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Motuvation

* Hydrodynamics is an effective theory that still requires better
understanding

* Recent holographic models provided a lot of insight into relativistic
hydrodynamics

* Low viscosity over entropy density in the hydrodynamic description
of heavy-ion collision is understood

* Progress in the studies of QFT anomalies in hydrodynamics
* Superfluidity is investigated via AdS/CFT

* What else we can possibly shed some light on using holography?



Solid — Liquid Crystal — Fluid

Solid is characterized by a structural rigidity and resistance to changes of
shape or volume. Described by classical mechanics.

Fluid changes its shape under applied shear stress. Described by
hydrodynamics.

Liquid crystal is a state of matter “in between”. It shares properties with
fluids (eg. deforms under shear stress) and solids (eg. non-zero elasticity
properties).

Phase transition between isotropic un oriented phase and ordered liquid
crystal phase. There is a number of phenomenological theories (eg. Maier
Saupe mean field theory, Landau-De Gennes theory).
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Isotropic phase - hydrodynamics

Relativistic fluid with one conserved charge described by
conservation laws:

plus equations that express T#” and 5" in terms of local
temperature 1', chemical potential i, and fluid velocity u*:

T = (e + P)uru” + Pgr” + 1

The definition of velocity is ambiguous beyond leading order.
We fix it by imposing u, 7" = u,v" = 0.



Liquid crystal phase (nematic)

In the nematic phase we can measure V1sc051ty Nematic
— — —

Moving plate
i i Viscosity is a

diffusion constant

Force/Area
Unit Velocity Gradient

for momentum

Viscosity =

We can define a unit vector n called the director to
be the average molecular orientation direction.

1
Scalar order parameter S = 5 <3 cos” O — 1>




Viscosity in hquid crystals
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Twist

The question we would like to address here is: how much energy will it
take to deform the director field?

The deformation of relative orientations away from equilibrium position
will manifest itself as curvature strain. The restoring forces which arise to
oppose these deformations will cause curvature stresses or torques. If
these changes in molecular orientation vary slowly in space relative to
the molecular distance scale, we may describe the response of the liquid
crystal with a version of a continuum elastic theory.



Phase transitions

Temperature

A phenomenological theory of phase transitions
was established by Landau. He suggested that
phase transitions were manifestation of a broken Pressure
symmetry. In the simplest cases through the
definition of an appropriate order parameter, Q,

the macroscopic behaviour of a phase may be i

followed. Typically Q = 0 in the more symmetric - cmﬁzw S
(less ordered) phases and Q # 0 in the less Strength of interactions

Symmetric (m()re Orde]_‘ed) phases, Science 12, 207, vol. 315 no. 5809 196-197
The theory, though originally introduced to describe continuous phase

transitions in solids, appeared (as we know today) to correctly account for
symmetry change observed at majority of continuous and first order phase

Crystal
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Temperature

transitions.

The Landau theory generaly fails in the temperature adjacent to the
transition, in which the behaviour of a system is dominated by fluctuations



l.andau thery tailored to describe hquid
crystals

The LT appears as a necessary intermediate step (and also as a tool) in
constructing generalized theory that include fluctuations - it is known as
Landau-Ginzburg-Wilson theory:

Majority of insight into physics of liquid crystals relies on the
implementation of Landau’s ideas (physics of defects, elasticity,
hydrodynamics, relaxation, etc. ), and the approach has been rather
successful.

A major breakthrough in including liquid crystals in the Landau
reasoning is due to de Gennes. He realized that instead of the scalar
order parameter one should use a tensorial quantity. For the nematic
phase it reads:

S



lLandau-de Gennes theory

Once the appropriate tensor order parameter of the system is identified we can
assume, in a spirit of Landau theories, that the free energy density F is an
analytic function of the order parameter. The Landau-de Gennes theory of the
nemastic-isotropic transition starts by assuming that a spatially invariant dimen-
sionless, order parameter is small in the nematic phase close to the transition
point. The difference in free energy density (per unit volume) of the two phases
it thus expanded in powers of the order parameter. Since the free energy must
be invariant under rigid rotations, all terms of the expansion must be scalar
functions of the tensor.

FLdG(Pa T, Qozﬁ) — F() + O‘FQ@BQB@ + 5FQ@5Q5’7Q704 =+ VFQaﬁQﬁanpr’y

The most general form capturing the uniaxial phase is typically truncated at
fourth order.



