Classification and symmetry properties of scaling dimensions at Anderson transitions

Ilya A. Gruzberg (University of Chicago)

Joint work with:

A. Ludwig (UCSB)A. Mirlin (Karlsruhe)M. Zirnbauer (Köln)

References:

Phys. Rev. Lett. **107**, 086403 (2011) Phys. Rev. B **87**, 125144 (2013)

Anderson localization

• Single electron in a random potential

$$H = -\frac{\hbar^2}{2m}\Delta + U(\mathbf{r}), \quad \overline{U(\mathbf{r})U(\mathbf{r}')} = \gamma\delta(\mathbf{r} - \mathbf{r}')$$

- Metal-insulator transition is possible upon variation of disorder strength γ
- Ensemble of disorder realizations: statistical treatment
- More complicated variants (extra symmetries)

Symmetry classification of disordered electronic systems

	C	Convention	nal (W	classes	A. Altland, M. Zirnbauer '96			
	\mathbf{T}	spin rot.	chiral	p-h	\mathbf{symbol}			
GOE	+	+	_	_	AI			
GUE	—	+/-	_	_	\mathbf{A}			
GSE	+	_	_	_	AII			
		Chir	al clas					
	$ \mathbf{I} $	spin rot	. chira	l p-l	ı symbol			
ChOE	2 +	- +	+	_	BDI	-	(0,t)	
ChUE	2 -	- +/-	+	_	\mathbf{AIII}		$H = \left(\begin{array}{c} \mathbf{t}^{\dagger} & 0 \end{array} \right)$	
ChSE	+		+	_	CII			
		Bogoliu	1bov-de	e Ge	nnes class	ses		
	Т	spin rot.	$_{\rm chiral}$	p-h	\mathbf{symbol}			
	+	+	_	+	CI			
	_	+	_	+	\mathbf{C}		$(h \Delta)$	
	+	_	_	+	DIII		$H = \begin{pmatrix} -\Delta^* & -\mathbf{h}^T \end{pmatrix}$	
	_	_	_	+	D			

Extended and localized states

P. W. Anderson '58

• Localized, with

 $|\psi(x)| \sim e^{-|x|/\xi}$

- localization length ξ

Anderson localization

Extended

ρ(Ε)

0

Localized

E

 $E_{\rm c}$

- Nature of states depends on where they are in the spectrum
- Mobility edge E_c separates extended and localized states
- Anderson transition at E_c
- Field theory: supersymmetric σ -model

$$S[Q] \propto -\int d^d \boldsymbol{r} \operatorname{Str}[D(\nabla Q)^2 + 2i\omega\Lambda Q], \qquad Q^2 = 1$$

- Matrix field $Q \in G/K$, the (super)coset different for each AZ class
- d = 0 describes metallic grains, gives RMT results

Wave functions at Anderson transitions

• Critical wave functions are neither localized nor truly extended

F. Wegner `80

- They are complicated statistically scale-invariant multifractals characterized by an infinite set of exponents, a multifractal spectrum
- For most Anderson transitions no analytical results are available
- Expect conformal invariance

Wave functions across Anderson transition

Wave function at the quantum Hall transition

Effects of multifractality in interacting systems

• Temperature scaling near Anderson transitions: IQH transition

Effects of multifractality in interacting systems

- Temperature scaling at Anderson transitions cannot be explained within the single-particle picture
- It is due to interaction-induced dephasing

D-H. Lee and Z. Wang `96 Z. Wang, M. P. A. Fisher, S. M. Girvin, and J. T. Chalker `00 I. S. Burmistrov, S. Bera, F. Evers, I. V. Gornyi, and A. D. Mirlin `11

$$M_{jk} = \int d\mathbf{r}_1 d\mathbf{r}_2 K_{jk}(\mathbf{r}_1, \mathbf{r}_2) U(\mathbf{r}_1 - \mathbf{r}_2),$$

$$K_{jk}(\mathbf{r}_1, \mathbf{r}_2) = |\psi_j^2(\mathbf{r}_1)\psi_k^2(\mathbf{r}_2)| - \psi_j(\mathbf{r}_1)\psi_k(\mathbf{r}_2)\psi_j^*(\mathbf{r}_2)\psi_k^*(\mathbf{r}_1)$$

Effects of multifractality in interacting systems

M.V. Feigel'man, L. B. loffe, V. E. Kravtsov, and E. A. Yuzbashyan `07 I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin `12

