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A Case for 34+1 Dimensions

Nature prefers Yang-Mills theory in exactly 143 dimensions:
Coordinates ¥, momenta p*.

Split index u = 0, 1,2, 3 into spinorial indices a = 1,2 and ¢ = 1,2.

Interesting bijection R™® — H(2 X 2),p* — pag = Pu (0%) 14 -
Reverse map H (2 x 2) — R pt s L Trp,s (67)°
Here o# = (1,6) and o = (1, —07) Wlth Pauli matrices &. Explicitly:

B (p0+p3 pl—ip2>
Pac — .
pP1+11p2 Po— P3

Gluons are labeled by momenta p* with p = pt'p, = det pas, = 0 and
helicity +1. Momentum factors: pag = AaAg , shorthand for = [Ao)[Aal-



Spinor-Helicity and Amplitudes, |

Good variables for YMq 3.
For example, the (color stripped) MHV tree amplitudes for n particles are

+1 nr

L ey’ .
= o L O e

[ Parke, Taylor ‘86 ]

Here (k) = e*OX aXe,g and [k€] = %P X0, 5 and Pag = 32 Njadja -

Otherwise, unbelievable mess in p* variables!



Spinor-Helicity and Amplitudes, li

There is a beautiful extension to maximally supersymmetric N' = 4 theory:
One introduces for each leg 7 a GraBmann spinor 773-4 where A =1,2,3,4.
With total “fermionic momentum” Q% = D )\j,anj‘ one gets

n-1  _ 0*(Pa)d®(Q4)

(12)(23)...{n — 1,n){nl)

All external helicity configurations are generated by expansion in the 7734.



GraBmannian Integrals and Amplitudes

ge

Build super-twistors ZJ“-4 = (1, 5\?, 773-4) with Fourier conjugates A% — [
GraBmannian formulation of tree-level N*~2MHV,, amplitudes

Ha 1H7, k 1dcaz 414
/(1...k)(2...k+ ).,+( Ttk —1) H5' (24 + Z caiZi)

1=k+1

Integrat|on |S a|0ng “SL“ta ble contou I’S” . [ Arkani-Hamed et.al. ‘09; Mason, Skinner ‘09 |
The parameters c,; are the non-trivial entries of a k£ X n matrix

Cl,k+1 C1k4+2 - Cin
C = Tk ke ' '

Ck.k+1 Ckk+2 - Ckn

A GL(k) symmetry fixes Igxx. The (i¢+ 1...i + k — 1) are k X k minors.
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Spinor-Helicity, GraBmannian, and Amplitudes

Huge progress in last 10 years for MSYMy 3, that is N' = 4 gauge theory.

Bonus:

o All tree level, n-particle, any helicity n — 2k amplitudes known.

e Integrand of all L-loop n-particle amplitudes known (BCFW).

e Tree level Yangian invariance discovered, some evidence for 1-loop.

Malus:

e How to perform L-loop integrations? Infrared divergences!

e How to practically use Yangian invariance = integrability?



Shortcomings of Current Approaches

1) Current approach to infrared divergences:

e Rewrite integrand in p* variables.
e Regulate D=4 — D =4 + 2¢.

e Extract appropriate finite pieces.

Drawback: p = A\ decomposition breaks down in D = 4 + 2¢!

2) Current approach to Yangian invariance:
e Observe it. Admire it.

Drawback: Not clear how to make use of it!



Killing Two Birds with One Stone

Conclusions:

1) D =4 + 2¢, that is dimensional regularization, is too crude!
Stay in D = 4! But then, how to regulate?

2) Take inspiration from QISM (Quantum Inverse Scattering Method):
Introduce a spectral parameter z in order to practically use integrability.
But how?

ldea:

Combine 1) and 2), find z, and use it instead of ¢!
= Replace dimensional regularization by spectral regularization.
Should be symmetry preserving!



