Superconductivity and Anderson Localization

Igor Gornyi

Karlsruhe Institute of Technology and A.F. Ioffe Institute

In collaboration with

Igor Burmistrov (Landau Institute, Chernogolovka) Alexander Mirlin (KIT and PNPI)

PRL 108, 017002 (2012)

Euler Symposium on Theoretical and Mathematical Physics D.I. Diakonov memorial Symposium July 16, 2013, Euler Institute, St. Petersburg, Russia G.W. Carter and D. Diakonov, "Light Quarks in the Instanton Vacuum at Finite Baryon Density", Phys.Rev. D 60, 016004 (1999).

Gregory W. Carter and Dmitri Diakonov, "Chiral Symmetry Breaking and Color Superconductivity in the Instanton Picture", arXiv:hep-ph/9905465.

G.W. Carter and D. Diakonov, "The Nonperturbative Color Meissner Effect in a Two-Flavor Color Superconductor", Nucl. Phys. B 582, 571 (2000).

Color superconductivity in QCD breaks the SU(3) color gauge group down to SU(2), inducing masses in five of the eight gluons. This is a dynamical Higgs effect, in which the diquark condensate acts as the vacuum expectation value of a composite scalar field. In order to analyze this effect at low quark density, when gaps are large and generated nonperturbatively, we use instanton-induced quark interactions augmented with gauge-invariant interactions between quarks and perturbative gluons.

《日》 《周》 《문》 《문》 三臣

Motivation / Superconductor-Insulator transition

recent review: Gantmakher & Dolgopolov (2010)

(ロ) (四) (三) (三)

• Superconductor-insulator transition in homogeneously disordered materials

amorphous Mo-Ge films (thickness b = 15 - 1000 Å) Graybeal, Beasley (1984)

Bi and Pb layers on amorphous Ge (b = 4 - 75 Å) Strongin, Thompson, Kammerer, Crow (1971); Haviland, Liu, Goldman (1989)

ultrathin Be films (b = 4 - 15 Å) Bielejec, Ruan, Wu (2001)

amorphous thick In-O films (b = 100 - 2000 Å) Shahar, Ovadyahu (1992); Gantmakher (1998); Gantmakher, Golubkov, Dolgopolov, Tsydynzhapov, Shashkin (1998),(2000); Sambandamurthy, Engel, Johansson, Shahar (2004); Sacépé, Dubouchet, Chapelier, Sanquer, Ovadia, Shahar, Feigel'man, Ioffe (2011)

thin TiN films Baturina, Mironov, Vinokur, Baklanov, Strunk (2007)

LaAlO₃/SrTiO₃ interface Caviglia, Gariglio, Reyren, Jaccard, Schneider, Gabay, Thiel, Hammerl, Mannhart, Triscone (2008);

イロト 不良 とうほう 不良 とうほ

Phase diagram of the LaAlO₃/SrTiO₃ interface Caviglia et al. (2008)

Giant background dielectric constant: Coulomb interaction strongly screened

イロン スロン スロン スロン 一日

Abrikosov & Gor'kov (1959); Anderson (1959)

《日》 《周》 《문》 《문》 三臣

Anderson Theorem:

- nonmagnetic impurities do not affect s-wave superconductors
- Cooper-instability is the same for diffusive electrons:

• mean free path does not enter expression for T_c

$$T_c^{BCS} \sim \omega_D \exp(-2/\lambda_{\rm e-ph})$$

Anderson transition

quasi-1D, 2D: metallic \rightarrow localized crossover with increasing Ld > 2: metal-insulator transition

<ロ> (四) (四) (三) (三) (三)

Anderson Theorem vs Anderson Localization?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

• BCS model in the basis of exact electron states ϕ_{ε} for given disorder (no Coulomb repulsion):

