Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms Results

Some remarks on Chern-Simons and Bott-Chern forms

Leon A. Takhtajan

Stony Brook University & Euler Mathematical Institute

Euler Symposium on Theoretical and Mathematical Physics St. Petersburg, July 12–17, 2013

Dedicated to the memory of Dmitri Diakonov

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Leon A. Takhtajan

hern-Simons forms

Boll-Ghernio

Results

1 Chern-Simons forms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Leon A. Takhtajan

Chern-Simons forms

_

1 Chern-Simons forms

2 Bott-Chern forms

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Leon A. Takhtajan

hern-Simons forms

Rosults

2 Bott-Chern forms

• *X* — smooth *n*-dimensional manifold.

Leon A. Takhtajan

Chern-Simons forms

Results

・ロト・日本・モート ヨー うへぐ

- X smooth *n*-dimensional manifold.
- $\mathcal{A}(X) = \bigoplus_{k=0}^{n} \mathcal{A}^{k}(X, \mathbb{C}) = \mathcal{A}^{\text{even}}(X) \oplus \mathcal{A}^{\text{odd}}(X)$

- graded commutative algebra of differential forms on X.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Unern form

- X smooth *n*-dimensional manifold.
- $\mathcal{A}(X) = \bigoplus_{k=0}^{n} \mathcal{A}^{k}(X, \mathbb{C}) = \mathcal{A}^{\text{even}}(X) \oplus \mathcal{A}^{\text{odd}}(X)$ — graded commutative algebra of differential forms on *X*.
- (V, A) C[∞]-complex vector bundle of rank *r* over X with connection ∇ = d + A and curvature F = d A + A², A² = A ∧ A, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

CS and BC forms

Leon A. Takhtajan

- X smooth *n*-dimensional manifold.
- $\mathcal{A}(X) = \bigoplus_{k=0}^{n} \mathcal{A}^{k}(X, \mathbb{C}) = \mathcal{A}^{\text{even}}(X) \oplus \mathcal{A}^{\text{odd}}(X)$ — graded commutative algebra of differential forms on *X*.
- (V, A) C[∞]-complex vector bundle of rank *r* over X with connection ∇ = d + A and curvature F = d A + A², A² = A ∧ A, etc.
- Characteristic forms

$$\Phi((V,A)) = \Phi(F) \in \mathcal{A}^{\operatorname{even}}(X),$$

 Φ — polynomial on GL(r, \mathbb{C}), invariant under conjugation.

CS and BC forms

Leon A. Takhtajan

- X smooth *n*-dimensional manifold.
- $\mathcal{A}(X) = \bigoplus_{k=0}^{n} \mathcal{A}^{k}(X, \mathbb{C}) = \mathcal{A}^{\text{even}}(X) \oplus \mathcal{A}^{\text{odd}}(X)$ — graded commutative algebra of differential forms on *X*.
- (V, A) C[∞]-complex vector bundle of rank *r* over X with connection ∇ = d + A and curvature F = d A + A², A² = A ∧ A, etc.
- Characteristic forms

$$\Phi((V,A)) = \Phi(F) \in \mathcal{A}^{\operatorname{even}}(X),$$

 Φ — polynomial on GL(r, \mathbb{C}), invariant under conjugation.

Examples: Chern form

$$\mathsf{c}(\mathit{V},\mathit{A}) = \mathsf{det}\left(\mathit{I} + rac{\sqrt{-1}}{2\pi}\mathit{F}
ight)$$

and Chern character form

$$\operatorname{ch}(V,A) = \operatorname{tr}\left\{\exp\left(\frac{\sqrt{-1}}{2\pi}F\right)\right\}$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms Results

うせん 同一人 出す 人 出す 人 助す 人口を

- X smooth *n*-dimensional manifold.
- $\mathcal{A}(X) = \bigoplus_{k=0}^{n} \mathcal{A}^{k}(X, \mathbb{C}) = \mathcal{A}^{\text{even}}(X) \oplus \mathcal{A}^{\text{odd}}(X)$ — graded commutative algebra of differential forms on *X*.
- (V, A) C[∞]-complex vector bundle of rank *r* over X with connection ∇ = d + A and curvature F = d A + A², A² = A ∧ A, etc.
- Characteristic forms

$$\Phi((V,A)) = \Phi(F) \in \mathcal{A}^{\operatorname{even}}(X),$$

 Φ — polynomial on GL(r, \mathbb{C}), invariant under conjugation.