A Puzzle: Three or Four? 1
In the QISM, basic object is a 4-vertex, the R-matrix: R(z) = 2—|—-2

1
Could try to relate this to 4-particle MHV,=MHYV 4:

—1 4+
(12)* PN S
— O (A1 A RS Y.V P
(12)(23)(34)(41) (A4 4 Aada)
—2 3+
Puzzle: On-shell methods are rather based on 3-vertices: | Akanitamed etal 12]
1— ; 1+ ;
(12)° 12]°
/l\ CEIEA asan]
N—— N —
2 _ + 3 w.(17273) 2_1_ —3 w0(17273)

One can derive these directly from the YM Feynman rules: ;.
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A Technical Problem with On-Shell 3-Vertices
In RY3 cannot have p? = p3 = p2 = 0 along with p; + ps + p3 = 0.

~

In spinor language, related to condition (A\,)* = A4 of s0(1,3) = sl(2,C).

Way Out 1: Drop reality conditions, “complexify”.
Somewhat confusing if we want to integrate over A, \.

Way Out 2: Wick-rotate so(1,3) — s0(2,2) = sl(2,R) @ sl(2,R).
Nice, since “everything stays real”. So, with p_1 = i ps, we have

. ,:<po+p3 pl—p1>
- P1t+P-1 Po— D3

Now, p? =0 < pi+p%,—pi—pi=0. )
Then pag = AaAg With independent )\, € R? and )\, € R?.



On-Shell Integration in R*?

Let us see how this works. In “projective” coordinates ¢, x,y we have

t(1+xyxy1 Ty :B—|—y)
> 200 2 0 2

Pac =1 (i;)'(l y):<tz;; tfvyy)

On-shell measure: [o,, d*pd(p?) = [*° Udt [, dzdy.

P = (p07p—17p37p1)

This yields



Four-Vertex Decomposition into Three-Vertices

Now the MHV, 4 amplitude decomposes as [ Arkani-Hamed et.al. ‘12 ]
D1\ ke y D4
p1+p2+p3+ps=0.
k + p1 k — ps
Do / k+pi+p \p3

We get
5 ) ) 5 (2 (6 )
R2,
XWe(k,p1, k + p1)Wo(k + p1,p2, k + p1 + D2)

Xwo(k + p1 + P2, P3, k— p4)ﬁ]0(k — P4, P4, k)



Localization of Four-Point Amplitude, |

Four integrations, four delta functions, the integral completely localizes:

—1

/RQ,2 d' 8 (k%) 6 ((k+p1)*) 6 ((k+p1+p2)*) 0 (k= pa)*) = —,

where s = (p1 + p2)? and t = (p1 + p4)? are Mandelstam variables.
Multiplying this kinematical factor with the four 3-vertex weights, we get

(12)"
(12)(23)(34) (41)

Parke-Taylor! Notice that all four components of k get fixed.



Localization of Four-Point Amplitude, ||

Take in s0(1,3) momenta p; = £(1 0,0,1), pa = %(1,0,0, 1),
and p3 = \/_( 1,sin6,0,cos8), p \/_( 1,—sin#,0,—cos@). Then

— \/_ (:Ojg) . (COS2 sin%)

N G R0
-




On-Shell Loop Diagrams

So we have seen that 1-loop on-shell = 0-loop off-shell! [ Arkani-Hamed et.al. ‘12
Now proceed:
D1 L / D4
N——o0—1¢
k+p1 k—1/¢ ¢ — py

~ ® P
k+p+
D2 /J P1+DP2 £+ p +p\2‘\p3

= One integration remains: 2-loop on-shell = i—loop off-shell.

Comment: Even i—loop Is already infrared divergent!



One-Loop Off-Shell from On-Shell Diagrams

N o—¢
a8
AL —
/d4k1 . / d*ks §() . 5(...210. Wo . . . We Wo
< ~ - 16—dim
20—dim
= Four integrations remain: 5-loop on-shell = 1-loop off-shell. Result:

a2t [ 1
(12)(23)(34)(41) ! / s K2(k 4 p1)?(k 4+ p1 + p2)?(k — pyg)?

