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Introduction

Main discovery of the late 1970 – early 1980’s :
Quantum groups (a byproduct of the study of solvable
models in QFT and Quantum Statistical Physics)

Question : can we apply these new objects to the study
of real world (dim > 2) ?

Obvious obstruction: Braiding ⇒ Nonconventional
statistics.

One case when this is not quite bad : string theory.

Basically, a string is a 2-dimensional QFT with
conformal invariance and with “external” Poincaré
symmetry.
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Quantum current algebra

Schwinger commutation relations for the current algebra

[ja(x), jb(y)] = fabc j
c(x)δ(x− y) + cδabδ′(x− y)

Set j(x) = jax⊗ ea, jV (x) = jax⊗ πV (ea). Then

[j1U (x), j
2
V (y)] = [t12UV , j

1
U (x)− j2V (y)] + t12UV δ

′(x− y),

where
t12UV = πU (ea)⊗ πV (ea).

Quantum (or q-deformed) generalization of the
Schwinger formula uses the fundamental object in
Quantum Groups Theory, the quantum R-matrix.
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Quantum current algebra

Quantum R-matrices are defined for pairs of
finite-dimensional representations of quantum algebra
and satisfy QYBE:

R12
UV (s)R

13
UW (st)R23

VW (t) = R23
VW (t)R13

UW (st)R12
UV (s)

Quantum current JV (s) satisfies commutation relations:

J1
V (s)R

12
UV (st

−1qc)J2
V (t)R

12
UV (st

−1)−1 =

R12
UV (st

−1)J2(t)R12
UV (st

−1q−c)J1
V (s).

Exponential parametrization s = e2πix/L, qc = e2πil/L.
Hence central charge together with q introduce an
ultraviolet scale.
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Sugawara construction

We have j(x) = j+(x)− j−(x).

q-deformed counterpart: J(s) = J+(sq
c/2)J−(s)−1

(already normal ordered!)

Sugawara current:

S(x) =: 〈j(x), j(x)〉 :,

[S(x), S(y)] = (c+n)
(
(S(x) + S(y))δ′(x− y) + kδ′′′(x− y)

)
.

For critical value of c, c = −n, Sugawara operators
commute with each other.

The would-be q-deformed counterpart:
SV (s) = tr V JV (s).
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Sugawara construction

Theorem. For the critical value of the central charge
SV (s) lies in the center of the quantum current algebra;
this is valid for any V .

Unfortunately, for other values of c the commutation
relations for SV (s) do not close up.

Partial remedy: quasiclasscal computation for c � ccrit.
This yields the definition of q-deformed Poisson
Virasoro algebra (Reshetikhin–E.Frenkel)

{T (z), T (w)} = φ(
z

w
)T (z)T (w) + δ

(wq
z

)
− δ

(
w

zq

)
,

where φ(z) =
∑
m∈Z

1− qm

1 + qm
zm
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Drinfeld–Sokolov construction

The formula above is not very transparent (but suggests
the important role of elliptic functions in the matter!)

Alternative approach:
Poisson Virasoro algebra arises in the study of 2nd
order differential operators.
Natural way to get 2nd order differential operators:
by Hamiltonian reduction of the space of first order
2× 2 matrix differential operators.

Gauge group: lower triangular matrices.
Natural constraint:

L =

(
∗ 1

∗ ∗

)
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Drinfeld–Sokolov construction

Two cross-sections:

L �
(
0 1

u 0

)
, or L �

(
v 1

0 −v

)

Miura transform: u = v2 + v′.
One has {v(x), v(y)} = δ′(x− y) (inherited from the
current algebra), and

{u(x), u(y)} (u(x) + u(y))δ′(x− y) + δ′′′(x− y).
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q-difference case

To get q-deformed Poisson Virasoro algebra we start
with 1st order difference equations of the form

ψ(qz) = L(z)ψ(z), where both L and ψ are 2× 2 matrices.

Important: Now q is the modulus of the difference
operator (Planck constant appears at the next
stage!)
Gauge group again consists of lower triangular
matrices.
New features:

1st order difference operators carry non-trivial
Poisson bracket; its choice depends on the choice
of a classical r-matrix.
Gauge action is not Hamiltonian.
Reduction becomes non-trivial.
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q-difference case

Constraint

L =

(
∗ 1

∗ ∗

)
remains the same.

Two natural cross-section of the gauge action are

L �
(

0 1

−1 u

)
, or L �

(
v 1

0 v−1

)

Miura transform: u(x) = v(x) + v−1(qx).

The constraint is of 2nd class according to Dirac (which
is very bad!)