Examples: Chern form

$$\mathsf{c}(\mathit{V},\mathit{A}) = \mathsf{det}\left(\mathit{I} + rac{\sqrt{-1}}{2\pi}\mathit{F}
ight)$$

and Chern character form

$$\operatorname{ch}(V, A) = \operatorname{tr}\left\{ \exp\left(rac{\sqrt{-1}}{2\pi} F
ight)
ight\}$$

 Chern-Weil theory: characteristic forms are closed, and their cohomology classes do not depend on the choice of A. CS and BC forms

Leon A. Takhtajan

• A_0 and A_1 — two connections on V.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms

Results

- A_0 and A_1 two connections on V.
- The secondary form (Chern-Simons form) $\tilde{\Phi}(A_1, A_0) \in \mathcal{A}^{\text{odd}}(X)$ is defined modulo d $\mathcal{A}^{\text{even}}(X)$, satisfies the equation

$$d\tilde{\Phi}(A_1,A_0) = \Phi(F_1) - \Phi(F_0), \qquad (1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

and enjoys a functoriality property under the pullbacks $f: X \rightarrow Y$.

CS and BC forms Leon A. Takhtajan

- A_0 and A_1 two connections on V.
- The secondary form (Chern-Simons form) $\tilde{\Phi}(A_1, A_0) \in \mathcal{A}^{\text{odd}}(X)$ is defined modulo d $\mathcal{A}^{\text{even}}(X)$, satisfies the equation

$$\mathrm{d}\,\tilde{\Phi}(A_1,A_0)=\Phi(F_1)-\Phi(F_0),\qquad(1)$$

and enjoys a functoriality property under the pullbacks $f: X \rightarrow Y$.

Homotopy formula

$$ilde{\Phi}(A_1,A_0) = \mathsf{d} \int_0^1 \Phi(F_t,\dot{A}_t) dt,$$

for smooth homotopy A(t), $A(0) = A_0$ and $A(1) = A_1$.

CS and BC forms Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms Results

・ロト・西ト・西ト・西ト・日・

- A_0 and A_1 two connections on V.
- The secondary form (Chern-Simons form) $\tilde{\Phi}(A_1, A_0) \in \mathcal{A}^{\text{odd}}(X)$ is defined modulo d $\mathcal{A}^{\text{even}}(X)$, satisfies the equation

$$\mathrm{d}\,\tilde{\Phi}(A_1,A_0)=\Phi(F_1)-\Phi(F_0),\qquad(1)$$

and enjoys a functoriality property under the pullbacks $f: X \rightarrow Y$.

Homotopy formula

$$ilde{\Phi}(A_1,A_0) = \mathsf{d} \int_0^1 \Phi(F_t,\dot{A}_t) dt,$$

for smooth homotopy A(t), $A(0) = A_0$ and $A(1) = A_1$.

Modulo d A^{even}(X) secondary form Φ(A₁, A₀) does not depend on the homotopy A(t).

Leon A. Takhtajan Chern-Simons forms Bott-Chern forms Results

CS and BC forms

- A_0 and A_1 two connections on V.
- The secondary form (Chern-Simons form) $\tilde{\Phi}(A_1, A_0) \in \mathcal{A}^{\text{odd}}(X)$ is defined modulo d $\mathcal{A}^{\text{even}}(X)$, satisfies the equation

$$\mathrm{d}\,\tilde{\Phi}(A_1,A_0)=\Phi(F_1)-\Phi(F_0),\qquad(1)$$

and enjoys a functoriality property under the pullbacks $f: X \rightarrow Y$.

Homotopy formula

$$ilde{\Phi}(A_1,A_0) = \mathsf{d} \int_0^1 \Phi(F_t,\dot{A}_t) dt,$$

for smooth homotopy A(t), $A(0) = A_0$ and $A(1) = A_1$.

- Modulo d A^{even}(X) secondary form Φ(A₁, A₀) does not depend on the homotopy A(t).
- For Φ that corresponds to ch, $\tilde{\Phi}$ is denoted by cs.

CS and BC forms

Leon A. Takhtajan

• Let *V* be flat bundle (say *V* is trivial, $V = X \times \mathbb{C}^r$) with connection *A*.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

- Let *V* be flat bundle (say *V* is trivial, $V = X \times \mathbb{C}^r$) with connection *A*.
- Homotopy A(t) = tA.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

- Let *V* be flat bundle (say *V* is trivial, $V = X \times \mathbb{C}^r$) with connection *A*.
- Homotopy A(t) = tA.
- For $\Phi(M) = \text{tr } M^2$:

tr
$$F^2 = d \int_0^1 2 \operatorname{tr} F_t A dt$$

= $d \int_0^1 2 \operatorname{tr} (t A d A + t^2 A^3) dt$
= $d \operatorname{tr} (A d A + \frac{2}{3} A^3).$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms

- Let *V* be flat bundle (say *V* is trivial, $V = X \times \mathbb{C}^r$) with connection *A*.
- Homotopy A(t) = tA.
- For $\Phi(M) = \operatorname{tr} M^2$:

tr
$$F^2 = d \int_0^1 2 \operatorname{tr} F_t A dt$$

= $d \int_0^1 2 \operatorname{tr} (t A d A + t^2 A^3) dt$
= $d \operatorname{tr} (A d A + \frac{2}{3} A^3).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• The Chern-Simons form tr($AdA + \frac{2}{3}A^3$) has numerous applications in mathematics and physics.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms

