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Anderson localization

 Single electron in a random potential

H = —h—QA +U(r), U(r)U(r')=~6(r—1")

2m

» Metal-insulator transition is possible upon variation
of disorder strength y

 Ensemble of disorder realizations: statistical treatment

» More complicated variants (extra symmetries)
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Symmetry classification of disordered electronic systems

Conventional (Wigner-Dyson) classes A. Altland, M. Zirnbauer ‘96

T spin rot. chiral p-h syvmbol

GOE|[+ —+ — = AI
GUE|— +/-— - - A
GSE |+  — — = AII

Chiral classes
T spin rot. chiral p-h symbol

ChOE + + + — BDI 0t
ChUE — +/— + — AIII H = (tT 0)
ChSE + — + — CII
Bogoliubov-de Gennes classes

T spin rot. chiral p-h symbol

[+ + - + CI

— + — + C h A

+ - — 4+ DIII H={( L«

— — — + D
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Extended and localized states

P. W. Anderson ‘58

« Extended, like plane waves /\ /\ /\ /\ [\ /\
Vi \

* Localized, with
// \\\ E_,
@) ~etie T
- localization length f
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Anderson localization

* Nature of states depends on where they are in the spectrum

PE),
- Mobility edge F/,. separates Extended L ocalized
extended and localized states
« Anderson transition at EC
0 E. E

 Field theory: supersymmetric g-model

S[Q] < — / d%r Str[D(VQ)? + 2iwAQ), Q=1
« Matrix field @ € G/ K, the (super)coset different for each AZ class

« d = () describes metallic grains, gives RMT results
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Wave functions at Anderson transitions

» Critical wave functions are neither localized nor truly extended
F. Wegner 80

» They are complicated statistically scale-invariant multifractals
characterized by an infinite set of exponents, a multifractal spectrum

* For most Anderson transitions no analytical results are available

» Expect conformal invariance
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Wave functions across Anderson transition

Metal Critical point Insulator

O >
A

Disorder or energy
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Wave function at the quantum Hall transition

Insulator Critical point Insulator
O >
2 2
e e
, Czy = 7 Ouy = (n+ 1)% Energy
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Effects of multifractality in interacting systems

» Temperature scaling near Anderson transitions: IQH transition
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Effects of multifractality in interacting systems

» Temperature scaling at Anderson transitions cannot be explained
within the single-particle picture

e It is due to interaction-induced dephasing

D-H. Lee and Z. Wang 96
Z. Wang, M. P. A. Fisher, S. M. Girvin, and J. T. Chalker "00
l. S. Burmistrov, S. Bera, F. Evers, I. V. Gornyi, and A. D. Mirlin "11

Mjk — /drldrngk(rl,rg)U(rl — I‘Q),

Kji(r1,12) = |97 (1) Y5 (r2)| — ¥ (r1)¢n(r2) ) (r2) iy (r1)
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Effects of multifractality in interacting systems

M.V. Feigel'man, L. B. loffe, V. E. Kravtsov, and E. A. Yuzbashyan "07
l. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin "12

 Disordered superconductors
» Preformed localized pairs, enhanced single-particle (“parity”) gap

* Enhancement of the transition temperature of a disordered close to
an Anderson transition

T, ~ A4/182]

_ i
H =) €j¢j,Cio - ZMJkCJT CiuchTCRl
jo

My = [ dr v i)
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Multifractal wave functions

F. Wegner "80
C. Castellani, L. Peliti "86

 Moments of the wave function intensity |1D(7‘) |2

« Scaling with the system size L

P = [driutr)P

(LY, insulator
P, = LYy(r)[2a ~ ¢ L7, critical
| L=Ha=1) " metal

Euler Symposium, St. Petersburg, July 13, 2013




Multifractal measures

B. Mandelbrot ‘74
e Clumpy distribution

» Exhibits self-similarity, scaling

» Characterizes a variety of complex systems: turbulence,
strange attractors, diffusion-limited aggregation, critical
cluster boundaries, ...

e In-our case: random measures from an ensemble

» Two way to quantify: scaling of moments and singularity spectrum
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Multifractal moments and spectrum

Probability measure with support in a cube of size L

I d
Divide the cube into [V boxes B, of size a, N = (—)
a

Measure of each box pi—/ du(r)
B.

(]

(Complex) moments of the measure scale with L/a,

N I -1
=3~ (5)
=1

Multifractal spectrum 7,

For random measures: distinguish mean and typical MF spectra
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General properties of multifractal spectra

From the definition of Tq it follows that for real ¢

T4 is non-decreasing: 7-(; > ()

T4 is convex: 7'(;/ <0
To = —d (dimension of the support)

71 = 0 (normalization of the measure)

T

q
Lo o a0m

™

i
MJ
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Multifractal spectrum of a metal and an insulator

e Extreme cases

e Uniform measure

1 LN —d LN —d(g—1)
e (57 me - (57
a

MF spectrum is linear: T4 = d(q — 1)
- Measure localized involume ¢4, o < € < L
(£/a)? boxes filed with p; = (£/a) ¢

—d(g—1)
P, = (é) X is independentof L = 7, = 0
a
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Solvable case: Dirac fermion in a random gauge field

Dirac Hamiltonianin 2D H = vo (0, — A,)
Hodge decomposition of gauge field A, (r) = €,,0,¢(r) + 0, x(r)
Exact zero energy wave functions

Y(r) = N—1/26i£(1‘)6¢(r), N = e29(r) 124
L2

Disorder A, (r)A,(r") = 27y40,,0(r — 1)

