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Motivation
✤ Hydrodynamics is an effective theory that still requires better 

understanding

✤ Recent holographic models provided a lot of insight into relativistic 
hydrodynamics

✤ Low viscosity over entropy density in the hydrodynamic description 
of heavy-ion collision is understood

✤ Progress in the studies of QFT anomalies in hydrodynamics

✤ Superfluidity is investigated via AdS/CFT

✤ What else we can possibly shed some light on using holography?



Solid       Liquid Crystal       Fluid

Solid is characterized by a structural rigidity and resistance to changes of 
shape or volume. Described by classical mechanics.

Fluid changes its shape under applied shear stress. Described by 
hydrodynamics.

Liquid crystal is a state of matter ”in between”. It shares properties with 
fluids (eg. deforms under shear stress) and solids (eg. non-zero elasticity 
properties).

Phase transition between isotropic un oriented phase and ordered liquid 
crystal phase. There is a number of phenomenological theories (eg. Maier 
Saupe mean field theory, Landau-De Gennes theory).



Liquid crystals
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Isotropic phase - hydrodynamics
Parity-odd hydrodynamics

Relativistic fluid with one conserved charge described by
conservation laws:

∂µT
µν = 0

∂µj
µ = 0

plus equations that express Tµν and jµ in terms of local
temperature T , chemical potential µ, and fluid velocity uµ:

Tµν = (�+ P )uµuν + Pgµν + τµν

jµ = nuµ + νµ

The definition of velocity is ambiguous beyond leading order.
We fix it by imposing uµτµν = uµνµ = 0.

Parity-odd hydrodynamics

Relativistic fluid with one conserved charge described by
conservation laws:

∂µT
µν = 0

∂µj
µ = 0

plus equations that express Tµν and jµ in terms of local
temperature T , chemical potential µ, and fluid velocity uµ:

Tµν = (�+ P )uµuν + Pgµν + τµν

jµ = nuµ + νµ

The definition of velocity is ambiguous beyond leading order.
We fix it by imposing uµτµν = uµνµ = 0.



Liquid crystal phase (nematic)Shear Viscosity 
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Viscosity = Diffusion constant for momentum 

v 
Viscosity = [(force/area)]  per unit velocity gradient   

Nematic

Moving plate

Viscosity is a 
diffusion constant 

for momentumViscosity =
Force/Area

Unit Velocity Gradient

θ
n̂

We can define a unit vector n called the director to 
be the average molecular orientation direction.

In the nematic phase we can measure viscosity

Scalar order parameter S =
1

2

�
3 cos2 θ − 1

�



Viscosity in liquid crystals
L262 Letter to the Editor
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Figure 1. The experimental conditions for measurements of the three Miȩsowicz shear viscosity
coefficients of nematic liquid crystals: (a) n ⊥ v, n ‖ gradv; (b) n ‖ v, n ⊥ gradv; (c) n ⊥ v,
n ⊥ gradv.

simulated by Bennette and Hess with the use of nonequilibrium molecular dynamics methods
[7].

The above introductory remarks concerned the viscosity of the nematic liquid crystals
oriented with external forces. Now, let us consider the behaviour of the nematics in a flow
without external ordering forces i.e. the nematic in a free flow. Such a flow shows some
peculiarities, which are worthy of notice.

The simplest mesogenic compound exhibits isotropic and nematic phases. Then, for
a freely flowing compound the transition from the isotropic to nematic phase manifests
itself in a strong decrease of the shear viscosity and, as numerous experiments show, if one
neglects the temperature region just after the transition, this viscosity is very close to η2

Miȩsowicz coefficient in the whole temperature range of the nematic phase. In the literature
this phenomenon is known as a nematic flow alignment [2, 8–12] suggesting that the nematic
elongated molecules in a free flow should align as in figure 1(b) because it is ‘natural and self-
evident’. Indeed, it always occurs for the above mentioned compounds exhibiting the nematic
phase only. However, as we will see later, due to the presmectic effects, a free flow of nematic
liquid crystals can also lead to quite different molecular alignment than that in figure 1(b).

