


Exotic guantum spin liquid (QSL) is made with
such hypothetic particles as fermionic spinons
which carry spin 1/2 and no charge. A great
variety of QSL are discovered in theory. The
experimental identifying of QSLs heavily
depends on theoretical interpretation making
the search for the corresponding material to
Investigate spin liquid a challenge In
condensed matter physics.




Mineral Herbertsmithite ZnCu,(OH).Cl, Is an
Insulator
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We show that:

Mineral Herbertsmithite represents a fascinating
experimental example when new particles-spinons,
non-existing as free ones, dominate its properties
at low temperatures.

v Caused by thefspin- chaﬁne separation the tow- :

N temperature thel modynamic, heat 1 ransport and |

relaxation properties of the insulator herbertsmithiterare
similar to those of metals rather than of insulators.

Herbertsmithite is a new type of strongly correlated
electrical insulator that possesses properties of
heavy fermion metals with one exception: it resists
the flow of electric charge.



(Herbertsmithite) ZnCu,(OH)CL..

+(large brown spheres)

Zn2+(small red spheres)
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Tian-Heng Han et al., Nature, December 2012,
"Fractionalized excitations in the
spin-liquid state of a kagome-lattice
antiferromagnet"
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guantum spin liquids is a long sought
goal in physics, as they represent new
states of matter. A key feature of
spin liquids is that they support exotic
spin excitations carrying fractional
guantum numbers. However, detailed
measurements of these ‘fractionalized
excitations’ have been lacking.
Neutron scattering measurements on
single-crystal samples of the spin-1/2
kagome-lattice antiferromagnet called
herbertsmithite, provide striking
evidence for this characteristic feature
of spin liquids. At low temperatures,
the spin excitations form a continuum,
eeting with frustration. (Top) A Kagome basket. In_ contrast to the con_ventlonal
Bottom) Structure of ZnCu (OH) CL, (10) showing spin waves expected in ordered
antiferromagnets.

hat the Cu ions (blue) occupy a Kagome lattice; O-H

s red-white.
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Isolated flat bands and spin-1 conical bands in two-dimensional lattices
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Normal Fermi liquid and Fer mi liquid with the flat band
are separ ated by Fermion Condensation
Quantum Phase Transition (FCQPT)

Normal Fermi liquid Fermi liquid with a flat banc
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V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990)
V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010)
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At FCQPT theband isflat and M* isinfinite, whilethe equation
becomes homogeneous, and is solved analytically
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FIG. 1. Temperature dependence of the magnetic susceptibil-
ity v at different magnetic fields for ZnCus(OH)gCly®. The
illustrative values of ymax and Tmax at B = 7 T are also
shown. Our calculations made at B = 0 are depicted by the
solid curve representing x(7') o« T with a = 2/3.

1.5, Helton et al., Phys. Rev. Lett. 104, 147201 (2010).

V. R. Shaginvan, M. Ya. Amusia, A. Z. Msezane, and K.
. Popov, Phyvs. Rep. 492, 31 (2010).
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FIG. 2: Schematic phase diagram of ZnCus(OH)sCla. The
vertical and horizontal arrows show LFL-NFL and NFL-LFL
transitions at fixed B and T respectively. Inset shows a
schematic plot of the normalized effective mass versus the nor-
malized temperature. Transition region, where M, reaches
its maximum at Iy = 1T'/Tmax = 1, is shown by the arrows
and hatched area in both the main panel and in the inset.
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FIG. 2. (Color online) Phase diagram of ZnCu;(OH);Cl;. The
vertical and horizontal arrows show LFL-NFL and NFL-LFL
transitions at fixed B and T, respectively. The inset shows a plot of the
normalized effective mass vs the normalized temperature. The tran-
sition region, where M3, reaches its maximum at Ty = T /T, = 1,
15 shown by the armows and the hatched area in both the main panel
and in the inset.
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FIG. 3: Normalized susceptibility Yx = X/ Xmax = My versus
normalized temperature T. yn is extracted from the mea-
surements of the magnetic susceptibility y in magnetic fields®
B shown in Fig. 1. Normalized specific heat (C/T )y = My
is extracted from the measurements of C'//T on YbRh;Si; in
magnetic fields*® B. The corresponding fields B are listed in
the legends. Our calculations made at field B completely po-
larizing the quasiparticle band are depicted by the solid curve
tracing the scaling behavior of My.

