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Outline

Introductory remarks on dynamics of density      
perturbations in 1D.
Free fermions and density oscillations driven by 
population inversion.
Long-range interactions and hydrodynamics.
Unifying picture: Kinetic equation for 1D fermions.
Conclusion.
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Coherent density perturbation of Fermi sea 

Important ingredients:

Interaction (if any); also the interaction radius is 
important;
Curvature of fermionic spectrum.

  (E. Bettelheim, A. G. Abanov, and P. Wiegmann,
   PRL 2006,  2011)
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Fermionic curvature and quantum shock 

As time flows the fermionic curvature drives the 
system away from LL fixed point.
The shock time: 
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In summary, understanding 1D quantum liquids outside the
sector of low-energy excitations requires breaking the spell of
linearization. The emerging theory, which accounts for the
nonlinear energy spectrum of particles forming the liquid,
answers that challenge. We review a number of methods of
the nonlinear LL theory and expose relations between them.
These methods have already led to a progress in understand-
ing the dynamic responses and relaxation of 1D quantum
liquids. The approaches we describe are controllable, yet
versatile enough for application to a broad class of systems,
from electrons in quantum wires (Deshpande et al., 2010), to
spin liquids and cold atoms confined to 1D.

This review is organized as follows. In Sec. II, we intro-
duce and develop in detail the general field-theoretical
approach to describe the singularities of dynamic response
functions in the momentum-energy plane. That approach is
based on the phenomenology of effective mobile impurities
moving in LLs. In Sec. III, we combine this field-theoretical
approach with the analysis of exactly solvable models, which
allows one to obtain a plethora of new results for the latter,
and provides stringent nonperturbative checks of the phe-
nomenological approaches. In Sec. IV, we illustrate the im-
portance of the physics beyond the linear LL theory for the
kinetics and the transport in 1D quantum liquids.

II. SINGULARITIES OF THE DYNAMIC RESPONSE
FUNCTIONS

An adequate description of a quantum many-body system
not only requires an understanding of the ground state, but
also a characterization of its excitations. One of the most
natural ways to probe the excitation spectrum is to measure
the dynamic responses of the system to external fields, such
as electromagnetic radiation of a given momentum and en-
ergy. Within Fermi’s golden rule, the scattering rate of such
external fields is related to various dynamic response func-
tions, such as the DSF or the spectral function (see the precise
definitions below). This motivates the interest in studying
qualitative features of the dynamic response functions of
low-dimensional systems. In particular, we will mostly be
interested in their behavior near the spectrum of elementary
excitations. Many experimental techniques can be applied to
probe the dynamic responses of 1D systems, such as neutron
scattering (Nagler et al., 1991; Zheludev et al., 2002; Stone
et al., 2003; Lake et al., 2005, 2010; Rüegg et al., 2005;
Masuda et al., 2006; Zheludev et al., 2008; Tennant, 2009;
Thielemann et al., 2009), angle resolved photoemission
spectroscopy (Claessen et al., 2002; Sing et al., 2003;
Hoinkis et al., 2005; Kim et al., 2006; Wang et al., 2006;
2009; Kondo et al., 2010; Blumenstein et al., 2011), and
various forms of Bragg spectroscopy (Stamper-Kurn et al.,
1999; Clément et al., 2009; Fabbri et al., 2009; Ernst et al.,
2010) and photoemission spectroscopy (Dao et al., 2007;
Stewart, Gaebler, and Jin, 2008; Gaebler et al., 2010).
Additional interest in the response functions of 1D systems
is driven by a rapid progress in their numerical evaluation
(White and Affleck, 2008; Barthel, Schollwöck, and White,
2009; Feiguin and Huse, 2009; Kokalj and Prelovsek, 2009;
Kohno, 2010) based on time-dependent extensions of the
density matrix renormalization group techniques (White,

1992; Vidal, 2003; Vidal, 2004; Schollwöck, 2005; De
Chiara et al., 2008).