In the 1970s the investigation of the viscous properties of nematic liquid crystals by
measurement of the viscosity of a freely flowing substance were quite popular because of the
above mentioned convergence of the results with the η2 viscosity and because of the simplicity

n ⊥ v and n � ∇v

n � v and n ⊥ ∇v

n ⊥ v and n ⊥ ∇v

Universality?

Magnitude?



Elasticity

Figure 10: The three distinct curvature strains of a liquid crystal: (a) splay, (b) twist, and (c) bend.

These three curvature strains can also be defined by expanding n(r) in a Taylor series in powers of
x, y, z measured from the origin

nx(r) = s1x + t2y + b1z +O(r2), (20)
ny(r) = −t1x + s2y + b2z +O(r2), (21)
nz(r) = 1 +O(r2). (22)

We now postulate that the Gibbs free energy density g of a liquid crystal, relative to its free energy
density in the state of uniform orientation can be expanded in terms of six curvature strains

g =
6�

i=1

kiai +
1
2

6�

i,j=1

kijaiaj (23)

where the ki and kij = kji are the curvature elastic constants and for convenience in notation we have
put a1 = s1, a2 = t2, a3 = b1, a4 = −t1, a5 = s2, a6 = b2.

Because the crystal is uniaxial, a rotation about z will make no change in the physical description
of the substance, and consequently the free energy density g should be invariant under such rotations.
By consideration of a few special cases (such as rotations of 1

2π and 1
4π about z), it is readily shown

that there are only two independent moduli ki, and that of the thirty-six kij , only five are independent.
The general expression for the free energy density, written in terms of a set of eight independent moduli,
becomes

g = k1(s1 + s2) + k2(t1 + t2) +
1
2
k11(s1 + s2)2

1
2

+ k22(t1 + t2)2 (24)

+
1
2
k33(b2

1 + b2
2) + k12(s1 + s2)(t1 + t2)− (k22 + k24)(s1s2 + t1t2).

The last term can be written

s1s2 + t1t2 =
∂nx

∂x

∂ny

∂y
− ∂ny

∂x

∂nx

∂y
=

∂

∂x

�
nx

∂ny

∂y

�
− ∂

∂y

�
nx

∂ny

∂x

�
(25)

and consequently it will contribute only to to surface energies. Thus we can omit the last term in
considerations involving the properties of the bulk liquid crystal.

In the presence of further symmetries g can have still simpler forms

1. If the molecules are nonpolar or, if polar, are distributed with equal probability in the two directions,
then the choice of the sign of n is arbitrary. We have chosen a right-handed coordinate system in
which z is positive in the direction of n. A reversal of n which retains the chirality of the coordinate
system generates the transformation

n→ −n, x→ x, y → −y, z → −z. (26)

Invariance of the free energy under this transformation requires

k1 = k12 = 0 (nonpolar). (27)

If k1 �= 0, the equilibrium state has finite splay.

12

Splay Twist Bend

The question we would like to address here is: how much energy will it 
take to deform the director field?
The deformation of relative orientations away from equilibrium position 
will manifest itself as curvature strain. The restoring forces which arise to 
oppose these deformations will cause curvature stresses or torques. If 
these changes in molecular orientation vary slowly in space relative to 
the molecular distance scale, we may describe the response of the liquid 
crystal with a version of a continuum elastic theory.



Phase transitions

A phenomenological theory of phase transitions 
was established by Landau. He suggested that 
phase transitions were manifestation of a broken 
symmetry.  In the simplest cases through the 
definition of an appropriate order parameter, Q, 
the macroscopic behaviour of a phase may be 
followed. Typically Q = 0 in the more symmetric 
(less ordered) phases and Q     0 in the less 
symmetric (more ordered) phases.