Bulaevskii, Sadovskii '84; Ma, Lee '85; Kapitulnik, Kotliar '85

<ロ> (四) (四) (三) (三) (三)

superconductivity survives as long as

$$T_c^{BCS} \gtrsim \delta_{\xi} \propto \xi^{-d}$$

 ξ – localization length, d – dimensionality

Motivation / Theory: enhancement of T_c – attraction only

• Superconductivity at 3D Anderson metal-insulator transition (no Coulomb repulsion)

• Enhancement of T_c as compared to BCS result $T_c^{BCS}\propto \exp(-2/\lambda)$ $T_c\propto \lambda^{d/|\Delta_2|}$

Feigelman, Ioffe, Kravtsov, Yuzbashyan (2007); Feigelman, Ioffe, Kravtsov, Cuevas (2010) where $\Delta_2 < 0$ – multifractal exponent for inverse participation ratio

• Multifractality near Anderson transition (no e-e interactions)

Wegner (1980); Kravtsov, Lerner (1985); Pruisken(1985); Castellani, Peliti (1986); Wegner (1987)

$$\left\langle \int d^d m{r} \, |\phi_{arepsilon}(m{r})|^{2q}
ight
angle \sim L^{- au_q}$$

perfect metal: $\tau_q = d(q-1)$

criticality: $\tau_q = d(q-1) + \Delta_q$ with Δ_q being non-trivial function of q

perfect Anderson insulator $\tau_q = 0$

(日) (四) (王) (王) (王) (王)

Wegner (1980)

• critical wave function:

Evers, Mildenberger, Mirlin

- $\bullet\,$ enhanced correlations in matrix elements $\sim\psi^4$ of Cooper attraction
- stronger attraction \Rightarrow enhancement of T_c

Igor Gornyi (INT KIT)

• Suppression of T_c in a film as compared with BCS result

$$\frac{\delta T_c}{T_c^{BCS}} = -\frac{e^2}{6\pi^2 \hbar} R_{\Box} \left(\ln \frac{1}{T_c^{BCS} \tau} \right)^3 < 0$$

Ovchinnikov (1973) (wrong sign); Maekawa, Fukuyama (1982); Takagi, Kuroda (1982); Finkelstein (1987)

Film thickness b: $b \lesssim l$

イロン イロン イヨン イヨン 三日

Motivation / Theory: suppression of T_c

• Disorder, Coulomb (long-ranged) repulsion, (short-ranged) attraction in the Cooper channel

Diagrams for the renormalization of attraction in the Cooper channel

Э

Motivation / Theory: suppression of T_c due to Coulomb repulsion

• RG theory for disorder and interactions

Finkelstein (1983,1987); Castellani, Di Castro, Lee, Ma (1984)

Experiments on Mo-Ge films, Graybeal & Beasley (1984)

• 2D: T_c vanishes at the critical resistance

$$R_{\Box} \sim \left(\ln \frac{1}{T_c^{BCS} \tau} \right)^{-2}$$

Igor Gornyi (INT KIT)

Finkelstein (1987)

Can suppression of T_c due to Coulomb repulsion and enhancement of T_c due to multifractality be described in a unified way?

Does weak multifractality enhance T_c in 2D systems ?

Does the enhancement of T_c hold if one takes into account short-ranged repulsion in particle-hole channels ?

<ロ> (四) (四) (三) (三) (三)

The problem / Microscopic Hamiltonian $H = H_0 + H_{\rm dis} + H_{\rm int}$

• Free electrons:

$$H_0 = \int d^d \boldsymbol{r} \, \bar{\psi}_{\sigma}(\boldsymbol{r}) \left[-\frac{\nabla^2}{2m} \right] \psi_{\sigma}(\boldsymbol{r})$$

where $\sigma = \pm 1$ is spin projection

• Scattering off random potential :

$$H_{\rm dis} = \int d^d \boldsymbol{r} \, ar{\psi}_\sigma(\boldsymbol{r}) \, V(\boldsymbol{r}) \psi_\sigma(\boldsymbol{r})$$