Infrared divergent!



Bootstrap Equations

Back to integrability and our question: Do 3-vertices appear in the QISM?

Answer: Yes, in bootstrap equations!

Similar but different from Yang-Baxter equations!
The equations involve spectral parameters.



Deformed Three-Point Vertices

The bootstrap equations may be solved, resulting in 3-point “R-matrices’ .

With z3 such that 27 + 29 + 23 = 0, we found
.

_ (12)4 4
/l\ (12)1423(23) 1421 (31 ) 1+22 65 (P),

2= 4 +3

_ 19]" 4
))\  [12]1-=3[23]1-~1[31]1 =2 6 (P).

2+ -3

Physical interpretation of the spectral parameters z; :
Helicity h; is assigned to the spinors as h()\;) = —1 and h()\;) = 3. Then

(12 ) |
(12)1+23(23)1+21(31)1+=2  (12)h1tha—hs(23)haths—h1(3])hsthi—hy’

Analogy to 3-pt functions in CFT2! In projective coord.: (ij) ~ (x; — ;).
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Deformed Supersymmetric Three-Point R-Matrices

In supersymmetric formulation, the deformed three-point amplitudes are
1

/J\ — Ry = 04(P)8%(Q)
o <12>1—|—23<23>1+z1 <31>1_|_22 ;

2 3

/J)\ _ p _ 0UP)N([12]ng + [23]n1 + [31n5)

[12]1-23[23]1—=1[31]1— =

Mathematical interpretation of the spectral parameters z; in terms of
central charges: C; = = ()\j(%j — )\j(“?;\j — 77]-8773.) + 1, since

C;Re=—-2R,, CjRoz—%Ro.
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Four-Point R-Matrix

Back to 4-point functions. Glue together 4 deformed 3-point functions:

Satisfies the Yang-Baxter equation:
4 3 4 3
F 1 2 1 2
In fact, R(z) turns out to be (the kernel of) the R-matrix of the one-loop
spin chain of N/ = 4! Generalization of an insight due to [ zwiebe 11].
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Yang-Baxter Equation
Let R;;(z) act non-trivially on V; ® V; only. Then on V; ® Vo ® V3

Ras(21)Ri3(22)Ri2(22 — 21) = Ria(22 — 21)Ri3(22)Ras(21).

Let V3 = C*%. Let J7; be the generators of gl(4]|4) written in rep i and
eﬁ the ones of the fundamental rep. Put

Rzg(Z) — L = 2zl —|—Z B BA, ng(Z) —> R12(Z),

Linear equation for Ris! Implies

Rio,J1 + J2] =0,

(—1)PRaa Jig Jog — (—1)P Jsp JieR12 = 2((J2)¢ Riz — Ria(J2)8).
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Oscillator Representations
Schwinger oscillator realization of gl(4|4)
Ji = atag, where lay,af)l = 65,

Particle-Hole transform to get to gl(2,2|0 + 4)
(8", an) = (a", ap) (bs, b") = (ag, —(~1)"a") ,
with Fock-vacuum
an0) = 0,  b*|0) = 0.
Interpretation in term of spinor-helicity variables:

a .
bA ~ .
O\ {aAd’anA}

ah ~ A\ by~ {AY, gAY an ~
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Yang-Baxter Equation and Oscillator Representations

Ansatz, with N= total number operator,

N
Ria(z Z Oéz(g,l?m 2(2) Hopy 1 1y

k,l,m,n

where Hopy, ; ., 1, 1S

1 AL~ i} - _
ay'...a,"b7 ...b} a'...a;" b} ... b} x
k'l'm'n' A1 B+ 7%

B B1 .2 2 1A A 1 1
Xby"...bytag ...ag by ...byay, ...an
One finds, with [ = f&£Lndm

OA(N)N F(I—I—l)
LTIl +1-2-iN(z+iN+1)