�=

The theory, though originally introduced to describe continuous phase 
transitions in solids, appeared (as we know today) to correctly account for 
symmetry change observed at majority of continuous and first order phase 
transitions.
The Landau theory generaly fails in the temperature adjacent to the 
transition, in which the behaviour of a system is dominated by fluctuations

Science 12, 207, vol. 315 no. 5809 196-197

Pressure



Landau thery tailored to describe liquid 
crystals

The LT appears as a necessary intermediate step (and also as a tool) in 
constructing generalized theory that include fluctuations - it is known as 
Landau-Ginzburg-Wilson theory:

Majority of insight into physics of liquid crystals relies on the 
implementation of Landau’s ideas (physics of defects, elasticity, 
hydrodynamics, relaxation, etc. ), and the approach has been rather 
successful.
A major breakthrough in including liquid crystals in the Landau 
reasoning is due to de Gennes. He realized that instead of the scalar 
order parameter one should use a tensorial quantity. For the nematic 
phase it reads:

Qαβ =
S

2
(3n̂αn̂β − δαβ)



Landau-de Gennes theory

Once the appropriate tensor order parameter of the system is identified we can

assume, in a spirit of Landau theories, that the free energy density F is an

analytic function of the order parameter. The Landau-de Gennes theory of the

nematic-isotropic transition starts by assuming that a spatially invariant dimen-

sionless, order parameter is small in the nematic phase close to the transition

point. The difference in free energy density (per unit volume) of the two phases

it thus expanded in powers of the order parameter. Since the free energy must

be invariant under rigid rotations, all terms of the expansion must be scalar

functions of the tensor.

FLdG(P, T,Qαβ) = F0 + αFQαβQβα + βFQαβQβγQγα + γFQαβQβαQγρQργ

The most general form capturing the uniaxial phase is typically truncated at
fourth order.



Holography=spherical cow approx.

Strongly coupled QFTs are difficult to study

Use                       as a playground

Apply holography, treat as a toy-model (spherical cow)

Aim at universal properties, understand qualitative features

It was particularly successful in the context of hydrodynamics. 
Quantitative understanding why viscosity over entropy density is small at 
RHIC. Useful in the context of anomalies due to their coupling 
independent nature. Natural language to investigate two-fluid models 
(superfluidity). Maybe the same tool can be used to better understand 
liquid crystals.

18 3 AdS/CFT correspondence

it as a starting point for construction of some more realistic models. We will review some

basic properties of N = 4 SYM. The lagrangian is uniquely fixed by supersymmetry and
have the following schematic form,

L =
1

g2YM

TrNc

�
−1

4
F

µν
Fµν +DµΦ

aDµΦa +
�

a,b

[Φa
,Φb]2 + fermions

�
. (3.1)

We set θ angle to zero. The field content of N = 4 gauge supermultiplet includes the
gauge fields Aµ, four Weyl fermions and six real scalars Φa

. Supersymmetry requires that

all fields must transform in the same representation of the gauge group, namely the adjoint

representation, and all must have the same mass. By gauge invariance, a mass for the

gauge fields is zero, hence, the fermion and scalar fields are massless as well. Moreover,

there is only one coupling constant gYM which controls all interactions in the theory.

Usually one combines the two parameters gYM and Nc into a combination λ = g2YMNc

known as ’t Hooft coupling constant.

The bosonic part of the global symmetry group is SO(4, 2)× SO(6). The first factor
is the conformal group in four dimensions which includes SO(3, 1) group of Lorentz trans-
formations as a subgroup. The second factor is the so-called global R-symmetry group

SO(6) � SU(4). The bosonic part of symmetry group is supplemented with fermionic su-
persymmery transformations. Lagrangian (3.1) is invariant under the group PSU(2, 2|4).
Let us focus on the bosonic subgroup SO(2, 4). This group in known in the literature
as a conformal group in four dimensions [62]. This means that in addition to Poincaré

invariance, we have scale transformations or dilatations and so-called special conformal

transformations. Apart from being supersymmetric, SYM is a conformal field theory

(CFT). This resembles massless QCD which is also invariant under scale transformations.