Holography=spherical cow approx.
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Aim at universal properties, understand qualitative features

Strongly coupled QFTs are difficult to study

Use A/ =4 SYM. as a playground

Apply holography, treat as a toy-model (spherical cow)

[t was particularly successful in the context of hydrodynamics.
Quantitative understanding why viscosity over entropy density is small at
RHIC. Useful in the context of anomalies due to their coupling
independent nature. Natural language to investigate two-fluid models
(superfluidity). Maybe the same tool can be used to better understand
liquid crystals.



AdS/CEF'T" correspondence

N = 4 supersymmetric IIB superstrings in curved Str Ongly Coupled gauge
fields equivalent to weakly

coupled strings

Yang-Mills theory in R* AdS5 x S° 10D spacetime

The dictiona
Potentially very useful tool but R

. Gauge side String side
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AdS/CET at finite temperature

SYM on a stack of Anti-de Sitter geometry
D3-branes 1
2 L4 2 L4 > 2 2 2
T—0 ds” = (1 + 7“4> datdx, + (1 + 7“4) (dr® + r=dQ2z)

AdS Schwarzschild geometry

.

T=0

2 2

ds? = — (= f(r)dt* + dx'dz;) + Ty

dr® + L*dQ:

Top-down vs. bottom-up



Spin 2 Lagrangian

Complicated plus various consistency issues

1 1,

1 Q 1% v
S = /dd“:z: V=9l = 5(Vipap)” + (V") + 5 (Vi) = Ve Vi — omi (o™ — @)
1 U 1 o UV 1 - v
g P E" = gma A + Ruvas 0™ = 5rm s Re” = 5 AN = 7)),

We need a quadratic coupling between the fields. A cubic coupling of the
form a1 A, A, " as A% would not allow for spontaneous hairy black holes.
The spin 1 field would just act as a source for the massive spin 2 field and all
charged black holes would have a secondary hair. Instead we want to have a
hair appearing below a critical temperature. The situation would be similar to
trying to build a superconductor using a dilatonic coupling e? F2. It would not
work since the electric field would source the dilaton.




FEquations of motion

Our ansatz:

SO,LLV — dlag(07 07 90$1£181 (Z)7 SOZUQCBQ (Z)7 90333333 (Z))
Cdz" = ¢(z)dt

12 \/d—l - 1

We get the following EOMs
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Looking for an instability

The dynamical fields 1, A1 obey hypergeometric equations when there is no
coupling o = 0. Their fall-off is

d_ [d? d?
w(z p— 22 \/4+m820l2_|_¢N22+\/ +m2l2—|—

¢( MZ 2 \/(d— )2—|—mA52 _|_¢NZ 2 \/(d 2) +m ?AZQ _|_...

We impose regularity at the horizon and Dirichlet condition at the boundary

Instability!

We have spin-2
condensate




Partition function

The Euclidean black hole solution is interpreted as a saddle-point in the path
integral corresponding to the thermal partition function. The supergravity
action evaluated for this solution is interpreted as the leading contribution to
the free energy. Free energy for a stack of D3-branes

7.‘.2

F = TSsugra — 3

NZT*

To prove the instability for the spin-2 system we need to calculate the
partition functions for the isotropic phase and for the phase with the
condensate and show that the system lowers the free energy by
developing the condensate.



Free energy analysis

For simplicity, we will look at d =4 but we will keep the masses general.
Stot = S + c/ddaz v—A,A*
The variation of the total action reduces for our ansatz to

[ 2c[? /3
0Stot = /d5513 V=9 (Euwdp"” + Ej0AY) — /dtd% [; ¢'d¢ + - POP — _:{W(W

2\ f z 0

We fix c in order to have a well define Dirichlet problem

0Stot = /d5az‘ vV—9 (E,00" + E,0A%) + /dtdsaj (J +(O)ou)

We pass to Euclidean signature and evaluate the action
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An nstability confirmed

Finally we can write down an expression for the difference of the free
energies in the normal and condensed phase

F($#0)~ F(b=0)=V

B/ Oél3¢2w2 1 |
| a5 — 50 - (Ohuln.

~2000 -

Ditference of free energy between
the uniaxial nematic phase and the
normal phase as a function of the
temperature T = 1/f3. The uniaxial
nematic phase is favored.
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Future directions

Check if the model gives the equations of
nematodynamics

Use an anisotropic ansatz for the metric and study
backreaction

Calculate viscosity coefficients

Investigate the non-relativistic limit