A nonlinear dispersion relation and interactions between
particles forming a 1D quantum liquid modify in a nontrivial
way all dynamical responses of the liquid, resolved in ener-
gies and momenta. The DSF provides one of the examples. It
is defined as

Sðq;!Þ ¼
Z 1

$1
dt

Z 1

$1
dxeið!t$qxÞh!ðx; tÞ!ð0; 0Þi: (1)

Here !ðx; tÞ is the density operator and the averaging h% % %i is
performed over the Gibbs ensemble or the ground state in
the case of finite or zero temperature, respectively. In the
Tomonaga-Luttinger model, at small wave vectors q the DSF
takes the form SLL / jqj"ð!$ vjqjÞ at any temperature. The
dispersion results in a ‘‘broadening’’ of the delta function.
Accounting for a finite width of Sðq;!Þ even for small q is
important (Pustilnik et al., 2003) for understanding Coulomb
drag experiments (Debray et al., 2001, 2002; Yamamoto
et al., 2002, 2006; Laroche et al., 2011). The broadening
occurs even at zero temperature (T ¼ 0), and we will con-
centrate on that case.

To illustrate the origin of the structure arising in Sðq;!Þ
due to the dispersion, we consider first the simplest case of
free spinless fermions with a quadratic dispersion relation,

#ðkÞ ¼ k2 $ k2F
2m

: (2)

At zero temperature, the structure factor can be thought of
as an absorption coefficient, i.e., the dissipative part of the
linear susceptibility with respect to a perturbation "H ¼
Uðx; tÞ!ðx; tÞ by a potential Uðx; tÞ varying in space and time
with the wave vector q and frequency !, respectively. In the
case of free fermions, dissipation is caused by creation of
particle-hole pairs by the perturbing potential; see Fig. 1. At
q < 2kF, a simple evaluation of Eq. (1) yields

S0ðq;!Þ ¼ ðm=qÞ$ðq2=2m$ j!$ vFqjÞ (3)

with the Fermi velocity vF ¼ kF=m. The two thresholds for
absorption correspond to two special configurations in the
momentum space of the particle-hole pairs; see Fig. 1.
Specifically, the lower boundary, !$ðqÞ ¼ vFq$ q2=2m,

FIG. 1 (color online). Density structure factor Sðq;!Þ for non-
interacting fermions [see Eq. (3)] and weakly interacting fermions
[see Eqs. (27), (30), and (32)]. In the noninteracting case, S0ðq;!Þ is
constant in the dark shaded region and vanishes otherwise. Left:
Particle-hole configurations responsible for the upper and lower
thresholds. Right: Sðq;!Þ for fixed 0< q< 2kF. In the noninter-
acting case, Sðq;!Þ has a rectangular shape. Interactions turn the
steps into power-law singularities, and Sðq;!Þ becomes nonzero in
the light shaded region.
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Curvature effects at linear response level 

In summary, understanding 1D quantum liquids outside the
sector of low-energy excitations requires breaking the spell of
linearization. The emerging theory, which accounts for the
nonlinear energy spectrum of particles forming the liquid,
answers that challenge. We review a number of methods of
the nonlinear LL theory and expose relations between them.
These methods have already led to a progress in understand-
ing the dynamic responses and relaxation of 1D quantum
liquids. The approaches we describe are controllable, yet
versatile enough for application to a broad class of systems,
from electrons in quantum wires (Deshpande et al., 2010), to
spin liquids and cold atoms confined to 1D.

This review is organized as follows. In Sec. II, we intro-
duce and develop in detail the general field-theoretical
approach to describe the singularities of dynamic response
functions in the momentum-energy plane. That approach is
based on the phenomenology of effective mobile impurities
moving in LLs. In Sec. III, we combine this field-theoretical
approach with the analysis of exactly solvable models, which
allows one to obtain a plethora of new results for the latter,
and provides stringent nonperturbative checks of the phe-
nomenological approaches. In Sec. IV, we illustrate the im-
portance of the physics beyond the linear LL theory for the
kinetics and the transport in 1D quantum liquids.