- Let *V* be flat bundle (say *V* is trivial, $V = X \times \mathbb{C}^r$) with connection *A*.
- Homotopy A(t) = tA.
- For $\Phi(M) = \operatorname{tr} M^2$:

tr
$$F^2 = d \int_0^1 2 \operatorname{tr} F_t A dt$$

= $d \int_0^1 2 \operatorname{tr} (t A d A + t^2 A^3) dt$
= $d \operatorname{tr} (A d A + \frac{2}{3} A^3).$

- The Chern-Simons form tr($A d A + \frac{2}{3}A^3$) has numerous applications in mathematics and physics.
- tr $F(A)^k = d \operatorname{cs}_k(A)$, *k*-th CS action:

$$\operatorname{CS}_k(A) = \int_M \operatorname{cs}_k(A), \quad \dim M = 2k - 1.$$

Equations of motion: $F^{k-1}(A) = 0$.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms

The Chern character map $ch : (V, A) \mapsto ch(F) \in \mathcal{A}^{even}(X)$. extends by linearity to virtual bundles with connections. CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Chern character map $ch : (V, A) \mapsto ch(F) \in \mathcal{A}^{even}(X)$. extends by linearity to virtual bundles with connections.

• Proposition

The image of the Chern character map contains all exact forms. Specifically, for every exact even form ω there is a trivial vector bundle $V = X \times \mathbb{C}^r$ with connection $\nabla = d + A$ such that

 $\operatorname{ch}(V, A) - r = \omega.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

CS and BC forms

Leon A. Takhtajan

The Chern character map $ch : (V, A) \mapsto ch(F) \in \mathcal{A}^{even}(X)$. extends by linearity to virtual bundles with connections.

• Proposition

The image of the Chern character map contains all exact forms. Specifically, for every exact even form ω there is a trivial vector bundle $V = X \times \mathbb{C}^r$ with connection $\nabla = d + A$ such that

 $\operatorname{ch}(V, A) - r = \omega.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• Put $\widetilde{\mathcal{A}}^{\text{odd}}(X) = \mathcal{A}^{\text{odd}}(X)/d\mathcal{A}^{\text{even}}(X)$ and $\operatorname{CS}(A_1, A_0) = \operatorname{cs}(A_1, A_0) \mod d\mathcal{A}^{\text{even}}(X)$.

CS and BC forms

Leon A. Takhtajan

The Chern character map $ch : (V, A) \mapsto ch(F) \in \mathcal{A}^{even}(X)$. extends by linearity to virtual bundles with connections.

• Proposition

The image of the Chern character map contains all exact forms. Specifically, for every exact even form ω there is a trivial vector bundle $V = X \times \mathbb{C}^r$ with connection $\nabla = d + A$ such that

 $\operatorname{ch}(V, A) - r = \omega.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• Put $\widetilde{\mathcal{A}}^{\text{odd}}(X) = \mathcal{A}^{\text{odd}}(X)/d\mathcal{A}^{\text{even}}(X)$ and $\operatorname{CS}(A_1, A_0) = \operatorname{cs}(A_1, A_0) \mod d\mathcal{A}^{\text{even}}(X)$.

CS and BC forms

Leon A. Takhtajan

The Chern character map $ch : (V, A) \mapsto ch(F) \in \mathcal{A}^{even}(X)$. extends by linearity to virtual bundles with connections.

• Proposition

The image of the Chern character map contains all exact forms. Specifically, for every exact even form ω there is a trivial vector bundle $V = X \times \mathbb{C}^r$ with connection $\nabla = d + A$ such that

 $\operatorname{ch}(V, A) - r = \omega.$

• Put $\widetilde{\mathcal{A}}^{\text{odd}}(X) = \mathcal{A}^{\text{odd}}(X)/d\mathcal{A}^{\text{even}}(X)$ and $\operatorname{CS}(A_1, A_0) = \operatorname{cs}(A_1, A_0) \mod d\mathcal{A}^{\text{even}}(X)$.

Corollary

For every $\alpha \in \widetilde{\mathcal{A}}^{\text{odd}}(X)$ there is a trivial vector bundle V with connection $\nabla = d + A$ such that $CS(A, 0) = \alpha$.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms Results

・ロト・四ト・モト・モー シュウ

The Chern character map $ch : (V, A) \mapsto ch(F) \in \mathcal{A}^{even}(X)$. extends by linearity to virtual bundles with connections.