However, there is a big difference here, unlike QCD SYM remains scale invariant even at
the quantum level, whereas in massless QCD quantum corrections break scale invariance

explicitly. This is manifested through a non-vanishing beta function. In contrast in N = 4
SYM beta function vanishes

β(g) = µ
∂g(µ)

∂µ
= 0. (3.2)

As a consequence the dimensionless coupling gYM does not run and the SO(4, 2) conformal
invariance of the classical theory is unbroken. This gives a powerful constraint on the

dynamics of the theory. The two-point correlation functions of operators of definite scaling

dimension are completely fixed, and the three-point functions of such operators are fixed

up to some overall constants.

N = 4 SYM has one more feature which makes it very interesting to study. As we
will see later it can be reformulated as a weakly coupled string theory. Presumably this

is also true for other field theories, even more realistic ones like QCD, but SYM is the

first and the best understood example. Such a reformulation should give an insight in a

strongly coupled regime of a field theory. To make these statements more precise let us

review some basic facts about string theory. More general treatments can be found in

[63–67]



AdS/CFT correspondence
The AdS/CFT correspondence

N = 4 supersymmetric

Yang-Mills theory in R4

IIB superstrings in curved

AdS5 × S5
10D spacetime

Strongly coupled gauge fields ⇔ Weakly coupled strings

How one can relate physical observables in these two theories?

Strongly coupled gauge 
fields equivalent to weakly 

coupled strings

Potentially very useful tool but 
we need some practical 
implementation of the above 
equivalence:

The dictionary of gauge/gravity duality

Equivalence means:

e−Ssugra ≈ Zstring = ZCFT ≡ �e
�
d4xφ0(x)O(x)�

Identification of some corresponding quantities:

The dictionary

Gauge side String side

TrFµνFµν dilaton

Tµν graviton gµν

dimension of operator mass of the field

. . . . . .
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AdS/CFT at finite temperature

String theory and quantum chromodynamics S719

Figure 11. A set of Nc D3-branes.

Figure 12. Spacetime around D3-branes.

Figure 13. Tadpole-like diagrams whose sum leads to an effective geometry for closed strings.

SYM on a stack of  
D3-branes

Practical holography
• But the topic of this talk is the implications of 

holography for gauge theories

• These implications are huge due to one formula of 
Maldacena’s conjecture:

g2Nc =
�

L

�s

�4

’t Hooft coupling
in QFT

radius of curvature

string length

Mapping of parameters

Rl s

g2Nc =
R4

!4s

g2Nc ! 1:

field theory cannot be solved by perturbation theory
string theory dual =⇒ Einstein’s general relativity!

GSI 2009 – p.23/42

Strongly coupled QFT ↔ weakly coupled gravity

exact solutions of a class of theories

3.5 The Maldacena conjecture 25

3.5 The Maldacena conjecture
Motivated by the D-brane physics we will show that there is a connection between

quantum field theories and classical supergravity. This connection was first realized within
type IIB string theory and we will review this construction in its simples form. Consider
Nc parallel D3-branes on top of each other. The D3-branes are extended along a (3 + 1)
dimensional plane in (9 + 1)-dimensional space-time. String theory on this background
contains two kinds of perturbative excitations, closed strings and open strings. The
argument leading to the correspondence is very simple, D3-branes have two different
low-energy descriptions, one in terms of open strings and one in terms of closed strings.
Following Maldacena [19] we will conjecture that these two different descriptions are
equivalent. To be more precise we write down the action for the system of interacting
D3-branes. Schematically it takes the following form,

Stotal = SSUGRA + SDBI , (3.21)

where SSUGRA represents the dynamics of closed string modes and SDBI describes the
brane system with attached open strings coupled to gravity. Expanding this effective
action around flat background and taking the low-energy limit (this means we keep all
dimensionless parameters fixed while taking α� → 0), all interaction terms vanish. We get
N = 4 SYM theory, with g2YM = gs and free supergravity.