Gaussian white-noise distribution:

$$\langle V(\boldsymbol{r})\rangle = 0, \qquad \langle V(\boldsymbol{r}_1) V(\boldsymbol{r}_2)\rangle = \frac{1}{2\pi\nu_0\tau}\delta(\boldsymbol{r}_1 - \boldsymbol{r}_2)$$

 ν_0 – thermodynamic density of states

イロン イロン イヨン イヨン 三日

The problem / Microscopic Hamiltonian $H = H_0 + H_{\rm dis} + H_{\rm int}$

• Electron-electron interaction:

$$H_{\rm int} = \frac{1}{2} \int d^d \boldsymbol{r_1} d^d \boldsymbol{r_2} \, \bar{\psi}_{\sigma}(\boldsymbol{r_1}) \psi_{\sigma}(\boldsymbol{r_1}) \, U(\boldsymbol{r_1} - \boldsymbol{r_2}) \, \bar{\psi}_{\sigma'}(\boldsymbol{r_2}) \psi_{\sigma'}(\boldsymbol{r_2})$$

• short-ranged repulsion with BCS-type attraction $(\lambda > 0)$

$$U(\boldsymbol{R}) = u_0 \frac{a^{2\alpha}}{\left[a^2 + R^2\right]^{\alpha}} - \frac{\lambda}{\nu_0} \delta(\boldsymbol{R}), \qquad \alpha > 2d, \qquad u_0 > 0$$

• Coulomb (long-ranged) repulsion with BCS-type attraction ($\lambda > 0$)

$$U(\boldsymbol{R}) = \frac{e^2}{\epsilon R} - \frac{\lambda}{\nu_0} \delta(\boldsymbol{R})$$

The problem / Interaction Hamiltonian at small momentum transfer

• Particle-hole channel:

$$H_{\rm int}^{\rm p-h} = \frac{1}{2\nu_0} \int_{\substack{ql \leq 1}} \frac{d^d q}{(2\pi)^d} \sum_{a=0}^3 \mathbb{F}_a(q) m^a(q) m^a(-q)$$

where
$$m^a(q) = \int \frac{d^d \mathbf{k}}{(2\pi)^d} \bar{\psi}(\mathbf{k} + q) \sigma_a \psi(\mathbf{k})$$

 $F_0(q) = \mathbf{F}_s, \qquad F_1(q) = F_2(q) = F_3(q) = F_t$

• Particle-particle channel:

$$H_{\text{int}}^{\text{p-p}} = -\frac{F_c}{\nu_0} \int\limits_{ql \lesssim 1} \frac{d^d \boldsymbol{q}}{(2\pi)^d} \int \frac{d^d \boldsymbol{k}_1 d^d \boldsymbol{k}_2}{(2\pi)^{2d}} \bar{\psi}_{\sigma}(\boldsymbol{k}_1) \bar{\psi}_{\sigma}(-\boldsymbol{k}_1 + \boldsymbol{q}) \psi_{-\sigma}(\boldsymbol{k}_2 + \boldsymbol{q}) \psi_{\sigma}(-\boldsymbol{k}_2)$$

・ロン (聞) (目) (目) 一日

$$S[Q] = \frac{\pi\nu}{4} \int d^d \mathbf{r} \operatorname{Tr} \left[-D(\nabla Q)^2 - 2i\omega\Lambda Q \right], \qquad Q^2(\mathbf{r}) = 1$$

Wegner (1979)

supersymmetry: Effetor (1982) sigma-model manifold $\mathcal{M} = \{\mathcal{M}_B \times \mathcal{M}_F\}$ "dressed" by anticommuting variables

 \mathcal{M}_B – non-compact, \mathcal{M}_F – compact

with electron-electron interaction: fermionic replicas or Keldysh

Finkelstein (1983), Kamenev, Andreev (1999)

(日) (周) (日) (日) (日)

Field theory: interacting non-linear sigma-model

Finkelstein (1983)