- Disordered superconductors
- Preformed localized pairs, enhanced single-particle ("parity") gap
- Enhancement of the transition temperature of a disordered close to an Anderson transition $T_c \sim \lambda^{d/|\Delta_2|}$

$$H = \sum_{j\sigma} \epsilon_j c_{j\sigma}^{\dagger} c_{j\sigma} - \frac{\lambda}{\nu} \sum_{jk} M_{jk} c_{j\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} c_{k\uparrow} c_{k\downarrow}$$
$$M_{jk} = \int d\mathbf{r} \, \psi_j^2(\mathbf{r}) \psi_k^2(\mathbf{r})$$

Multifractal wave functions

F. Wegner `80 C. Castellani, L. Peliti `86

- Moments of the wave function intensity $|\psi({m r})|^2$
- Scaling with the system size L

$$P_q = \int d^d \boldsymbol{r} |\psi(\boldsymbol{r})|^{2q},$$

$$\overline{P_q} = L^d \overline{|\psi(\boldsymbol{r})|^{2q}} \sim \begin{cases} L^0, & \text{insulator} \\ L^{-\tau_q}, & \text{critical} \\ L^{-d(q-1)}, & \text{metal} \end{cases}$$

Multifractal measures

- Clumpy distribution
- Exhibits self-similarity, scaling
- Characterizes a variety of complex systems: turbulence, strange attractors, diffusion-limited aggregation, critical cluster boundaries, ...
- In our case: random measures from an ensemble
- Two way to quantify: scaling of moments and singularity spectrum

B. Mandelbrot '74

Multifractal moments and spectrum

- Probability measure with support in a cube of size L
- Divide the cube into N boxes B_i of size a, $N = \left(\frac{L}{a}\right)^d$
- Measure of each box $p_i = \int_{B_i} d\mu(\mathbf{r})$
- (Complex) moments of the measure scale with L/a

$$P_q = \sum_{i=1}^N p_i^q \sim \left(\frac{L}{a}\right)^{-\tau_q}$$

- Multifractal spectrum au_q
- For random measures: distinguish mean and typical MF spectra

General properties of multifractal spectra

From the definition of τ_q it follows that for real q

- au_q is non-decreasing: $au_q' \geq 0$
- au_q is convex: $au_q'' \leq 0$
- $au_0 = -d$ (dimension of the support)
- $\tau_1 = 0$ (normalization of the measure)

Multifractal spectrum of a metal and an insulator

- Extreme cases
 - Uniform measure

$$p_i = \frac{1}{N} = \left(\frac{L}{a}\right)^{-d}, \quad P_q = Np_i^q = \left(\frac{L}{a}\right)^{-d(q-1)}$$

MF spectrum is linear: $au_q = d(q-1)$

• Measure localized in volume $\xi^d, \quad a < \xi < L$ $(\xi/a)^d$ boxes filled with $p_i = (\xi/a)^{-d}$

 $P_q = \left(rac{\xi}{a}
ight)^{-d(q-1)}$ is independent of $L \Rightarrow au_q = 0$

Solvable case: Dirac fermion in a random gauge field

- Dirac Hamiltonian in 2D $H = v \sigma_\mu (i \partial_\mu A_\mu)$
- Hodge decomposition of gauge field $A_{\mu}(\mathbf{r}) = \epsilon_{\mu\nu}\partial_{\nu}\phi(\mathbf{r}) + \partial_{\mu}\chi(\mathbf{r})$
- Exact zero energy wave functions

$$\psi(\mathbf{r}) = \mathcal{N}^{-1/2} e^{i\xi(\mathbf{r})} e^{\phi(\mathbf{r})}, \quad \mathcal{N} = \int_{L^2} e^{2\phi(\mathbf{r})} d^2 \mathbf{r}$$

• Disorder
$$\overline{A_{\mu}(\mathbf{r})A_{\nu}(\mathbf{r}')} = 2\pi\gamma_{A}\delta_{\mu\nu}\delta(\mathbf{r}-\mathbf{r}')$$

 $\mathcal{P}[\phi] \propto \exp\left(-\frac{1}{4\pi\gamma_{A}}\int (\nabla\phi)^{2}d^{2}\mathbf{r}\right)$

- $\phi(\mathbf{r})$ is GFF with $\overline{\phi(\mathbf{r})\phi(\mathbf{r}')} = \gamma_A \ln \frac{L}{|\mathbf{r} \mathbf{r}'|}$
- $|\psi({f r})|^2 \propto e^{2\phi({f r})}$ is a Liouville measure