“Harmonic” R-matrix of the one-loop spin chain of N' = 4.
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Yang-Baxter Equation and GraBmannian Integral Rep
Super-twistors as gl(4|4) oscillators, with A =1,...,8:

0
0ZA

d'AHZ'A, ap <

R-matrix kernel:

(Ri2(2) 0 9) (23, Z4) = / A1 2,d"1 2, R(z; 23, 24| 21, 22) 9(21, 25)

C-matrix (1 0 ci3 Cl4>

O 1 Co23 C24

Solving Yang-Baxter yields for R(z) the deformed 4-pt amplitude:

4 4
dci3 dcig deas deag ((:13(:24)Z A4 )

oM ( 2+ Z.) 644z —|—E Z
/ c13 Coq detC detC (21 ];flk k) (22 - 30% k)

25



Recall: GraBmannian Integral Representation

Fourier conjugates AT — 7. GraBmannian formulation of tree-level
N*—2MHV,, amplitudes

/ H5:1H?=k+1dcai ﬁ54|4(2“4+ z’”’: ) -Z.A)
(1...)2...k+1)...(n...n+k—1) a ai

a=1 1=k-+1

Integration i1s along “suitable contours’. The parameters c,; are the
non-trivial entries of a £ X n matrix

Cl,k+1 Ci1k4+2 " Cin
C = Tk ke ' '

Ck.k+1 Ckk+2 - Ckn

A GL(k) symmetry fixes Igxx. The (i¢+ 1...i + k — 1) are k X k minors.
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Bootstrap Equations and GraBmannian Integral Reps

There are four equations for the two deformed 3-pt amplitudes. E.g.

(5 + (0 R~ (5t 4 (e (50 (- >(J?)g)

<1 <1 22

Ak

UE) R, = R (57 + (—1)P L2 (g8 4 -1y L)

oA+ (=1)°¢
(C+( ) 23 <4 <3

Solving them vyields the black and white “vertices” in GraBmannian form

dcisdce
Re = / 157723 54|4(Zl + 01323)54|4(22 —+ 02323).
C13C€23 613023

dcyadc
R, = / 127713 54’4(21 —+ 61222 —+ 61323)
C12€13 012013

with the corresponding C-matrices Cy = (é (1) g;g) and C, = (1 c12 613).
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Face Moves and Square Moves

Face Moves:

21
Z4 Z9

Z3

Square Moves

The face moves and the square

21

21

Z3

Z3

moves are respected by the deformation!

28



Yang-Baxter from Three-Vertices

F: Face
move
S: Square
move
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Spectral Regularization of One-Loop Off-Shell Diagram

Finally, let us deform our earlier on-shell five-box diagram:

o o—¢
_2¢
*—0—o
_4e EIO 3¢ | 4¢
O O
_2¢
AL 0. Q

This deforms the off-shell one-box integral as

—4€
/ 1 ((34)[21))

Ak —— : : :
k2= (k + p1)20=9(k + p1 + p2)?(1 79 (k — pa) 2179

Infrared convergent for € > 0! We are integrating in exactly 4 dimensions!
Reminiscent, but different from so-called “analytic regularization™.
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Conclusions
Spectral parameter for scattering amplitudes in N/ = 4 SYM proposed.
Physical interpretation as locally complexified helicity.
Mathematical interpretation as locally complexified central charge.
Evidence that it may serve as infrared regulator in 341 dimensions.

Evidence that it respects all symmetries:
superconformal, dual superconformal, Yangian.

First concrete connection between the spectral problem and amplitudes.
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Work in Progress
Establish that spectral regularization works beyond one loop.

Use it as an efficient calculational tool replacing dim reg by spec reg.

Find a Bethe Ansatz for amplitudes = Yangian invariants?

[ Frassek, Kanning, Ko, MS to appear |

Find all-loop cusp directly from amplitudes?

Is spec reg also useful as ultraviolet regulator in exactly 341 dimensions?
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