

n!

[
e−nqvΓ(1− nq2) + e−n

v
qΓ
(

1− n
q2

)]
= g1

q
(x)

THIS HOWEVER STILL DOES NOT ALLOW TO CONTINUE TO q > 1!



Freezing conjecture and the distribution of extremes:

Using certain analogy with the Derrida-Spohn model of polymers on disordered
trees we conjecture the following freezing scenario: for the log−circular model the
same sort of freezing transition takes place at q = 1. Namely, the function

gq<1(v) =
∫∞

0
dt exp

{
−t− e−qvt−q2

}
freezes to the q−independent profile gq=1(v) = 2e−v/2K1(2e−v/2) in the whole
"glassy" phase q > 1.

Consequences:
(i) The latter profile then is precisely the distribution P (v) of the (shifted) absolute
maximum: Vm = 2 lnM− 3

2 ln lnM+v. This distribution is manifestly non-Gumbel,
and shows the tail behaviour: P (v → −∞) ≈ 1− |v|ev

(ii) The probability density of the partition function Zq in the whole regime q > 1 must
display a power-law forward tail of the form:

Pq>1(Z) ∝ Z−(1+1
q) lnZ

This shape, including the meaningful log-factor, is believed to be universal for the
whole class of logarithmically correlated processes.



Numerics for the maxima of CUE characteristic polynomials:

Figure 1: Density of maxima for CUE polynomials ( N = 50, 106samples ) compared to periodic 1/f noise

prediction p(v) = 2evK0(2ev/2).



Threshold of extreme values for self-similar multifractal fields:

Conjecture: the value c = 3
2 is a universal feature of systems with logarithmic

correlations.

Apart from 1/f noise and its incarnations (characteristic polynomials of random
matrices, Riemann zeta-function along the critical line, and random Young diagrams
sampled with the Plancherel measure) the new universality class is believed to
include the 2D Gaussian free field, branching random walks & polymers on
disordered trees, some models in turbulence and financial mathematics and, with
due modifications the disorder-generated multifractals.

Namely, consider a multifractal random probability measure pi ∼ M−αi, i =
1, . . . ,M such that

∑M
i=1 pi = 1 characterized by a general non-parabolic

singularity spectrum f(α) with the left endpoint at α = α− > 0. Then very similar
consideration based on insights from Mirlin & Evers 2000 suggests that the extreme
value threshold should be given by pm = M−αm, where αm is given by

αm ≈ α− + 3
2

1
f ′(α−)

ln lnM
lnM ⇒ − ln pm ≈ α− lnM + 3

2
1

f ′(α−) ln lnM
For branching random walks this was recently rigorously proved: L. Addario-Berry & B. Reed2009;

E. Aidekon 2012



Threshold of extreme values for self-similar multifractal fields:

Work in progress: testing such a prediction for multifractal eigenvectors of a N ×
N random matrix ensemble introduced by E. Bogomolny & O. Giraud, Phys. Rev.
Lett. 106 044101 (2011) based on Rujsenaars-Schneider model of N interacting
particles. Preliminary numerics is supportive of the theory.

Figure 2: Statistics of maxima for eigenvectors of RS model for sample sizes M = 2n with n = 8, . . . , 12.

left: raw data right: each curve is shifted by α− lnM + 3
2

1
f ′(α−)

ln lnM ; data by Olivier Giraud



OTHER FACETS OF THE SAME STORY:

• Statistics of high values of Riemann ζ(1/2 + it)
YVF, G Hiary, J Keating
Phys.Rev.Lett. 108 , 170601 (2012) & arXiv:1211.6063

• Fluctuations of the shape of Young diagrams
sampled with the Plancherel measure. YF & S. Nechaev, in progress.