II. SINGULARITIES OF THE DYNAMIC RESPONSE
FUNCTIONS

An adequate description of a quantum many-body system
not only requires an understanding of the ground state, but
also a characterization of its excitations. One of the most
natural ways to probe the excitation spectrum is to measure
the dynamic responses of the system to external fields, such
as electromagnetic radiation of a given momentum and en-
ergy. Within Fermi’s golden rule, the scattering rate of such
external fields is related to various dynamic response func-
tions, such as the DSF or the spectral function (see the precise
definitions below). This motivates the interest in studying
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low-dimensional systems. In particular, we will mostly be
interested in their behavior near the spectrum of elementary
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et al., 2003; Lake et al., 2005, 2010; Rüegg et al., 2005;
Masuda et al., 2006; Zheludev et al., 2008; Tennant, 2009;
Thielemann et al., 2009), angle resolved photoemission
spectroscopy (Claessen et al., 2002; Sing et al., 2003;
Hoinkis et al., 2005; Kim et al., 2006; Wang et al., 2006;
2009; Kondo et al., 2010; Blumenstein et al., 2011), and
various forms of Bragg spectroscopy (Stamper-Kurn et al.,
1999; Clément et al., 2009; Fabbri et al., 2009; Ernst et al.,
2010) and photoemission spectroscopy (Dao et al., 2007;
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is driven by a rapid progress in their numerical evaluation
(White and Affleck, 2008; Barthel, Schollwöck, and White,
2009; Feiguin and Huse, 2009; Kokalj and Prelovsek, 2009;
Kohno, 2010) based on time-dependent extensions of the
density matrix renormalization group techniques (White,

1992; Vidal, 2003; Vidal, 2004; Schollwöck, 2005; De
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is defined as
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Here !ðx; tÞ is the density operator and the averaging h% % %i is
performed over the Gibbs ensemble or the ground state in
the case of finite or zero temperature, respectively. In the
Tomonaga-Luttinger model, at small wave vectors q the DSF
takes the form SLL / jqj"ð!$ vjqjÞ at any temperature. The
dispersion results in a ‘‘broadening’’ of the delta function.
Accounting for a finite width of Sðq;!Þ even for small q is
important (Pustilnik et al., 2003) for understanding Coulomb
drag experiments (Debray et al., 2001, 2002; Yamamoto
et al., 2002, 2006; Laroche et al., 2011). The broadening
occurs even at zero temperature (T ¼ 0), and we will con-
centrate on that case.

To illustrate the origin of the structure arising in Sðq;!Þ
due to the dispersion, we consider first the simplest case of
free spinless fermions with a quadratic dispersion relation,

#ðkÞ ¼ k2 $ k2F
2m

: (2)

At zero temperature, the structure factor can be thought of
as an absorption coefficient, i.e., the dissipative part of the
linear susceptibility with respect to a perturbation "H ¼
Uðx; tÞ!ðx; tÞ by a potential Uðx; tÞ varying in space and time
with the wave vector q and frequency !, respectively. In the
case of free fermions, dissipation is caused by creation of
particle-hole pairs by the perturbing potential; see Fig. 1. At
q < 2kF, a simple evaluation of Eq. (1) yields

S0ðq;!Þ ¼ ðm=qÞ$ðq2=2m$ j!$ vFqjÞ (3)

with the Fermi velocity vF ¼ kF=m. The two thresholds for
absorption correspond to two special configurations in the
momentum space of the particle-hole pairs; see Fig. 1.
Specifically, the lower boundary, !$ðqÞ ¼ vFq$ q2=2m,

FIG. 1 (color online). Density structure factor Sðq;!Þ for non-
interacting fermions [see Eq. (3)] and weakly interacting fermions
[see Eqs. (27), (30), and (32)]. In the noninteracting case, S0ðq;!Þ is
constant in the dark shaded region and vanishes otherwise. Left:
Particle-hole configurations responsible for the upper and lower
thresholds. Right: Sðq;!Þ for fixed 0< q< 2kF. In the noninter-
acting case, Sðq;!Þ has a rectangular shape. Interactions turn the
steps into power-law singularities, and Sðq;!Þ becomes nonzero in
the light shaded region.
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In summary, understanding 1D quantum liquids outside the
sector of low-energy excitations requires breaking the spell of
linearization. The emerging theory, which accounts for the
nonlinear energy spectrum of particles forming the liquid,
answers that challenge. We review a number of methods of
the nonlinear LL theory and expose relations between them.
These methods have already led to a progress in understand-
ing the dynamic responses and relaxation of 1D quantum
liquids. The approaches we describe are controllable, yet
versatile enough for application to a broad class of systems,
from electrons in quantum wires (Deshpande et al., 2010), to
spin liquids and cold atoms confined to 1D.

This review is organized as follows. In Sec. II, we intro-
duce and develop in detail the general field-theoretical
approach to describe the singularities of dynamic response
functions in the momentum-energy plane. That approach is
based on the phenomenology of effective mobile impurities
moving in LLs. In Sec. III, we combine this field-theoretical
approach with the analysis of exactly solvable models, which
allows one to obtain a plethora of new results for the latter,
and provides stringent nonperturbative checks of the phe-
nomenological approaches. In Sec. IV, we illustrate the im-
portance of the physics beyond the linear LL theory for the
kinetics and the transport in 1D quantum liquids.