Pl6) o exp 473%4 [(voy)
L

v —r'|

¢(r)is GFF with ¢ (r)p(r') = va In

W(r)|? o< e2?() is a Liouville measure
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Dirac fermion in a random gauge field: MF spectrum

Ludwig et al. 94

* Weak disorder v, < 1, parabolic spectrum with termination point

L+ v4

20 —1)(1 —vaq), q<q.=
(4= 1)(1 ~749) >

Ta =) (1—7a4)?
2%4

, q = qc

Chamon et al. 96
Castillo et al. 97

« Freezing transition at 7Y, = Carpentier and LeDoussal "01

« Strong disorder 7y, > 1, parabolic spectrum with freezing
1/2 \92

_2(1 — 7A/ Q) , =< Qe = YA

0, q > qc

—1/2
Tqg =
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Multifractality and field theory

- Anomalous exponents: 7, = d(q — 1) + A, F. Wegner ‘80

. Aq related to scaling dimensions 4 of operators Oq ina 0 model
Ay =4 —qT1

eForWDclasses x1 = 0.In d =2+ ¢

» Orthogonal and unitary classes

AL = g1 - g)e + Vg1 glgt - g) - 11e* + O

AY) = gt - /22 - X 21— g2 1 o

« Notice the symmetry A, = A_
q q
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Symmetry of MF spectra for WD classes

Plp) = p °P(p~ ), pl=pl-a A. Mirlin, Y. Fyodorov 94

» 0 is a normalized local density of states
« Exact within the sigma models in the WD classes
* At criticality it follows that Ty = Z1—4 (Aq = Al_q)

» Due to universality this is exact for any critical system in the WD classes

* Our goals: - to understand the origin of the symmetry
- to extend it to other AZ symmetry classes

- to extend to subleading scaling operators and identify
the corresponding physical observables
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Results

» General relation for dimensions of scaling operators describing MF
moments of an observable at criticality

R
follows from global conformal invariance

» 4« is left unspecified, but it is as universal as critical exponents

* For Anderson localization in the WD classes we show that

Pp) =p?Plp~ ),

are consequences of the Weyl group symmetry of the sigma model

pq = pl_q — Aq = Al—q
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Global conformal invariance

c 2y =T, —d(qg—1)+qx,

 From the properties of 7, it follows that Ty = 0
and x, < 0 for sufficiently large ¢

« Also 5176 >0 = thereisa ¢x > 0 suchthat x,, = 0!

+OPE Oy(r1)0y(ra) ~ |11 — r2‘$p+q_%_$qop+Q( 9

 For P = @« — ( the operator on the right has zero dimension

 (J« is left unspecified, but it is as universal as critical exponents
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Random matrix theory and g.

* (Jx Is determined by symmetries only
» Can find it in the zero-dimensional sigma model, or RMT

* Find moments of LDOS in a RMT:

pd x /d6(62j52)qP(6), P(e) ~ |e[™

(1, WD classes,
e g =my+1=< 2, classCl,
3, class C.

\

» More systematic derivation using sigma model and Wyle symmetry
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Results

* We generalize these relations to other symmetry classes

qupQ*_q — mq:xq*_q

» Symmetry points for all AZ classes

AZ

class A | AT | AII | AIIl | BDI | CITI | C | CI | D | DIII
Symmetry

point ¢* 1| 1 1 > | 1/2c 2 {32 |0 OF

» Sigma model Weyl symmetry can be straightforwardly applied only to
WD classes and BdG classes with spin rotation symmetry (C and CI)

» Other classes are more subtle

» Classes D and DIlI: domain walls and absence of localization
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General scaling operators

» More complicated combinations of wave functions

pi(ry) o ()
Ap(ry,...,rp) = |Det

Yp(r1) - Pp(ry)

* General correlators [y = Aﬁlll_CDA(QIZ_QS . A?Ln_—ll_Qn Adn

» Scaling dimensions I )
c \ = (ql, qo, ... ,qn) is a highest weight of (G with complex ¢;

« Weyl group VW symmetry implies the general symmetry relation
Tx = Tow(N) Vwe W

 This includes sign changes and permutations of (shifted) g;
C; — G
2

qj — —Cj — 45, Gi —q; T
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General scaling operators: examples

« Weight A\ = (q1, ¢2) leads to eight operators with the same )

((]17(]2)7 (I_QhQQ)a (Qlag_QZ)a (1_(]173_(]2)7
(2_(]272_Q1)7 (_1+QQ72_Ql)7
2-q,1+q), (-1+q,1+aq)

 For example, A = (O, O) (identity operator) has =, = 0,
(0,0), (1,0), (0,3), (1,3),
(2,2), (—-1,2), (2,1), (—1,1)

so all operators with weights
have £, = 0

* One of these is A_g that appeared in the study of dephasing near
the IQH transition
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Composite operators

* |dentify exact scaling gradientless operators

Qanpy = %(QRR — Qaa+Qra — QAaR)vb

o~ ~

Qll SRR le
by =Det[Q], Q= ¢
@ml ... Qmm
Plqrynan) = A1 2dy L d, o dd

* Arbitrary complex @;

« Iwasawa decomposition for G = K AN
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Composite operators

« Iwasawa decomposition for G = K AN leads to
(1 .k *\ (6_25'31... 0 0 \ (1

0O ... 1 =« 0 ... e 2Tn-1 0 *

o .01/ \o ... 0 e/ \s
Plq1,....an) = €XP ( - 22%’%’)

j=1

O
I

« A= (q,...,qn) is ahighest weight
 Young tableaux for positive integer ¢;

» Connection with Wegner’s classification, numerous checks
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Open questions

» Chiral classes and classes D and DIl with domain walls
» Connection with transport observables (transmission eigenvalues)

* Interacting systems
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