Dirac fermion in a random gauge field: MF spectrum

Ludwig et al. `94

• Weak disorder $\gamma_a < 1$, parabolic spectrum with termination point

$$\tau_q = \begin{cases} 2(q-1)(1-\gamma_A q), & q \le q_c = \frac{1+\gamma_A}{2\gamma_A} \\ \frac{(1-\gamma_A)^2}{2\gamma_A}, & q \ge q_c \end{cases}$$

• Freezing transition at $\gamma_a=1$

- Chamon et al. 96 Castillo et al. 97 Carpentier and LeDoussal 01
- Strong disorder $\gamma_a \geq 1$, parabolic spectrum with freezing

$$\tau_q = \begin{cases} -2(1 - \gamma_A^{1/2}q)^2, & q \le q_c = \gamma_A^{-1/2} \\ 0, & q \ge q_c \end{cases}$$

Multifractality and field theory

- Anomalous exponents: $au_q = d(q-1) + \Delta_q$ F. Wegner '80
- Δ_q related to scaling dimensions x_q of operators \mathcal{O}_q in a σ model

$$\Delta_q = x_q - qx_1$$

- For WD classes $x_1 = 0$. In $d = 2 + \epsilon$
 - Orthogonal and unitary classes

$$\Delta_q^{(O)} = q(1-q)\epsilon + \frac{\zeta(3)}{4}q(1-q)[q(1-q)-1]\epsilon^4 + O(\epsilon^5)$$

$$\Delta_q^{(U)} = q(1-q)(\epsilon/2)^{1/2} - \frac{3\zeta(3)}{8}q^2(1-q)^2\epsilon^{3/2} + O(\epsilon^{5/2})$$

• Notice the symmetry $\Delta_q = \Delta_{1-q}$

Symmetry of MF spectra for WD classes

 $\mathcal{P}(\rho) = \rho^{-3} \mathcal{P}(\rho^{-1}), \quad \overline{\rho^q} = \overline{\rho^{1-q}}$ A. Mirlin, Y. Fyodorov `94

- ρ is a normalized local density of states
- Exact within the sigma models in the WD classes
- At criticality it follows that $x_q = x_{1-q}$ $(\Delta_q = \Delta_{1-q})$
- Due to universality this is exact for any critical system in the WD classes

- Our goals: - to understand the origin of the symmetry
 - to extend it to other AZ symmetry classes
 - to extend to subleading scaling operators and identify the corresponding physical observables

Results

 General relation for dimensions of scaling operators describing MF moments of an observable at criticality

 $x_q = x_{q_*-q}$

follows from global conformal invariance

- q_* is left unspecified, but it is as universal as critical exponents
- For Anderson localization in the WD classes we show that

$$\mathcal{P}(\rho) = \rho^{-3} \mathcal{P}(\rho^{-1}), \quad \overline{\rho^q} = \overline{\rho^{1-q}} \quad \Rightarrow \quad \Delta_q = \Delta_{1-q}$$

are consequences of the Weyl group symmetry of the sigma model

Global conformal invariance

- $x_q = \tau_q d(q-1) + qx_\nu$
- From the properties of τ_q it follows that $x_0 = 0$ and $x_q < 0$ for sufficiently large q
- Also $x_0' \geq 0 \quad \Rightarrow \quad$ there is a $q_* \geq 0$ such that $x_{q_*} = 0!$
- OPE $\mathcal{O}_p(\mathbf{r}_1)\mathcal{O}_q(\mathbf{r}_2) \sim |\mathbf{r}_1 \mathbf{r}_2|^{x_{p+q} x_p x_q} \mathcal{O}_{p+q}\left(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}\right)$
- For $p = q_* q$ the operator on the right has zero dimension

$$\Rightarrow \quad x_q = x_{q_*-q}$$

• q_* is left unspecified, but it is as universal as critical exponents

Random matrix theory and q_{*}

- q_* is determined by symmetries only
- Can find it in the zero-dimensional sigma model, or RMT
- Find moments of LDOS in a RMT:

$$\overline{\rho^q} \propto \int d\epsilon \left(\frac{\delta}{\epsilon^2 + \delta^2}\right)^q P(\epsilon), \qquad P(\epsilon) \sim |\epsilon|^m$$

•
$$q_* = m_l + 1 = \left\{ egin{array}{cc} 1, & \mbox{WD classes}, \\ 2, & \mbox{class Cl}, \\ 3, & \mbox{class C}. \end{array}
ight.$$