N = 4 SYM is not the only low-energy limit (α� → 0) of D3-brane system. As noted
previously D3-brane is a solution of supergravity (3.12). To see that it is convenient
to shift a coordinate system such that the branes are located at the origin of the new
coordinate system. Then yD3 = 0 and we introduce the distance from the branes r = |�y|.
The metric generated by a stack of D3-branes may be rewritten as

ds2 =

�
1 +

L4

r4

�− 1
2

dxµdxµ +

�
1 +

L4

r4

� 1
2

(dr2 + r2dΩ2
5). (3.22)

For an observer at infinity, far away from the branes, at r � L, the space-time becomes
a ten-dimensional Minkowski space-time. Close to the branes, for r � L, we can neglect
the ‘1’ in the above metric

ds2 =
r2

L2
dxµdxµ +

L2

r2
dr2 + L2dΩ2

5, (3.23)

and identify the emergent geometry as a product of two spaces, five dimensional anti-de
Sitter space AdS5, with a five-dimensional sphere S5, both with radius L. Again, we
have two distinct sets of modes, those propagating in the Minkowski space and those
propagating in the ‘throat’ region where the geometry is AdS5 × S5. These two sets of
modes decouple from each other in the low-energy limit. Far away from the throat only
massless modes survive, while in the throat there is a whole tower of massive modes which
cannot climb up the gravitational potential. Because we have two distinct descriptions of
the same D3-brane system we expect that they are equivalent, meaning that

30 3 AdS/CFT correspondence

equations leave f (2n)(x) undetermined. The logarithmic term in (3.47) is related to con-
formal anomalies of the dual theory, and it is also fixed in terms of f (0)(x).
The most general asymptotic solution of the field equations allows us to calculate the

on-shell value of the action,

Sreg[f
(0); �] =

�

z2=�

d
4x
�
g(0)[�−νa(0) + �−(ν+1)a(2) + ...− log � a(2ν) +O(�0)]. (3.48)

where ν is a positive number that only depends on the scale dimension of the dual operator
and a(2k) are local functions of the sources f (0)

. Last thing to do is to subtract the

divergent part and take the limit � → 0. The counterterms depend on the fields located
on the surface z2 = �, characterized by the induced metric γµν/�. The renormalized action
reads

Sren[f
(0)] = lim

�→0

�
Sreg[f

(0); �] + Sct [F(x, �); �]
�
. (3.49)

To get the explicit form of Sct [F(x, �); �] we have to express f (0)
as a function of F(z, x),

calculate a(2k)(f (0)), and determine the divergent part. We show how this method works
in practice in Chapter 5, regularizing the D7-brane action.

3.6 Gauge/gravity duality at finite temperature

So far we have discussed a system of extremal D3-branes which is dual to N = 4 SYM
theory at zero temperature. In order to generalize that to the case with finite temperature

we need to find a gravitational solution with a scale that may correspond to temperature

and some notion of entropy. This solution is known to be AdS-Schwarzchild

ds2 =
r2

L2
(−f(r)dt2 + dxidxi) +

L2

f(r)r2
dr2 + L2dΩ2

5, (3.50)

where f(r) = 1 − R
4

r4
. The solution (3.50) describes the near-horizon geometry of near-

extremal D3-branes. It can be depicted as a black hole located in the radial coordinate
with the horizon at R. We interpret this black hole as a thermodynamical system with
energy

E =
A

2G
, (3.51)

and Hawking temperature

TH =
R

πL2
. (3.52)

Having a field theory at finite temperature we are interested in thermodynamic quantities.

Performing the Wick rotation t → −itE, the Euclidean path integral yields a thermal
partition function. Furthermore, the Euclidean black hole solution is interpreted as a

saddle-point in this path integral and the supergravity action evaluated for this solution

Practical holography
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Maldacena’s conjecture:

g2Nc =
�

L

�s

�4

’t Hooft coupling
in QFT

radius of curvature

string length

Mapping of parameters

Rl s

g2Nc =
R4

!4s

g2Nc ! 1:

field theory cannot be solved by perturbation theory
string theory dual =⇒ Einstein’s general relativity!