• Proposition

The image of the Chern character map contains all exact forms. Specifically, for every exact even form ω there is a trivial vector bundle $V = X \times \mathbb{C}^r$ with connection $\nabla = d + A$ such that

 $\operatorname{ch}(V, A) - r = \omega.$

- Put $\widetilde{\mathcal{A}}^{\text{odd}}(X) = \mathcal{A}^{\text{odd}}(X)/d\mathcal{A}^{\text{even}}(X)$ and $\operatorname{CS}(A_1, A_0) = \operatorname{cs}(A_1, A_0) \mod d\mathcal{A}^{\text{even}}(X)$.
- Corollary

For every $\alpha \in \widetilde{\mathcal{A}}^{\text{odd}}(X)$ there is a trivial vector bundle V with connection $\nabla = d + A$ such that $\text{CS}(A, 0) = \alpha$.

• For details see J. Simons–D. Sullivan, arXiv:0810.4935, and V. Pingali–L.T., arXiv:1102.1105.

CS and BC forms

Leon A. Takhtajan

• X – complex manifold of complex dimension n.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Results

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

- X complex manifold of complex dimension n.
- *E* holomorphic vector bundle of rank *r* over *X* with Hermitian metric *h*.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

- X complex manifold of complex dimension n.
- *E* holomorphic vector bundle of rank *r* over *X* with Hermitian metric *h*.
- Canonical connection (Chern connection) ∇ = d+A on *E*, compatible with complex and Hermitian structures.
 Explicitly, in holomorphic frame, A = A^{1,0} + A^{0,1}, where

$$A^{1,0} = h^{-1}\partial h$$
 and $A^{0,1} = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

- X complex manifold of complex dimension n.
- *E* holomorphic vector bundle of rank *r* over *X* with Hermitian metric *h*.
- Canonical connection (Chern connection) ∇ = d+A on *E*, compatible with complex and Hermitian structures.
 Explicitly, in holomorphic frame, A = A^{1,0} + A^{0,1}, where

$$A^{1,0} = h^{-1}\partial h$$
 and $A^{0,1} = 0$.

$$F = \bar{\partial} A^{1,0} = \bar{\partial} (h^{-1} \partial h).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

- X complex manifold of complex dimension n.
- *E* holomorphic vector bundle of rank *r* over *X* with Hermitian metric *h*.
- Canonical connection (Chern connection) ∇ = d+A on *E*, compatible with complex and Hermitian structures.
 Explicitly, in holomorphic frame, A = A^{1,0} + A^{0,1}, where

$$A^{1,0} = h^{-1}\partial h$$
 and $A^{0,1} = 0$.

Curvature

$$F = \bar{\partial} A^{1,0} = \bar{\partial} (h^{-1} \partial h).$$

• Chern-Weil theory:

$$\Phi(E,h) = \Phi(F) \in \bigoplus_{p=0}^n \mathcal{A}^{(p,p)}(X,\mathbb{C}).$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- X complex manifold of complex dimension n.
- *E* holomorphic vector bundle of rank *r* over *X* with Hermitian metric *h*.
- Canonical connection (Chern connection) ∇ = d+A on *E*, compatible with complex and Hermitian structures.
 Explicitly, in holomorphic frame, A = A^{1,0} + A^{0,1}, where

$$A^{1,0} = h^{-1}\partial h$$
 and $A^{0,1} = 0$.

Curvature

$$F = \bar{\partial} A^{1,0} = \bar{\partial} (h^{-1} \partial h).$$

• Chern-Weil theory:

$$\Phi(E,h) = \Phi(F) \in \bigoplus_{p=0}^n \mathcal{A}^{(p,p)}(X,\mathbb{C}).$$

 Main question: describe the image of the Chern character map of virtual Hermitian bundles.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

• h_0 and h_1 —two Hermitian metrics on E.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Results

・ロト・日本・日本・日本・日本

- *h*₀ and *h*₁ —two Hermitian metrics on *E*.
- The secondary form (Bott-Chern form)

$$\widetilde{\Phi}(E;h_0,h_1)\in \widetilde{\mathcal{A}}(X,\mathbb{C})=\mathcal{A}(X,\mathbb{C})/(\operatorname{Im}\,\partial+\operatorname{Im}\,\bar{\partial})$$

satisfies the equation

$$\Phi(E,h_1) - \Phi(E,h_0) = \frac{\sqrt{-1}}{2\pi} \,\overline{\partial}\partial\,\widetilde{\Phi}(E;h_0,h_1)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

and the functorial property under the pullbacks by holomorphic maps $f: X \rightarrow Y$.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

- *h*₀ and *h*₁ —two Hermitian metrics on *E*.
- The secondary form (Bott-Chern form)

$$\widetilde{\Phi}(E;h_0,h_1)\in \widetilde{\mathcal{A}}(X,\mathbb{C})=\mathcal{A}(X,\mathbb{C})/(\operatorname{Im}\,\partial+\operatorname{Im}\,\bar{\partial})$$

satisfies the equation

$$\Phi(E,h_1) - \Phi(E,h_0) = \frac{\sqrt{-1}}{2\pi} \,\overline{\partial}\partial\,\widetilde{\Phi}(E;h_0,h_1)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

and the functorial property under the pullbacks by holomorphic maps $f: X \rightarrow Y$.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