• More systematic derivation using sigma model and Wyle symmetry

Results

• We generalize these relations to other symmetry classes

$$\overline{\rho^q} = \rho^{q_* - q} \qquad \Rightarrow \qquad x_q = x_{q_* - q}$$

• Symmetry points for all AZ classes

AZ										
class	A	AI	AII	AIII	BDI	CII	\mathbf{C}	CI	D	DIII
Symmetry										
point q^*	1	1	1	1*	$1/2^{*}$	2^*	3	2	0*	0*

- Sigma model Weyl symmetry can be straightforwardly applied only to WD classes and BdG classes with spin rotation symmetry (C and CI)
- Other classes are more subtle
- Classes D and DIII: domain walls and absence of localization

General scaling operators

• More complicated combinations of wave functions

$$A_p(\mathbf{r}_1, \dots, \mathbf{r}_p) = \left| \text{Det} \begin{pmatrix} \psi_1(\mathbf{r}_1) & \cdots & \psi_1(\mathbf{r}_p) \\ \vdots & \ddots & \vdots \\ \psi_p(\mathbf{r}_1) & \cdots & \psi_p(\mathbf{r}_p) \end{pmatrix} \right|^2$$

- General correlators $K_{\lambda} = A_1^{q_1-q_2} A_2^{q_2-q_3} \cdots A_{n-1}^{q_{n-1}-q_n} A_n^{q_n}$
- Scaling dimensions x_{λ}
- $\lambda = (q_1, q_2, \dots, q_n)$ is a highest weight of G with complex q_i
- Weyl group W symmetry implies the general symmetry relation

 $x_{\lambda} = x_{w(\lambda)}, \quad \forall w \in W$

• This includes sign changes and permutations of (shifted) q_i

$$q_j \to -c_j - q_j, \quad q_i \to q_j + \frac{c_j - c_i}{2}$$

General scaling operators: examples

• Weight $\lambda = (q_1, q_2)$ leads to eight operators with the same x_λ

$$(q_1, q_2), \quad (1 - q_1, q_2), \quad (q_1, 3 - q_2), \quad (1 - q_1, 3 - q_2), (2 - q_2, 2 - q_1), \quad (-1 + q_2, 2 - q_1), (2 - q_2, 1 + q_1), \quad (-1 + q_2, 1 + q_1)$$

- For example, $\lambda = (0, 0)$ (identity operator) has $x_{\lambda} = 0$,
 - so all operators with weights (0,0), (1,0), (0,3), (1,3),(2,2), (-1,2), (2,1), (-1,1)have $x_{\lambda} = 0$
- One of these is $\overline{A_2^2}$ that appeared in the study of dephasing near the IQH transition

Composite operators

• Identify exact scaling gradientless operators

$$\tilde{Q}_{AA,bb} = \frac{1}{2} (Q_{RR} - Q_{AA} + Q_{RA} - Q_{AR})_{bb}$$
$$d_m = \operatorname{Det} [\tilde{Q}^{(m)}], \qquad \tilde{Q}^{(m)} = \begin{pmatrix} \tilde{Q}_{11} & \cdots & \tilde{Q}_{1m} \\ \vdots & \ddots & \vdots \\ \tilde{Q}_{m1} & \cdots & \tilde{Q}_{mm} \end{pmatrix}.$$

$$\varphi_{(q_1,\ldots,q_n)} = d_1^{q_1-q_2} d_2^{q_2-q_3} \ldots d_{n-1}^{q_{n-1}-q_n} d_n^{q_n}$$

- Arbitrary complex q_i
- Iwasawa decomposition for G = KAN

Composite operators

• Iwasawa decomposition for G = KAN leads to

$$\tilde{Q} = \begin{pmatrix} 1 & \dots & * & * \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & * \\ 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{-2x_1} & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & e^{-2x_{n-1}} & 0 \\ 0 & \dots & 0 & e^{-2x_n} \end{pmatrix} \begin{pmatrix} 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ * & \dots & 1 & 0 \\ * & \dots & * & 1 \end{pmatrix}$$
$$\varphi_{(q_1,\dots,q_n)} = \exp\left(-2\sum_{j=1}^n q_j x_j\right)$$

 $\overline{j=1}$

• $\lambda = (q_1, \ldots, q_n)$ is a highest weight

- Young tableaux for positive integer q_i
- Connection with Wegner's classification, numerous checks

Open questions

- Chiral classes and classes D and DIII with domain walls
- Connection with transport observables (transmission eigenvalues)
- Interacting systems