GSI 2009 – p.23/42

Strongly coupled QFT ↔ weakly coupled gravity

exact solutions of a class of theories

Anti-de Sitter geometry 

AdS Schwarzschild geometry
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Top-down vs. bottom-up



Spin 2 Lagrangian

S =

�
dd+1x

√
−g

�
− 1

2
(∇µϕαβ)

2 + (∇µϕ
µα)2 +

1

2
(∇µϕ)

2 −∇µϕ
µν∇νϕ− 1

2
m2

ϕ(ϕµνϕ
µν − ϕ2)

−1

4
FµνF

µν − 1

2
m2

AA
2
µ +Rµναβϕ

µαϕνβ − 1

2(d+ 1)
Rϕ2 − α

2
A2(ϕµνϕ

µν − ϕ2)
�
,

We need a quadratic coupling between the fields. A cubic coupling of the
form a1AµAνϕµν + a2A2ϕ would not allow for spontaneous hairy black holes.
The spin 1 field would just act as a source for the massive spin 2 field and all
charged black holes would have a secondary hair. Instead we want to have a
hair appearing below a critical temperature. The situation would be similar to
trying to build a superconductor using a dilatonic coupling eφF 2. It would not
work since the electric field would source the dilaton.

Complicated plus various consistency issues



Equations of motion

ϕµν = diag(0, 0,ϕx1x1(z),ϕx2x2(z),ϕx3x3(z))
Cµdx

µ = φ(z)dt

Our ansatz:

where

ψ�� +

�
f �

f
− d− 1

z

�
ψ� +

�
+
αφ2

f2
−

m2
ϕl

2

z2f

�
ψ = 0,

φ�� − d− 3

z
φ� +

�
− αl2

z2f
ψ2 − m2

Al
2

z2f

�
φ = 0.

We get the following EOMs

ϕij =
l2

z2
ψ(z)

�
d− 1

d− 2

�
δ1i δ

1
j −

1

d− 1

�



Looking for an instability

The dynamical fields ψ, A1 obey hypergeometric equations when there is no
coupling α = 0. Their fall-off is

ψ(z) = ψDz
d
2−

�
d2
4 +m2

ϕl2 + ψNz
d
2+

�
d2
4 +m2

ϕl2 + . . .

φ(z) = µz
d−2
2 −

�
(d−2)2

4 +m2
Al2 + φNz

d−2
2 +

�
(d−2)2

4 +m2
Al2 + . . .

We impose regularity at the horizon and Dirichlet condition at the boundary

0.80 0.85 0.90 0.95 1.00

0.0

0.5

1.0

1.5

T!Tc

!ΨN#

Tc

Instability!

We have spin-2 
condensate



Partition function

The Euclidean black hole solution is interpreted as a saddle-point in the path 
integral corresponding to the thermal partition function.  The supergravity 
action evaluated for this solution is interpreted as the leading contribution to 
the free energy. Free energy for a stack of D3-branes

3.6 Gauge/gravity duality at finite temperature 31

is interpreted as the leading contribution to the free energy. For the D3-brane system we
get

F = TSsugra = −π2

8
N2

c T
4. (3.53)

From Eq. (3.53) we can compute other thermodynamic variables, for example, the entropy
density reads

s = −∂F

∂T
=

π2

2
N2

c T
3. (3.54)

This picture becomes feasible for studying a finite temperature field theory at strong cou-
pling. We recall that there are indications that real QGP investigated at RHIC is an
example of such system. Of course our underlying theory is not QCD but N = 4 SYM.
Since these are completely different theories, we don’t expect that we can formulate physi-
cal questions in terms of string theory. However, we expect that there are certain universal
properties in both theories or that in some range of temperatures we can approximate real
QCD plasma by a conformal N = 4 plasma. We note that temperature introduces a scale
and it breaks supersymmetry completely. Moreover, nothing prevents us from making a
conjecture that there is a gravity dual for QCD itself. Studying the behavior of simpler
gauge/gravity correspondences may be the first step on the road leading to QCD dual
theory. At the moment we don’t know precisely how to assess these similarities. There-
fore, we will always keep in mind the differences, N = 4 plasma is exactly conformal and
there is no confinement/deconfinement phase transition.