- h_0 and h_1 —two Hermitian metrics on E.
- The secondary form (Bott-Chern form)

$$\widetilde{\Phi}({\it E};{\it h}_{0},{\it h}_{1})\in\widetilde{{\cal A}}({\it X},\mathbb{C})={\cal A}({\it X},\mathbb{C})/({
m Im}\;\partial+{
m Im}\;ar{\partial})$$

satisfies the equation

$$\Phi(E,h_1) - \Phi(E,h_0) = \frac{\sqrt{-1}}{2\pi} \,\overline{\partial}\partial\,\widetilde{\Phi}(E;h_0,h_1)$$

and the functorial property under the pullbacks by holomorphic maps $f: X \rightarrow Y$.

For short exact sequence & of Hermitian holomorphic vector bundles

$$0 \longrightarrow F \xrightarrow{i} E \xrightarrow{p} H \longrightarrow 0$$

the Bott-Chern form satisfies

$$\Phi(E,h_E) - \Phi(F \oplus H,h_F \oplus h_H) = \frac{\sqrt{-1}}{2\pi} \,\overline{\partial}\partial \,\widetilde{\Phi}(\mathscr{E};h_E,h_F,h_H),$$

and the functorial property. It vanishes when the exact sequence \mathscr{E} holomorphically splits and $h_E = h_F \oplus h_{H}$.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Homotopy formula

• In the smooth manifold case, for the linear homotopy of connections $A_t = (1 - t)A_0 + tA_1$, it is possible to integrate over *t* in the homotopy formula and obtain explicit formulas for the Chern-Simons forms, like tr($A d A + \frac{2}{3}A^3$), etc.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Homotopy formula

- In the smooth manifold case, for the linear homotopy of connections $A_t = (1 t)A_0 + tA_1$, it is possible to integrate over *t* in the homotopy formula and obtain explicit formulas for the Chern-Simons forms, like tr($A d A + \frac{2}{3}A^3$), etc.
- In the complex manifold case the situation is more complicated. There is a Bott-Chern homotopy formula

$$\Phi(E,h_1)-\Phi(E,h_0)=\bar{\partial}\partial\int_0^1\Phi(F_t,h_t^{-1}\dot{h}_t)dt,$$

but even for a linear homotopy $h_t = (1 - t)h_0 + th_1$ of Hermitian metrics, it contains the inverse metrics through $F_t = \overline{\partial}(h_t^{-1}\partial h_t)$, which does not allow to integrate over *t* in a closed form. As the result, it is difficult to get explicit formulas for the Bott-Chern forms in terms of the Hermitian metrics h_0 and h_1 only. CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Homotopy formula

- In the smooth manifold case, for the linear homotopy of connections $A_t = (1 t)A_0 + tA_1$, it is possible to integrate over *t* in the homotopy formula and obtain explicit formulas for the Chern-Simons forms, like tr($A d A + \frac{2}{3}A^3$), etc.
- In the complex manifold case the situation is more complicated. There is a Bott-Chern homotopy formula

$$\Phi(E,h_1)-\Phi(E,h_0)=\bar{\partial}\partial\int_0^1\Phi(F_t,h_t^{-1}\dot{h}_t)dt,$$

but even for a linear homotopy $h_t = (1 - t)h_0 + th_1$ of Hermitian metrics, it contains the inverse metrics through $F_t = \overline{\partial}(h_t^{-1}\partial h_t)$, which does not allow to integrate over *t* in a closed form. As the result, it is difficult to get explicit formulas for the Bott-Chern forms in terms of the Hermitian metrics h_0 and h_1 only.

• Here we explicitly compute Chern and Bott-Chern forms for some special non-diagonal Hermitian metrics. Such formulas were not known before; this is a joint work with V. Pingali, see V. Pingali–L.T. arXiv:1102.1105.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Linear algebra over a ring with nilpotents

Lemma

Let A be a matrix over \mathbb{C} or over a commutative algebra \mathcal{A} over \mathbb{C} , where in the latter case all its matrix elements are nilpotent. Suppose that $A^2 = aA$ for some $a \in \mathcal{A}$, and that $1 - \lambda a$ is invertible for λ in some domain $D \subset \mathbb{C}$ containing 0. Then for such λ we have

$$(I - \lambda A)^{-1} = I + \frac{\lambda}{1 - \lambda a} A,$$

and

$$\det(I - \lambda A) = \exp\left\{\frac{\operatorname{tr} A}{a}\log(1 - \lambda a)\right\}.$$

In particular, if α_i , β_i , i = 1, ..., k, are odd elements in some graded-commutative algebra over \mathbb{C} (e.g., the algebra of complex differential forms on X), and $A_{ij} = \alpha_i \beta_j$, then $A^2 = aA$ where $a = -\operatorname{tr} A = -\sum_{i=1}^k \alpha_i \beta_i$, and

$$\det(I - \lambda A) = \frac{1}{1 - \lambda a}.$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forn