II. SINGULARITIES OF THE DYNAMIC RESPONSE
FUNCTIONS

An adequate description of a quantum many-body system
not only requires an understanding of the ground state, but
also a characterization of its excitations. One of the most
natural ways to probe the excitation spectrum is to measure
the dynamic responses of the system to external fields, such
as electromagnetic radiation of a given momentum and en-
ergy. Within Fermi’s golden rule, the scattering rate of such
external fields is related to various dynamic response func-
tions, such as the DSF or the spectral function (see the precise
definitions below). This motivates the interest in studying
qualitative features of the dynamic response functions of
low-dimensional systems. In particular, we will mostly be
interested in their behavior near the spectrum of elementary
excitations. Many experimental techniques can be applied to
probe the dynamic responses of 1D systems, such as neutron
scattering (Nagler et al., 1991; Zheludev et al., 2002; Stone
et al., 2003; Lake et al., 2005, 2010; Rüegg et al., 2005;
Masuda et al., 2006; Zheludev et al., 2008; Tennant, 2009;
Thielemann et al., 2009), angle resolved photoemission
spectroscopy (Claessen et al., 2002; Sing et al., 2003;
Hoinkis et al., 2005; Kim et al., 2006; Wang et al., 2006;
2009; Kondo et al., 2010; Blumenstein et al., 2011), and
various forms of Bragg spectroscopy (Stamper-Kurn et al.,
1999; Clément et al., 2009; Fabbri et al., 2009; Ernst et al.,
2010) and photoemission spectroscopy (Dao et al., 2007;
Stewart, Gaebler, and Jin, 2008; Gaebler et al., 2010).
Additional interest in the response functions of 1D systems
is driven by a rapid progress in their numerical evaluation
(White and Affleck, 2008; Barthel, Schollwöck, and White,
2009; Feiguin and Huse, 2009; Kokalj and Prelovsek, 2009;
Kohno, 2010) based on time-dependent extensions of the
density matrix renormalization group techniques (White,

1992; Vidal, 2003; Vidal, 2004; Schollwöck, 2005; De
Chiara et al., 2008).

A nonlinear dispersion relation and interactions between
particles forming a 1D quantum liquid modify in a nontrivial
way all dynamical responses of the liquid, resolved in ener-
gies and momenta. The DSF provides one of the examples. It
is defined as

Sðq;!Þ ¼
Z 1

$1
dt

Z 1

$1
dxeið!t$qxÞh!ðx; tÞ!ð0; 0Þi: (1)

Here !ðx; tÞ is the density operator and the averaging h% % %i is
performed over the Gibbs ensemble or the ground state in
the case of finite or zero temperature, respectively. In the
Tomonaga-Luttinger model, at small wave vectors q the DSF
takes the form SLL / jqj"ð!$ vjqjÞ at any temperature. The
dispersion results in a ‘‘broadening’’ of the delta function.
Accounting for a finite width of Sðq;!Þ even for small q is
important (Pustilnik et al., 2003) for understanding Coulomb
drag experiments (Debray et al., 2001, 2002; Yamamoto
et al., 2002, 2006; Laroche et al., 2011). The broadening
occurs even at zero temperature (T ¼ 0), and we will con-
centrate on that case.

To illustrate the origin of the structure arising in Sðq;!Þ
due to the dispersion, we consider first the simplest case of
free spinless fermions with a quadratic dispersion relation,

#ðkÞ ¼ k2 $ k2F
2m

: (2)

At zero temperature, the structure factor can be thought of
as an absorption coefficient, i.e., the dissipative part of the
linear susceptibility with respect to a perturbation "H ¼
Uðx; tÞ!ðx; tÞ by a potential Uðx; tÞ varying in space and time
with the wave vector q and frequency !, respectively. In the
case of free fermions, dissipation is caused by creation of
particle-hole pairs by the perturbing potential; see Fig. 1. At
q < 2kF, a simple evaluation of Eq. (1) yields

S0ðq;!Þ ¼ ðm=qÞ$ðq2=2m$ j!$ vFqjÞ (3)

with the Fermi velocity vF ¼ kF=m. The two thresholds for
absorption correspond to two special configurations in the
momentum space of the particle-hole pairs; see Fig. 1.
Specifically, the lower boundary, !$ðqÞ ¼ vFq$ q2=2m,

