Dynamics of waves in 1D electronic systems: from free fermions to hydrodynamics

I. Protopopov (Karlsruhe)

In collaboration with:

D. Gutman (Bar Ilan+Karlsruhe)
A. D. Mirlin, (Karlsruhe)
P. Schmitteckert, (Karlsruhe)
M. Oldenburg, (Karlsruhe)

Karlsruhe Institute of Technology

Outline

- Introductory remarks on dynamics of density perturbations in 1D.
- Free fermions and density oscillations driven by population inversion.
- Long-range interactions and hydrodynamics.
- Unifying picture: Kinetic equation for 1D fermions.
- Conclusion.

Coherent density perturbation of Fermi sea

Important ingredients:

- Interaction (if any); also the interaction radius is important;
- Curvature of fermionic spectrum.

(E. Bettelheim, A. G. Abanov, and P. Wiegmann, PRL 2006, 2011)

Fermionic curvature and quantum shock

As time flows the fermionic curvature drives the system away from LL fixed point. The shock time:

$$t_c \sim m\Delta x/\Delta \rho$$

Curvature effects at linear response level

$$S(q, \omega) = \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} dx e^{i(\omega t - qx)} \langle \rho(x, t) \rho(0, 0) \rangle$$

$$S_{\text{LL}} \propto |q|\delta(\omega - \upsilon|q|) \longrightarrow S_0(q, \omega) = (m/q)\theta(q^2/2m - |\omega - \upsilon_F q|)$$

A. Imambekov, T. L. Schmidt, and L. I. Glazman, RMP 2012

Monday, July 15, 2013

Free Fermions

Wigner function

$$f(X,p;t) = \int dy e^{-ipy} \left\langle \psi^+ \left(X - \frac{y}{2}; t \right) \psi \left(X + \frac{y}{2}; t \right) \right\rangle$$

Exact Kinetic Equation $\partial_t f(X, p; t) + p \partial_X f(X, p; t) = 0$

Exact Solution

 $f(X, p; t) = f(X - pt, p; t = 0) \equiv f_0(X - pt, p)$

FILM

Wigner function, at t=0 (E. Bettelheim and P. Wiegmann, PRB 2011) $\partial_X f_0(X, y) - i \left[p_F \left(X + \frac{y}{2} \right) - p_F \left(X - \frac{y}{2} \right) \right] f_0(X, y) = 0$

Boundary conditions

$$f_0(X = -\infty, y) = \int \frac{dp}{2\pi} e^{ipy} \Theta \left(p_\infty - p\right)$$

Approximate solution

$$f_0(X,p) = \int \frac{dy}{2\pi i(y-i0)} e^{-iS[y;X,p]}$$
$$S[y;X,p] = py - \int_{X-\frac{y}{2}}^{X+\frac{y}{2}} dX' p_F(X')$$

Oscillations in the phase space

$$N = \frac{1}{2\pi} \int dx (p_F(x) - p_\infty)$$

Equipotentials of the action

Density profile after the shock

Kinetic equation compared to numerics

Bosonization and Hydrodynamic description

$$H = \int dx \left(\frac{\widehat{\rho}\widehat{v}^2}{2} + \frac{\pi^2\widehat{\rho}^3}{6}\right)$$

Commutation relation $[\hat{\rho}(x), \hat{v}(y)] = -i\delta'(x-y).$

Equations of motion

 $\partial_t \hat{\rho} + \partial_x (\hat{\rho} \hat{v}) = 0, \qquad \partial_t \hat{v} + \partial_x \left(\frac{\hat{v}^2}{2} + \frac{\pi^2 \hat{\rho}^2}{2}\right) = 0$

Can we remove hats? Loop corrections should be taken into account.

Interaction and hydrodynamics

$$H_{\rm int} = (1/2) \int dx_1 dx_2 g(x_1 - x_2) \rho(x_1) \rho(x_2)$$

Inelastic time processes are strongly suppressed: (M. Khodas et al., PRB 2007; ...; A. Imambekov, T. L. Schmidt, and L. I. Glazman, RMP 2012)

Power-law interaction

$$g_{\alpha}(x) = \frac{1}{ml_0^{2-\alpha}} \frac{1}{x^{\alpha}}, \qquad 1 \le \alpha < 2, \qquad r_s = \lambda_F / l_0$$

$$H_{int,\alpha} \simeq \frac{1}{l_0^{2-\alpha}} \int dx \left(\rho^{\alpha+1} - \frac{1}{2} \rho \widehat{A}_{\alpha} \rho \right) ,$$
$$A_{\alpha}(q) = -2\Gamma[1-\alpha] \sin \frac{\pi \alpha}{2} |q|^{\alpha-1} , \qquad \alpha > 1$$
$$A_1(q) = \ln qd , \qquad qd \gg 1$$

$$H = \int dx \left[\frac{\rho v^2}{2} + \frac{\pi^2 \lambda^2 \rho^3}{6} - \frac{1}{2} \rho \widehat{A}_{\alpha} \rho \right] \,.$$

Finite range interaction

$$g(q) = \frac{1}{ml_0} e^{-q^2 l_{int}^2} \simeq \frac{1}{ml_0} - \frac{q^2 l_{int}^2}{ml_0} = \frac{1}{ml_0^2} - \frac{l_1^2 q^2}{m}$$
$$H_{int} = \frac{1}{2} \int dx \left[\frac{\rho^2}{l_0} - l_1 \left(\partial_x \rho \right)^2 \right]$$