Special Hermitian metrics

Proposition

Let $E_r = X \times \mathbb{C}^r$ be a trivial rank r vector bundle over X with a Hermitian metric $h = h(\sigma, f_1, \dots, f_{r-1}) = g^*g$, where

$$g=egin{pmatrix} 1&0&0&\dots&0&ar{f}_1\ 0&1&0&\dots&0&ar{f}_2\ 0&0&1&\dots&0&ar{f}_3\ dots&dots&dots&dots&dots&dots&dots\ dots&dots&dots&dots&dots&dots&dots\ dots&dots&dots&dots&dots&dots&dots\ dots&dots&dots&dots&dots&dots&dots\ dots&$$

and $f_1, \ldots, f_{r-1} \in C^{\infty}(X, \mathbb{C})$, $\sigma \in C^{\infty}(X, \mathbb{R})$. Then

$$c(E_r,h) = c(E_1,e^{\sigma}) + \frac{\sqrt{-1}}{2\pi} \,\overline{\partial}\partial \log\left(1 - \frac{\sqrt{-1}}{2\pi} \,U\right),$$

where

$$U = e^{-\sigma} \sum_{i=1}^{r-1} \partial f_i \wedge \overline{\partial} \overline{f}_i.$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Remarks

• The following identities hold

$$\sum_{l=0}^{r} (-1)^{l} \operatorname{ch}_{k}(\Lambda^{l} E_{r}^{*}) = -\frac{\delta_{kr}}{r-1} \left(\frac{\sqrt{-1}}{2\pi}\right)^{r} \bar{\partial} \partial \left(U^{r-1}\right),$$

 $k = 0, \cdots, r$, as it follows from Proposition and the following general formula

$$\sum_{l=0}^{r} (-1)^l \operatorname{ch}(\Lambda^l E^*, \wedge^l h_*) = \operatorname{td}(E, h)^{-1} \operatorname{c}_r(E, h).$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Results

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Remarks

• The following identities hold

$$\sum_{l=0}^{r} (-1)^{l} \operatorname{ch}_{k}(\Lambda^{l} E_{r}^{*}) = -\frac{\delta_{kr}}{r-1} \left(\frac{\sqrt{-1}}{2\pi}\right)^{r} \bar{\partial} \partial \left(U^{r-1}\right),$$

 $k = 0, \cdots, r$, as it follows from Proposition and the following general formula

$$\sum_{l=0}^{r} (-1)^{l} \operatorname{ch}(\Lambda^{l} E^{*}, \wedge^{l} h_{*}) = \operatorname{td}(E, h)^{-1} \operatorname{c}_{r}(E, h).$$

• For *r* = 2,

*

$$h = h(\sigma, f) = \begin{pmatrix} 1 & \overline{f} \\ f & |f|^2 + e^{\sigma} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ f & e^{\sigma/2} \end{pmatrix} \begin{pmatrix} 1 & \overline{f} \\ 0 & e^{\sigma/2} \end{pmatrix},$$

the identity takes the form

$$\mathrm{ch}_2(E_2,h(\sigma,f))-\mathrm{ch}_2(E_1,e^{\sigma})=-\frac{1}{(2\pi)^2}\bar{\partial}\partial(e^{-\sigma}\partial f\wedge\bar{\partial}\bar{f}),$$

and can be verified by a straightforward computation.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forn

 The exponents of Bott-Chern forms already appeared in the work of Losev-Moore-Nekrasov-Shatashvili on supersymmetric quantum field theories, as ratios of non-chiral partition functions for the higher dimensional versions of the *bc*-systems.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Results

・ロト・西・・田・・田・・日・

- The exponents of Bott-Chern forms already appeared in the work of Losev-Moore-Nekrasov-Shatashvili on supersymmetric quantum field theories, as ratios of non-chiral partition functions for the higher dimensional versions of the *bc*-systems.
- For r = 2 put $\theta = h^{-1}\partial h$ and $\bar{\theta} = h^{-1}\bar{\partial}h$. Then

$$\mathsf{Tr}(\theta \wedge \bar{\theta}) = e^{-\sigma} \partial f \wedge \bar{\partial} \bar{f} + e^{-\sigma} \partial \bar{f} \wedge \bar{\partial} f$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

CS and BC forms

Leon A. Takhtajan

hern-Simons forms

 The exponents of Bott-Chern forms already appeared in the work of Losev-Moore-Nekrasov-Shatashvili on supersymmetric quantum field theories, as ratios of non-chiral partition functions for the higher dimensional versions of the *bc*-systems.