To prove the instability for the spin-2 system we need to calculate the 
partition functions for the isotropic phase and for the phase with the 
condensate and show that the system lowers the free energy by 
developing the condensate.



Free energy analysis
For simplicity, we will look at d = 4 but we will keep the masses general.

0.80 0.85 0.90 0.95 1.00

0.0

0.5

1.0

1.5

T!Tc

!ΨN#

Tc

Figure 1: Condensate as a function of temperature for m2
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2 = 9
4 , m
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2 = 5
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Figure 2: The analytical form ψ ∼ Tc(1 − T
Tc
)1/2 is the dashed red line. The numerical solution is

plotted as blue points. The two plots agree close to Tc.

For those values, we define the fields

φn = (1− z3)−1z
1
2φ = µ+ φNz3 + . . . , (4.31)

ψn = z−
9
2ψ = ψN + . . . (4.32)

which are analytic at z = 0, which is suitable for numerical analysis using spectral methods.
For d = 4, using dimensional analysis, we have the dimensions [ψ] = [φ] = [µ] = [φN ] = M3/2,

[zh] = M−1. We find the following plots.

4.1 Free energy

For simplicity, we will only look at d = 4 but we will keep the masses general. We consider the total
action with counter-terms

Stot = S + c

�
ddx

√
−γAµA

µ, (4.33)
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where c is a parameter to be determined 1. Our outgoing unit normal to z-slices is nµ = −δzµl/(z
�

f(z)),

which of course satisfies n2 = +1. The variation of the total action reduces for our ansatz to

δStot =

�
d
5
x
√
−g (Eµνδϕ

µν
+ EµδA

µ
)−

�
dtd

3
x

�
l

z
φ�δφ+

2c l2

z2
√
f
φ δφ− l3f

z3
ψ�δψ

�

z=0

. (4.34)

We impose the Dirichlet condition ψD = 0. The terms involving ψ therefore vanish. Using the

asymptotic fall-off for φ (2.21), we find that we need to tune

c =
1

2l

��
1 +m2

Al
2 − 1

�
, (4.35)

in order to set the variation of the action in the finite form suitable for the Dirichlet problem, namely

δStot =

�
d
5
x
√
−g (Eµνδϕ

µν
+ EµδA

µ
) +

�
dtd

3
x (J + �O�δµ) , (4.36)

where the vacuum expectation value dual to µ is

�O� = − 2l

z2h

�
1 +m2

Al
2 φN , (4.37)

and the junk term

J = −c l2

z2h

�
z

zh

�4−2
√

1+m2
Al2

µ δµ (4.38)

is zero at z = 0 for 0 ≤ m2
Al

2 < d− 1 = 3, which is the allowed range for the mass (except the upper

bound which is special and that we do not consider here).

Now the action can be written as

Stot =

�
d
d+1

x
√
−g

�
1

2
ϕµνE

µν
+

1

2
AµE
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α
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µ
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�
, (4.39)

where

Ψµ
= −1

2
ϕαβ∇µϕαβ

+ ϕµνϕν +
1

2
ϕ∇µϕ− 1

2
ϕµν∇νϕ− 1

2
ϕµϕ− 1

2
F

µν
Aν . (4.40)

Let us now go to Euclidean signature. The Euclidean action is given by

SE = Stot (4.41)

where Stot is evaluated in Euclidean signature with the Euclidean time τ = it running from 0 to

β = πzh. In the case of the uniaxial nematic phase in d = 4, defining the volume V =
�
dd−1x, we

obtain the free energy in the grand canonical ensemble (T, µ fixed)

F (ψ �= 0) = SE/β = V

� zh

0
dz

αl3φ2ψ2

2f(z)z3
+ V

�
lφφ�

2z
+

c l2φ2
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l3fψψ�

2z3

�

z=0

(4.42)