FIG. 1 (color online). Density structure factor Sðq;!Þ for non-
interacting fermions [see Eq. (3)] and weakly interacting fermions
[see Eqs. (27), (30), and (32)]. In the noninteracting case, S0ðq;!Þ is
constant in the dark shaded region and vanishes otherwise. Left:
Particle-hole configurations responsible for the upper and lower
thresholds. Right: Sðq;!Þ for fixed 0< q< 2kF. In the noninter-
acting case, Sðq;!Þ has a rectangular shape. Interactions turn the
steps into power-law singularities, and Sðq;!Þ becomes nonzero in
the light shaded region.
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linearization. The emerging theory, which accounts for the
nonlinear energy spectrum of particles forming the liquid,
answers that challenge. We review a number of methods of
the nonlinear LL theory and expose relations between them.
These methods have already led to a progress in understand-
ing the dynamic responses and relaxation of 1D quantum
liquids. The approaches we describe are controllable, yet
versatile enough for application to a broad class of systems,
from electrons in quantum wires (Deshpande et al., 2010), to
spin liquids and cold atoms confined to 1D.

This review is organized as follows. In Sec. II, we intro-
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approach to describe the singularities of dynamic response
functions in the momentum-energy plane. That approach is
based on the phenomenology of effective mobile impurities
moving in LLs. In Sec. III, we combine this field-theoretical
approach with the analysis of exactly solvable models, which
allows one to obtain a plethora of new results for the latter,
and provides stringent nonperturbative checks of the phe-
nomenological approaches. In Sec. IV, we illustrate the im-
portance of the physics beyond the linear LL theory for the
kinetics and the transport in 1D quantum liquids.
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FUNCTIONS
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natural ways to probe the excitation spectrum is to measure
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low-dimensional systems. In particular, we will mostly be
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et al., 2003; Lake et al., 2005, 2010; Rüegg et al., 2005;
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2009; Feiguin and Huse, 2009; Kokalj and Prelovsek, 2009;
Kohno, 2010) based on time-dependent extensions of the
density matrix renormalization group techniques (White,
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Chiara et al., 2008).
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Here !ðx; tÞ is the density operator and the averaging h% % %i is
performed over the Gibbs ensemble or the ground state in
the case of finite or zero temperature, respectively. In the
Tomonaga-Luttinger model, at small wave vectors q the DSF
takes the form SLL / jqj"ð!$ vjqjÞ at any temperature. The
dispersion results in a ‘‘broadening’’ of the delta function.
Accounting for a finite width of Sðq;!Þ even for small q is
important (Pustilnik et al., 2003) for understanding Coulomb
drag experiments (Debray et al., 2001, 2002; Yamamoto
et al., 2002, 2006; Laroche et al., 2011). The broadening
occurs even at zero temperature (T ¼ 0), and we will con-
centrate on that case.

To illustrate the origin of the structure arising in Sðq;!Þ
due to the dispersion, we consider first the simplest case of
free spinless fermions with a quadratic dispersion relation,

#ðkÞ ¼ k2 $ k2F
2m

: (2)

At zero temperature, the structure factor can be thought of
as an absorption coefficient, i.e., the dissipative part of the
linear susceptibility with respect to a perturbation "H ¼
Uðx; tÞ!ðx; tÞ by a potential Uðx; tÞ varying in space and time
with the wave vector q and frequency !, respectively. In the
case of free fermions, dissipation is caused by creation of
particle-hole pairs by the perturbing potential; see Fig. 1. At
q < 2kF, a simple evaluation of Eq. (1) yields

S0ðq;!Þ ¼ ðm=qÞ$ðq2=2m$ j!$ vFqjÞ (3)

with the Fermi velocity vF ¼ kF=m. The two thresholds for
absorption correspond to two special configurations in the
momentum space of the particle-hole pairs; see Fig. 1.
Specifically, the lower boundary, !$ðqÞ ¼ vFq$ q2=2m,

FIG. 1 (color online). Density structure factor Sðq;!Þ for non-
interacting fermions [see Eq. (3)] and weakly interacting fermions
[see Eqs. (27), (30), and (32)]. In the noninteracting case, S0ðq;!Þ is
constant in the dark shaded region and vanishes otherwise. Left:
Particle-hole configurations responsible for the upper and lower
thresholds. Right: Sðq;!Þ for fixed 0< q< 2kF. In the noninter-
acting case, Sðq;!Þ has a rectangular shape. Interactions turn the
steps into power-law singularities, and Sðq;!Þ becomes nonzero in
the light shaded region.
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Ae−iS[X,p]