Hydrodynamics works if
$$l_0 \Delta \rho \ll 1$$
, $l_{
m int}^2 \Delta \rho / l_0 \gg 1$

We bosonize:

$$H_0 = \pi v_F \int dx \left(\rho_R^2 + \rho_L^2\right) + (4\pi^2/6m) \int \left(\rho_R^3 + \rho_L^3\right)$$
$$H_{\text{int}} = (1/2) \int dx_1 dx_2 g(x_1 - x_2) \rho(x_1) \rho(x_2)$$

We make Bogolubov transform:

 $\rho_{R,q} = \cosh \kappa_q R_q - \sinh \kappa_q L_q ,$ $\rho_{L,q} = -\sinh \kappa_q R_q + \cosh \kappa_q L_q$

$$H^{(2)} = (\pi/L) \sum_{q} u_q \left(R_q R_{-q} + L_q L_{-q} \right)$$

$$u_q = v_F (1 + g_q / \pi v_F)^{1/2} = v_F / K_q$$

$$H^{(3)} = (2\pi^2/3mL^2) \sum_{\mathbf{q}} \Gamma_{\mathbf{q}} [(R_1R_2R_3 + L_1L_2L_3) + 3\Gamma'_{\mathbf{q}}(R_1R_2L_3 + L_1L_2R_3)]$$

We we make non-linear rotation: $\tilde{\rho}_L = U_3 L U_3^{\dagger}$

$$U_3 = \exp \sum_{\mathbf{q}} [f_{\mathbf{q}} R_1 R_2 L_3 - (L \leftrightarrow R)] \qquad f_{\mathbf{q}} = \frac{2\pi^2}{mL^2} \frac{\Gamma_{\mathbf{q}}}{u_{q_1} q_1 + u_{q_2} q_2 - u_{q_3} q_3}$$

$$H = (\pi/L) \sum_{\eta,q} u_q \tilde{\rho}_{\eta,q} \tilde{\rho}_{\eta,-q} + (2\pi^2/3mL^2) \sum_{\eta,\mathbf{q}} \Gamma_{\mathbf{q}} \tilde{\rho}_{\eta,1} \tilde{\rho}_{\eta,2} \tilde{\rho}_{\eta,3} + O(\tilde{\rho}^4)$$

We perform refermionization now:

(A. Rozhkov, PRB 2006; A. Imambekov and L. I. Glazman, Science 2009)

$$H = \sum_{\eta,k} \tilde{\Psi}^{\dagger}_{\eta,k} \left(\eta u_0 k - \frac{k^2}{2m^*} \right) \tilde{\Psi}_{\eta,k} + \frac{1}{2L} \sum_{\eta,q} V_q \tilde{\rho}_{\eta,q} \tilde{\rho}_{\eta,q} - q + \frac{2\pi^2}{3mL^2} \sum_{\eta,\mathbf{q}} \gamma_{\mathbf{q}} \tilde{\rho}_{\eta,q_1} \tilde{\rho}_{\eta,q_2} \tilde{\rho}_{\eta,q_3}$$

Parameters of Fermionic Hamiltonian:

$$1/m^* \simeq \Gamma_{\mathbf{q}=0}/m$$
 $V_q = 2\pi(u_q - u_0)$ $\gamma_{\mathbf{q}} = \Gamma_{\mathbf{q}} - \Gamma_{\mathbf{q}=0}$

$$H = \sum_{\eta,k} \tilde{\Psi}^{\dagger}_{\eta,k} \left(\eta u_0 k - \frac{k^2}{2m^*} \right) \tilde{\Psi}_{\eta,k} + \frac{1}{2L} \sum_{\eta,q} V_q \tilde{\rho}_{\eta,q} \tilde{\rho}_{\eta,-q} + \frac{2\pi^2}{3mL^2} \sum_{\eta,\mathbf{q}} \gamma_{\mathbf{q}} \tilde{\rho}_{\eta,q_1} \tilde{\rho}_{\eta,q_2} \tilde{\rho}_{\eta,q_3}$$

Interaction of fermions is now RG irrelevant and can be treated in perturbation theory!

Quantum Kinetic equation:

 $\partial_t \tilde{f}_\eta(p, x, t) + (p/m^*) \partial_x \tilde{f}_\eta(p, x, t) + \int (dp/2\pi) e^{-ipy} \\ \times \tilde{f}_\eta(x, y, t) [\tilde{\phi}_\eta(x + y/2) - \tilde{\phi}_\eta(x - y/2)] = 0$

$$\tilde{\phi}_{\eta}(x,t) = \int dx' V(x-x')\tilde{\rho}_{\eta}(x',t)$$

We concentrate on finite range interaction:

$$g(q) = \frac{1}{ml_0} e^{-q^2 l_{int}^2}$$

Conclusions and Outlook

- Free fermions or short range interaction Oscillations in phase space, overturn and density ripples
- Interacting Fermions (long range)
- Solitons or Ripples (depending on the sign of interaction and perturbation) Intermediate regime
 - Kinetic equation in terms of proper fermions
- Applications: cold atoms, QHE edges, top. insulators, ...

THANK YOU!