(日) (四) (日) (日)

$$\begin{split} S &= S_0 + S_{\text{int}}^{(s)} + S_{\text{int}}^{(t)} + S_{\text{int}}^{(c)}, \\ S_0 &= -\frac{g}{32} \int d\boldsymbol{r} \operatorname{Tr}(\nabla Q)^2 + 4\pi T \boldsymbol{z} \int d\boldsymbol{r} \operatorname{Tr} \eta (Q - \Lambda), \\ S_{\text{int}}^{(s)} &= -\frac{\pi T}{4} \Gamma_s \sum_{\alpha,n} \sum_{p=0,3} \int d\boldsymbol{r} \operatorname{Tr} \left[I_n^\alpha t_{p0} Q \right] \operatorname{Tr} \left[I_{-n}^\alpha t_{p0} Q \right], \\ S_{\text{int}}^{(t)} &= -\frac{\pi T}{4} \Gamma_t \sum_{\alpha,n} \sum_{p=0,3} \sum_{j=1}^3 \int d\boldsymbol{r} \operatorname{Tr} \left[I_n^\alpha t_{pj} Q \right] \operatorname{Tr} \left[I_{-n}^\alpha t_{pj} Q \right], \\ S_{\text{int}}^{(c)} &= -\frac{\pi T}{2} \Gamma_c \sum_{\alpha,n} \sum_{p=0,3} (-1)^p \int d\boldsymbol{r} \operatorname{Tr} \left[I_n^\alpha t_{p0} Q I_n^\alpha t_{p0} Q \right], \\ \Lambda_{nm}^{\alpha\beta} &= \operatorname{sgn} n \delta_{nm} \delta^{\alpha\beta} t_{00}, \quad \eta_{nm}^{\alpha\beta} = n \delta_{nm} \delta^{\alpha\beta} t_{00}, \quad (I_k^\gamma)_{nm}^{\alpha\beta} = \delta_{n-m,k} \delta^{\alpha\beta} \delta^{\alpha\gamma} t_{00} \\ Q^2 &= 1, \qquad \operatorname{Tr} Q = 0, \qquad Q^\dagger = C^T Q^T C, \qquad C = it_{12}, \qquad C^T = -C \\ p, m - \operatorname{Matsubara}, \alpha, \beta - \operatorname{replicas}, p - \operatorname{particle-hole}, j - \operatorname{spin}; \quad t_{pi} = \tau_p \otimes s_j \end{split}$$

э

On short scales $\gamma_{s,t,c} = \Gamma_{s,t,c}/z$ are related to microscopic parameters:

• Particle-hole channel

$$\gamma_s = -\frac{F_s}{1+F_s}, \qquad \qquad \gamma_t = -\frac{F_t}{1+F_t}$$

• Cooper channel (provided $\omega_D \tau \gg 1$)

$$\gamma_c = -\frac{F_c}{1 - F_c \ln \omega_D \tau} = \frac{1}{\ln T_c^{BCS} \tau}$$

Coulomb repulsion: $\gamma_s = -1$

イロト (日) (日) (日) (日) (日) (日)

2D electrons (orth. symmetry class) / RG equations from σ-model

$$\frac{dt}{dy} = t^2 \Big[1 + f(\gamma_s) + 3f(\gamma_t) - \gamma_c \Big]$$

$$\frac{d\gamma_s}{dy} = -\frac{t}{2} \Big[1 + \gamma_s \Big] \Big[\gamma_s + 3\gamma_t + 2\gamma_c \Big]$$

$$\frac{d\gamma_t}{dy} = -\frac{t}{2} \Big[1 + \gamma_t \Big] \Big[\gamma_s - \gamma_t - 2\gamma_c (1 + 2\gamma_t) \Big]$$

$$\frac{d\gamma_c}{dy} = -\frac{t}{2} \Big[\gamma_s - 3\gamma_t + \gamma_c (\gamma_s + 3\gamma_t) \Big] - 2\gamma_c^2$$

Finkelstein (1983,1984); Castellani, Di Castro, Lee, Ma (1984)