• For
$$r = 2$$
 put $\theta = h^{-1}\partial h$ and $\bar{\theta} = h^{-1}\bar{\partial}h$. Then

$$\operatorname{Tr}(\theta \wedge \overline{\theta}) = \boldsymbol{e}^{-\sigma} \partial f \wedge \overline{\partial} \overline{f} + \boldsymbol{e}^{-\sigma} \partial \overline{f} \wedge \overline{\partial} f.$$

The simplest nontrivial Bott-Chern form

$$\mathsf{bc}_2(h,I) = e^{-\sigma} \partial f \wedge \overline{\partial} \overline{f},$$

where *I* is a trivial Hermitian metric on E_2 , is obtained by adding the (1, 1)-component of the "Wess-Zumino term" to the "kinetic term" $Tr(\theta \land \overline{\theta})$.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms Besults

- The exponents of Bott-Chern forms already appeared in the work of Losev-Moore-Nekrasov-Shatashvili on supersymmetric quantum field theories, as ratios of non-chiral partition functions for the higher dimensional versions of the *bc*-systems.
- For r = 2 put $\theta = h^{-1}\partial h$ and $\overline{\theta} = h^{-1}\overline{\partial}h$. Then

$$\operatorname{Tr}(\theta \wedge \overline{\theta}) = \boldsymbol{e}^{-\sigma} \partial f \wedge \overline{\partial} \overline{f} + \boldsymbol{e}^{-\sigma} \partial \overline{f} \wedge \overline{\partial} f.$$

• The simplest nontrivial Bott-Chern form

$$\mathsf{bc}_2(h, I) = e^{-\sigma} \partial f \wedge \bar{\partial} \bar{f},$$

where *I* is a trivial Hermitian metric on E_2 , is obtained by adding the (1, 1)-component of the "Wess-Zumino term" to the "kinetic term" $Tr(\theta \land \overline{\theta})$.

• This procedure was first used by Alekseev-Shatashvili, where for the case of the Minkowski signature the decomposition $h = g^*g$ is replaced by the Gauss decomposition for SL(2, \mathbb{C}).

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms Bott-Chern forms Besults

Bott-Chern action

Two versions of Bott-Chern action for $V = X \times \mathbb{C}^r$ — trivial bundle.

• Relative version. $M \subset X$, dim_{\mathbb{R}}(M) = 2k - 2,

$$\mathrm{BC}_k(h) = \int_M \mathrm{bc}_k(h, l).$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Results

・ロト・国ト・ヨト・ヨー うへの

Bott-Chern action

Two versions of Bott-Chern action for $V = X \times \mathbb{C}^r$ — trivial bundle.

Relative version. *M* ⊂ *X*, dim_ℝ(*M*) = 2*k* − 2,

$$\mathrm{BC}_k(h) = \int_M \mathrm{bc}_k(h, I).$$

• Absolute version. X – Kähler manifold with Kähler form ω ,

$$\mathrm{BC}_k(h) = \int_X \mathrm{bc}_k(h, l) \wedge \omega^{n-k+1}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Bott-Chern action

Two versions of Bott-Chern action for $V = X \times \mathbb{C}^r$ — trivial bundle.

Relative version. *M* ⊂ *X*, dim_ℝ(*M*) = 2*k* − 2,

$$\mathrm{BC}_k(h) = \int_M \mathrm{bc}_k(h, I).$$

Absolute version. X – Kähler manifold with Kähler form ω,

$$\mathrm{BC}_k(h) = \int_X \mathrm{bc}_k(h, l) \wedge \omega^{n-k+1}.$$

Equations of motion:

$$F(h)^k=0.$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Results

◆□ ▶ < 畳 ▶ < 置 ▶ < 置 ▶ < 回 ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

• Theorem

For every $\bar{\partial}\partial$ -exact form $\omega \in \mathcal{A}(X, \mathbb{C}) \cap \mathcal{A}^{even}(X, \mathbb{R})$ on a complex manifold X there is a trivial vector bundle E over X with two Hermitian metrics h_0 and h_1 such that

 $ch(E, h_1) - ch(E, h_0) = \omega.$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

• Theorem

For every $\bar{\partial}\partial$ -exact form $\omega \in \mathcal{A}(X, \mathbb{C}) \cap \mathcal{A}^{even}(X, \mathbb{R})$ on a complex manifold X there is a trivial vector bundle E over X with two Hermitian metrics h_0 and h_1 such that

 $ch(E, h_1) - ch(E, h_0) = \omega.$

• In other words, the image of the Chern character map contains all $\bar{\partial}\partial$ -exact real even forms.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Theorem

For every $\bar{\partial}\partial$ -exact form $\omega \in \mathcal{A}(X, \mathbb{C}) \cap \mathcal{A}^{even}(X, \mathbb{R})$ on a complex manifold X there is a trivial vector bundle E over X with two Hermitian metrics h_0 and h_1 such that