V. R. Shaginyan, A. Z. Msezane, and K. G. Popov, Phys. Rev. B 84, 60401(R) (2011)
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FIG. 5: Panel A: The temperatures T,..(B) at which the
maxima of y (see Fig. 1) are located. The solid line represents
the function Tiax x aB, a is a fitting parameter, see Eq.
(5). Panel B: The maxima vy, of the function y(T') versus
magnetic field B (see Fig. 1). The solid curve is approximated

by Ymax(B) = dB~%/3, see Eq. (3), d is a fitting parameter.
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FIG. 4: Normalized magnetization My (y) collected on mea-
surements on ZnCus(OH)sCla® and YbRh2Siz*® at different
temperatures shown in the corresponding legends. Shown by
the arrow a kink is clearly seen at 3y ~ 1. The normalized
entropy Sn(y) is extracted from measurements on 2D *He?
at different densities x shown in the legend. The solid curve
represents our calculations of the normalized magnetization.
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M. A. deVries, K. V. Kamenev, W. A. Kockelmann, .J.
Sanchez-Benitez, and A. Harrison Phyvs. Rev. Lett. 100,
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The specific heat Cspin(B,T)/T versus magnetic field B
measured on ZnCu3(OH)6CI2 as a function of temperature.
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The normalized specific heat Cspin(B,T)/T and
susceptibility versus magnetic field B measured
on ZnCu3(OH)6CI2 as a function of temperature.

V.R. Shaginyan, A.Z. Msezane, K.G. Popov, G.S. Gaparidze, V.A. Stephanovich,
Identification of Spin Liquid, Europhys. Lett. , Europhys. Lett. 97, 56001 (2012).
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FIG. 6. (Color online) The specific heat C{B,T ) vs magnetic field
B measured on ZnCu3{0OH );Cl; at two different temperatures (Ref. 6)
T listed in the legends is shown by the triangles and squares. Our
calculations are depicted by the solid curves, tracing the LFL behavior
of C(B,T) = a, B~**T [see Eq. (3)], with a, being a parameter.

The heat capacity C(T)/T
as a function of B.
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PHYSICAL REVIEW B 84, 060401(R) (2011)

Thermodynamic properties of the kagome lattice in herbertsmithite

V. R. Shaginyan,'~* A. Z. Msezane.” and K. G. Popov’




Spin-lattice relaxation rate of quantum spin liquid
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Dependence of spin-lattice relaxation rate at various magnetic fields and
at fixed temperature in HF metal YbCu4.4Au0.6 and ZnCu3(OH)6CI2.

P. Carretta et al.,

PR B 79, 020401R, 2009; T. Imai et al., PRL 100, 077203 (2008).
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QSL in the organic compound

The organic insulator EtMe3Sb[Pd(dmit)2]2.
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Fig. 1. The crystal structure of EtMe;Sh{Pd(dmit) ], and Et;Me,SbiPd(cmit);];. (A) A view parallel
to the 2D magnetic Pd(dmit), layer, separated by layers of a nonmagnetic cation. (B) The spin
structure of the 2D planes of EtMe;Sb{Pd(dmit), ), (dmit-131), where Et = (;Hs, Me = CH;, and
dmit = 1,3-dithiole-2-thione-4,5-dithiolate. Pd(dmit), are strongly dimerized (table 51), forming
spin-1/2 units [Pd(dmit)zl;” (blue arrows). The antiferromagnetic frustration gives rise to a state in
which none of the spins are frozen down to 19.4 mK (4). (C) The spin structure of the 2D planes of

H. M. Yamamoto, N. Nakata, Y. Senshu, M. Nagata, H.
M. Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda,
Science 328, 1246 (2010).
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Figure 3. Field dependence of k. The change under field normalized by the
zero-field value is plotted.
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Our calculations unveil the fundamental properties of QSL, forming strongly

correlated Fermi system located at FCQPT. The key features of our findings are

~the presence of spin-charge separation and QSL formed with itinerant heavy

| spinons in herbertsmithite. Herbertsmithite represents a fascinating

experimental example of strongly correlated insulator when the new particles -

spinons, non-existing as free ones, totally replace the initial particles enterlng
- the Hamiltonian to dominate the properties at low temperatures.

(b)
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SUMMARY

Insulators with QSL represent a a new type of strongly correlated
electrical insulator that possesses properties of heavy fermion metals
with one exception: it resists the flow of electric charge.

Herbertsmithite is a fascinating experimental example when new
particles-spinons, non-existing as free ones, dominate its properties at
low temperatures.

We have also demonstrated that the insulators with QSL exhibit the
Landau Fermi-Liquid, Non-Fermi Liquid and the transition behavior as
HF metals and 2D 3He do.

Our calculations of the thermodynamic and relaxation properties are in
good agreement with the experimental facts and their scaling behavior
coincides with that observed in HF metals, 2D 3 He, and quasicrystals.

Caused by the spin-charge separation the low-temperature thermodynamic,
heat transport and relaxation properties of the insulators with QSL are similar

to those of metals rather than of insulators.