1Other possible counter terms are zero for our case of interest, which can be seen a posteriori. Here we drop them
from the beginning for the sake of simplicity.
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The variation of the total action reduces for our ansatz to

We fix c in order to have a well define Dirichlet problem

where c is a parameter to be determined 1. Our outgoing unit normal to z-slices is nµ = −δzµl/(z
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f(z)),
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We impose the Dirichlet condition ψD = 0. The terms involving ψ therefore vanish. Using the

asymptotic fall-off for φ (2.21), we find that we need to tune
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in order to set the variation of the action in the finite form suitable for the Dirichlet problem, namely
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Let us now go to Euclidean signature. The Euclidean action is given by

SE = Stot (4.41)

where Stot is evaluated in Euclidean signature with the Euclidean time τ = it running from 0 to

β = πzh. In the case of the uniaxial nematic phase in d = 4, defining the volume V =
�
dd−1x, we

obtain the free energy in the grand canonical ensemble (T, µ fixed)
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1Other possible counter terms are zero for our case of interest, which can be seen a posteriori. Here we drop them
from the beginning for the sake of simplicity.
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where c is a parameter to be determined 1. Our outgoing unit normal to z-slices is nµ = −δzµl/(z
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f(z)),
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We impose the Dirichlet condition ψD = 0. The terms involving ψ therefore vanish. Using the

asymptotic fall-off for φ (2.21), we find that we need to tune
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, (4.35)
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is zero at z = 0 for 0 ≤ m2
Al
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bound which is special and that we do not consider here).
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Let us now go to Euclidean signature. The Euclidean action is given by

SE = Stot (4.41)

where Stot is evaluated in Euclidean signature with the Euclidean time τ = it running from 0 to

β = πzh. In the case of the uniaxial nematic phase in d = 4, defining the volume V =
�
dd−1x, we

obtain the free energy in the grand canonical ensemble (T, µ fixed)

F (ψ �= 0) = SE/β = V
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1Other possible counter terms are zero for our case of interest, which can be seen a posteriori. Here we drop them
from the beginning for the sake of simplicity.
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We pass to Euclidean signature and evaluate the action



An instability confirmed
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Figure 3: Difference of free energy between the uniaxial nematic phase and the normal phase as a
function of the temperature T = 1/β. The uniaxial nematic phase is favored.

The surface term vanishes at the horizon since f and φ have a simple pole at z = zh. For any choices
of masses, the field ψ does not contribute to the boundary term at z = 0 because there is no source
ψD = 0. The spin 1 field contributes at the spatial boundary. We get

F (ψ �= 0) = V

�� β/π

0
dz

αl3φ2ψ2

2f(z)z3
− 1

2
�O�µ

�
. (4.43)

where we used β = πzh. When there is no condensate, the free energy will simply be given by the
second term in the above expression with �O� evaluated in the normal state,

�O�n = −2π2l

β2

�
1 +m2

Al
2 c+

c−
µ. (4.44)

Therefore,

F (ψ �= 0)− F (ψ = 0) = V

�� β/π

0
dz

αl3φ2ψ2

2f(z)z3
− 1

2
(�O� − �O�n)µ

�
. (4.45)

The free energy can be evaluated numerically. The result is displayed in Figure 4.1. The uniaxial
nematic phase is (dis)?favored.

5 Bulk stress-tensor

Let us compute the stress-tensor of the action (1.1) under the assumption that ϕ = 0 = ∇µϕµν . We
have
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of masses, the field ψ does not contribute to the boundary term at z = 0 because there is no source
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where we used β = πzh. When there is no condensate, the free energy will simply be given by the
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The free energy can be evaluated numerically. The result is displayed in Figure 4.1. The uniaxial
nematic phase is (dis)?favored.
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Finally we can write down an expression for the difference of the free 
energies in the normal and condensed phase



Future directions

Check if the model gives the equations of 
nematodynamics

Use an anisotropic ansatz for the metric and study 
backreaction

Calculate viscosity coefficients 

Investigate the non-relativistic limit