イロト イヨト イヨト イヨト

Castellani, DiCastro, Forgacs, Sorella (1984); Ma, Fradkin (1986); Finkelstein (1987)

where $y = \ln L/l$ and $f(x) = 1 - (1 + x^{-1})\ln(1 + x)$

• lowest order in disorder, $t = 2/\pi g$, g is conductivity in units e^2/h

- exact in γ_s and γ_t
- lowest order in γ_c

2D electrons (orth. symmetry class) / weak short-range interaction

$$\frac{dt}{dy} = t^2 \left(1 - \left[\frac{\gamma_s}{\gamma_s} + 3\gamma_t + 2\gamma_c \right] / 2 \right)$$
$$\frac{d}{dy} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} = -\frac{t}{2} \begin{pmatrix} 1 & 3 & 2 \\ 1 & -1 & -2 \\ 1 & -3 & 0 \end{pmatrix} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 2\gamma_c^2 \end{pmatrix}$$

- Weak interaction, $|\gamma_s|, |\gamma_t|, |\gamma_c| \ll 1$
- Weak disorder, $t \ll 1$.

• Initial values $\gamma_s(0) = \gamma_{s0} < 0, \ \gamma_t(0) = \gamma_{t0} > 0, \ \gamma_c(0) = \gamma_{c0} < 0, \ t(0) = t_0$

(日) (四) (王) (王) (王) (王)

2D electrons (orth. symmetry class) / weak short-range interaction

• Moderately strong disorder: $|\gamma_{c0}| \ll t_0 \ll 1$

$$\frac{dt}{dy} = t^2, \qquad \frac{d}{dy} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} = -\frac{t}{2} \begin{pmatrix} 1 & 3 & 2 \\ 1 & -1 & -2 \\ 1 & -3 & 0 \end{pmatrix} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix}$$

Eigenvalues and eigenvectors

$$\lambda = 2t : \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}; \qquad \lambda' = -t : \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

- attraction to the (BCS) line $-\gamma_s = \gamma_t = \gamma_c \equiv \gamma$
- Anomalous dimensions of operators with two Q's in NL σ M: $\Delta_2 = -\lambda + \dots$ and $\mu_2 = -\lambda' + \dots$

• $\Delta_2 < 0$ is due to multifractality of electron wave functions without interactions

Projected RG equations:

$$\frac{dt}{dy} = t^2, \qquad \frac{d\gamma}{dy} = 2t\gamma - 2\gamma^2/3$$
$$t(0) = t_0, \qquad \gamma(0) = \gamma_0 = (-\gamma_{s0} + 3\gamma_{t0} + 2\gamma_{c0})/6, \qquad |\gamma_0| \ll t_0 \ll 1$$

Two-step renormalization

 t > γ: neglect Cooper instability (γ²); enhancement of interaction matrix element due to weak multifractality
 γ > t: neglect disorder-induced term (tγ) ⇒ conventional BCS, but with the new "bare" coupling constant t determined by disorder ⇒ exponential enhancement of the mean-field T_c

• If $t_0 \ll \sqrt{|\gamma_0|} \ll 1$, superconductor wins:

$$|\gamma(y_*)| \sim 1, \qquad t(y_*) \sim t_0^2 / |\gamma_0| \ll 1, \qquad y_* \sim \frac{1}{t_0}$$

superconductor transition temperature $T_c \propto e^{-2/t_0} \gg T_c^{BCS}$

Enhancement of T_c due to weak multifractality!

• If $\sqrt{|\gamma_0|} \ll t_0 \ll 1$, insulator wins:

$$t(y_*) \sim 1, \qquad |\gamma(y_*)| \sim |\gamma_0|/t_0^2 \ll 1, \qquad y_* \sim \frac{1}{t_0}$$