But there is the way to save the construction :
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q-difference case

Result of computation:

φ(z) =
∑

m∈Z z
m 1−qm

1+qm appears very naturally as a
component of new r-matrix.
One gets Poisson bracket for v:

{v(x), v(y)} = φ(x/y)v(x)v(y).

The Poisson brackets for reproduce the q-deformed
Poisson Virasoro algebra.

“What I say three times is true.”

Quantization: Using the Poisson brackets for v (which
give basically Heisenberg algebra) and the q-Miura
transform.

From quantum current algebrasto q-Virasoroand q-string theory – p. 11/20



q-deformed Virasoro V irq,t

The result (known for 17 years):

f(w/z)T (z)T (w)− T (w)T (z)f(z/w) =

(1− q)(1− t−1)

1− p

[
δ(pw/z)− δ(p−1w/z)

]
, (1)

where p = qt−1 and

f(z) = exp

∞∑
n=1

1

n

(1− qn)(1− t−n)

1 + pn
zn.
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Why this does not fit?

Technically, all this is rather difficult. In particular, the
algebra is not finitely generated (like ordinary Virasoro).

More importantly, there are restrictions on q: |q| < 1,
while one would like to have q = eih.

So, what to do ?

In standard string theory much can be guessed from
the residual projective invariance (in particular,
Veneziano amplitude).

Standard Veneziano amplitude
A(s, t) = Γ(1−αs)Γ(1−αt)

Γ(2−αs−αt) .

q-deformed Veneziano amplitude derived from
SUq(1, 1)-covariance (A.Leclerc, 1989): Γ → Γq

This is also not the correct version!
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On the role of Γ-function

Early results: Harish-Chandra theory of spherical
functions.

Modern theory: Quantum Separation of variables
(Sklyanin, Lebedev & Gerasimov, . . .

Baxter equation, Mellin-Barnes integrals.

Principal series representations for quantum group
Uq(sl(2,R)

Quantum torus and quantum dilogarithm.

From quantum current algebrasto q-Virasoroand q-string theory – p. 14/20



Example: quantum sl2

Commutation relations

KE = q2EKn, KF = q−2FK, EF − FE =
K −K−1

q − q−1
,

Family of homomorphisms into quantum torus
(associative algebra Aq generated by u, v with
commutation relation uv = q2vu):

K 	→ zu−1, E 	→ v−1

q − q−1
(1−u−1), F 	→ qv

q − q−1
(z−z−1u),

It sends Casimir element
C = qK + q−1K−1 + (q − q−1)2FE into z + z−1.
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Example: quantum sl2

Involution: K∗ = K, E∗ = −E, F ∗ = −F ; it is compatible
with the commutation relations, iff q = eπiτ , τ = ω1/ω2.

Second copy of quantum sl2: it is associated with
q̃ = e−πi/τ and is mapped into the torus Aq̃.

Hilbert space representation: put

Tiω1ϕ(t) = ϕ(t+ iω1), Tiω2ϕ(t) = ϕ(t+ iω2),

Sω1ϕ(t) = e
2πt
ω1 ϕ(t), Sω2ϕ(t) = e

2πt
ω2 ϕ(t).

Define the dual representations of Aq and Aq̃ in
H = L2(R) by

ρ : u 	→ Tω1 , v 	→ S−iω2 ,

ρ̃ : ũ 	→ Tω2 , ṽ 	→ S−iω1 .
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Example: quantum sl2

Claim: This provides a unitary representation of
Uq(sl(2,R)) and Uq̃(sl(2,R)). Moreover, both algebras
centralize each other in L2(R).
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Basic special function: q-dilogarithm

log G(z|τ) =

∫
R+i0

ezt

(eω1t−1)(eω2t−1)

dt

t
.

Difference equations:

G(z + ω1|τ)
G(z|τ) =

1

1− e
2πiz
ω2

,
G(z + ω2|τ)

G(z|τ) =
1

1− e
2πiz
ω1

Important feature: G is double-quasi-periodic.

Poles at z = n1ω1 + n2ω2, n1, n2 ≥ 1, zeros at
z = n1ω1 + n2ω2, n1, n2 ≤ 0.

Case when ω1 and ω2 are aligned is not excluded: no
accumulation of zeros and poles unless τ is real
negative (the only bad case).
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Main problem

Claim: q-dilogarithm is ubiquitous and provides a basis
for Representation theory of Uq(g) which accounts for
modular duality.

Main problem:
Extend this assertion to quantum current algebras
Define the correct version of q-Virasoro which makes
sense for |q| = 1 and is compatible with modular
duality.
Is there a chance this will yield a new string theory?
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Thank you for your attention!
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