�

p∞ < p < pMax(X)
0.65 0.70 0.75 0.80

p

0.2

0.4

0.6

0.8

1.0

1.2

f!x!0, p"

p =
pF (X + y/2) + pF (X − y/2)

2

Oscillations in the phase space

N =
1

2π

�
dx(pF (x)− p∞)

S[y;X, p] = py −
� X+ y

2

X− y
2

dX �pF (X
�)
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!1000 !500 500 1000
x

0.65

0.70

0.75

p

pF!x"

pMax!x"

Equipotentials of the action 

δf0(X, p) ∝ �
�
Ae−iS[X,p]

�
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3000 3500 4000
x

0.65

0.7

0.75

pF!x"

pMax!x"

Ρ!x"

Density profile  after the shock
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3000 3500 4000
x

0.200

0.202

0.204

0.206

0.208

0.210

Ρ!x"

Kinetic equation  compared to numerics

(see also E. Bettelheim and L.I. Glazman, arXiv:1209.1881 )
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Bosonization and Hydrodynamic 
description

H =

�
dx

�
�ρ�v2

2
+

π
2�ρ3

6

�

[�ρ(x), �v(y)] = −iδ�(x− y) .

∂t�ρ+ ∂x(�ρ�v) = 0 , ∂t�v + ∂x

�
�v2

2
+

π2�ρ2

2

�
= 0

Quantum Hamiltonian 
(Schick, Phys. Rev. 1968)

Commutation relation

Equations of motion

Can we remove hats?
Loop corrections should be taken into account.  
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Interaction and hydrodynamics

Inelastic time processes are strongly suppressed:
(M. Khodas et al. , PRB   2007; ... ; 
 A. Imambekov, T. L. Schmidt, and L. I. Glazman, RMP 2012)
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rs = λF /l0

Hint,α � 1

l
2−α
0

�
dx

�
ρ
α+1 − 1

2
ρ �Aαρ

�
,

Aα(q) = −2Γ[1− α] sin
πα

2
|q|α−1

, α > 1

A1(q) = ln qd , qd � 1

H =

�
dx

�
ρv

2

2
+

π
2
λ
2
ρ
3

6
− 1

2
ρ �Aαρ

�
.

Power-law interaction
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Density Hump Density Dip

8000 9000 10 000 11 000 x
1.580
1.585
1.590
1.595
1.600
1.605
1.610

Ρ!x"
l0"3
d"100
t#5tc

8000 9000 10 000 11 000 x
1.590
1.595
1.600
1.605
1.610
1.615
1.620
Ρ!x"

l0"3
d"100
t#7tc

d

solitons,  charge much 
larger then 1 Ripples

Period of oscillation

Power-law interaction

Hydrodynamics works if:
Coulomb:
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Hint =
1

2

�
dx

�
ρ
2

l0
− l1 (∂xρ)

2
�

Finite range interaction

Hydrodynamics works if 
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Kinetic equation for LL: from free fermions to 
hydrodynamics

We bosonize:

We make Bogolubov transform:
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Kinetic equation for LL: from free fermions to 
hydrodynamics

We we make non-linear rotation:

We perform refermionization  now:
(A. Rozhkov, PRB   2006;  
 A. Imambekov and L. I. Glazman, Science 2009)
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Kinetic equation for LL: from free fermions to 
hydrodynamics

Parameters of Fermionic Hamiltonian:

Interaction of fermions is now RG irrelevant and can 
be treated in perturbation theory!
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Kinetic equation for LL: from free fermions to 
hydrodynamics

Quantum Kinetic equation:

We concentrate on finite range interaction:
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Kinetic equation for LL: from free fermions to 
hydrodynamics
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Kinetic equation for LL: from free fermions to 
hydrodynamics
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Kinetic equation for LL: from free fermions to 
hydrodynamics
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Kinetic equation for LL: from free fermions to 
hydrodynamics
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Conclusions and Outlook

Free fermions or short range interaction 
Oscillations in phase space, overturn and density ripples

Applications: 

Interacting Fermions (long range)

 Solitons  or Ripples 
(depending on the sign of interaction and perturbation)

cold atoms, QHE edges,  top. insulators, ...

Intermediate regime 

 Kinetic equation in terms of proper fermions
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THANK YOU!
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