 $ch(E, h_1) - ch(E, h_0) = \omega.$

- In other words, the image of the Chern character map contains all ∂∂-exact real even forms.
- For every ω ∈ A(X, C) ∩ A^{even}(X, R) of degree not greater than 2n − 2, there is a trivial vector bundle E over X with two Hermitian metrics h₀ and h₁ such that in Ã(X, C)

$$\mathrm{BC}(E;h_0,h_1)=\omega,$$

where

$$BC(E; h_0, h_1) = bc(E; h_0, h_1) mod(Im \ \partial + Im \ \bar{\partial}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Theorem

For every $\bar{\partial}\partial$ -exact form $\omega \in \mathcal{A}(X, \mathbb{C}) \cap \mathcal{A}^{even}(X, \mathbb{R})$ on a complex manifold X there is a trivial vector bundle E over X with two Hermitian metrics h_0 and h_1 such that

 $ch(E, h_1) - ch(E, h_0) = \omega.$

- In other words, the image of the Chern character map contains all ∂∂-exact real even forms.
- For every ω ∈ A(X, C) ∩ A^{even}(X, R) of degree not greater than 2n − 2, there is a trivial vector bundle E over X with two Hermitian metrics h₀ and h₁ such that in Ã(X, C)

$$\mathrm{BC}(E;h_0,h_1)=\omega,$$

where

$$BC(E; h_0, h_1) = bc(E; h_0, h_1) mod(Im \ \partial + Im \ \overline{\partial}).$$

• See V. Pingali-L.T. for the proofs.

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

Theorem

For every $\bar{\partial}\partial$ -exact form $\omega \in \mathcal{A}(X, \mathbb{C}) \cap \mathcal{A}^{even}(X, \mathbb{R})$ on a complex manifold X there is a trivial vector bundle E over X with two Hermitian metrics h_0 and h_1 such that

 $ch(E, h_1) - ch(E, h_0) = \omega.$

- In other words, the image of the Chern character map contains all ∂∂-exact real even forms.
- For every ω ∈ A(X, C) ∩ A^{even}(X, R) of degree not greater than 2n − 2, there is a trivial vector bundle E over X with two Hermitian metrics h₀ and h₁ such that in Ã(X, C)

$$\mathrm{BC}(E;h_0,h_1)=\omega,$$

where

$$BC(E; h_0, h_1) = bc(E; h_0, h_1) mod(Im \ \partial + Im \ \overline{\partial}).$$

- See V. Pingali-L.T. for the proofs.
- Image of ch is an outstanding problem (related to the Hodge conjecture).

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

• *E* — short exact sequence of holomorphic bundles

$$0 \longrightarrow F \xrightarrow{i} E \xrightarrow{p} H \longrightarrow 0$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

• & — short exact sequence of holomorphic bundles

$$0 \longrightarrow F \xrightarrow{i} E \xrightarrow{p} H \longrightarrow 0$$

c
_t(ℰ; h) — generating function for the Bott-Chern forms

$$\tilde{\mathsf{c}}_t(\mathscr{E};h) = \sum_{k=1}^r t^k \tilde{\mathsf{c}}_k(\mathscr{E};h_E,h_F,h_H).$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

• & — short exact sequence of holomorphic bundles

$$0 \longrightarrow F \xrightarrow{i} E \xrightarrow{p} H \longrightarrow 0$$

c
_t(ℰ; h) — generating function for the Bott-Chern forms

$$\tilde{\mathsf{c}}_t(\mathscr{E};h) = \sum_{k=1}^r t^k \tilde{\mathsf{c}}_k(\mathscr{E};h_E,h_F,h_H).$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms

• & — short exact sequence of holomorphic bundles

$$0 \longrightarrow F \xrightarrow{i} E \xrightarrow{p} H \longrightarrow 0$$

• $\tilde{c}_t(\mathscr{E}; h)$ — generating function for the Bott-Chern forms

$$\tilde{\mathbf{c}}_t(\mathscr{E};h) = \sum_{k=1}^r t^k \tilde{\mathbf{c}}_k(\mathscr{E};h_E,h_F,h_H).$$

• Proposition

Let \mathscr{E} be a short exact sequence of holomorphic vector bundles over X, equipped with Hermitian metrics h_F , h_E and h_H , where the metric h_F on F is the restriction of the metric h_E on $i(F) \subset E$, and the metric h_H on H is defined by the C^{∞} isomorphism between H and the orthogonal complement $i(F)^{\perp}$ of i(F) in E. Let A be the second fundamental form of $i(F) \subset E$. In the case when F is a line bundle, the generating function for the Bott-Chern forms $\tilde{c}_t(\mathscr{E}; h)$ is given by the following explicit formula ($\kappa = \frac{\sqrt{-1}}{2\pi}$)

$$\tilde{c}_t(\mathscr{E};h) = -c_t(H,h_H)\log\left(1+\kappa t\operatorname{tr}(I+\kappa t\Theta_H)^{-1}A\wedge A^*\right).$$

CS and BC forms

Leon A. Takhtajan

Chern-Simons forms

Bott-Chern forms