イロン イタン イヨン イヨン 三日

2D electrons (orth. symmetry class) / weak short-range interaction

Sketch of phase diagram

イロン イロン イヨン イヨン 三日

2D electrons (orth. symmetry class) / weak short-range interaction

• Resistivity t near SIT and dependence of T_c on t_0

$$\begin{split} &\gamma_{s0} = -0.005, \, \gamma_{t0} = 0.005, \, \gamma_{c0} = -0.04, \\ &t_0 = 0.065, 0.075, 0.085, 0.095, 0.10, 0.105, 0.11, 0.12 \text{ (from bottom to top)} \\ &+ \Box \flat + \langle \overline{\ominus} \rangle \flat + \langle \overline{\partial} \rangle \flat + \langle \overline{\partial}$$

- Non-monotonous dependence of T_c on disorder (bare conductance g_0)
- Exponentially strong enhancement of superconductivity by multifractality in the intermediate disorder range, $|\gamma_0|^{-1/2} \leq g_0 \leq |\gamma_0|^{-1}$

$$\begin{array}{ll} T_c \sim \exp \left\{ -1/|\gamma_{c,0}| \right\} & (\text{BCS}) \ , & g_0 \gtrsim |\gamma_0|^{-1} \\ T_c \sim \exp \left\{ -2g_0 \right\} \ , & |\gamma_0|^{-1/2} \lesssim g_0 \lesssim |\gamma_0|^{-1} \\ & \text{insulator,} & g_0 \lesssim |\gamma_0|^{-1/2} \end{array}$$

(日) (四) (王) (王) (王) (王)

- SC transition in 2D is of Berezinskii-Kosterlitz-Thouless type
- Mean-field T_c differs only slightly from T_c^{BKT} for weak disorder

Beasley, Mooij, Orlando '79, Halperin, Nelson '79

(日) (四) (王) (王) (王) (王)

• Future work: effect of multifractality on BKT transition

- Coulomb (rather than short-range) interaction in typical experiments on SIT in 2D
- LaAlO₃/SrTiO₃ interface: dielectric constant $\epsilon \approx 10^4 \implies \varkappa^{-1} \gg l$.
- Our results for T_c in 2D are valid for Coulomb interaction (with $\varkappa l \ll 1$), provided

$$\ln 1/(\varkappa l) \gg \min\{|\gamma_{c0}|^{-1}, t_0^{-1}\}$$

• Screening of Coulomb interaction \longrightarrow high- T_c superconductivity?

Role of perpendicular magnetic field
$$H_{ot}$$
 in 2D for $|\gamma_{c0}| \ll t_0 \ll \sqrt{|\gamma_{c0}|}$

Sketch of magnetoresistance

<ロ> (四) (四) (三) (三) (三)

RG equations near free electron fixed point $t = t_c$, $\gamma = 0$

$$\frac{dt}{dy} = \frac{1}{\nu}(t - t_c) + \eta\gamma, \qquad \qquad \frac{d\gamma}{dy} = -\Delta_2\gamma - A\gamma^2, \quad A \sim 1$$

 $t(0) = t_0$ and $\gamma(0) = \gamma_0 < 0$ at the UV energy scale $E_0 \sim 1/(\nu_0 l^d)$

• Correlation length:

$$\xi = \left| \tilde{t}_0 - t_c \right|^{-\nu}$$

$$\tilde{t} = t - \eta \nu \gamma / (|\Delta_2|\nu - 1) \text{ and } \tilde{t}_0 = \tilde{t}(0)$$

• 3D Anderson transition (orth. symmetry class):

 $\nu = 1.57 \pm 0.02$ and $\Delta_2 = -1.7 \pm 0.05$

Schematic phase diagram in the interaction–disorder plane and T_c

 T_c for region I agrees with Feigelman, Ioffe, Kravtsov, Yuzbashyan (2007)

- Strong enhancement of T_c for 2D electrons (short-range interactions)
- Strong enhancement of T_c near (free electron) 3D Anderson transition (short-range interactions)
- In both cases enhancement of superconductivity is due to multifractality
- No Coulomb interaction: Anderson localization facilitates superconductivity \Rightarrow high- T_c superconductivity?

• Anderson '59 vs Anderson '58: Anderson wins!

<ロ> (四) (四) (三) (三) (三)