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R LT IGII Ml Einstein-Hilbert and Einstein-Cartan actions

The essence of GR is invariance under diffeomorphisms (general coordinate transformations)

dz'v d
= ' (z), Ap(z) — Ay(x’)z—, ey d'z— | FEO%
dxh dx’
General Relativity in terms of the metric tensor
M?2 _
§=——F / d*z 2A\/g + VIR ,

167 —— —~—

cosmological term  Einstein—Hilbert term
A

A ~8.65-10"%6ev2, Mp =1.22-10°GeV, S 5.82- 107122

P

Tetrad field

It is more convenient to use Einstein-Cartan formulation.
eﬁ‘ (z) is tetrad (vierbein, or frame field):

guv(x) = eﬁeluqv ei = (63)717 A= 17”7d; H= 17"7d'

The indices A, B, C, .. are "flat" Lorentz indices (we do not care
about lower and upper Lorentz indices).

y
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RIS IGII Ml Einstein-Hilbert and Einstein-Cartan actions

First order formalism (Einstein-Cartan)

Local Lorentz invariance

Ortho-normal coordinate systems can be independently rotated at every point (Gauge
Lorentz symmetry)

ef)(w) — OABef(x), O € Lorentz group
0.T* = DAFTE = (6470, + wiiP) TP

wﬁB(w) = —wEA, spin-connection, (AB) enumerates @ generators of the Lorentz group.

Historically, it is the first example of Yang-Mills theory,[Cartan,22|[Fock,28]

Einstein-Cartan gravity

1
S = Tom /d4 —2A dete v e”"aBEABCD]:AB c g 25””‘)‘6]:?1,]36&‘465 —i—)
Ag Y
VaR Holst action
=0 in EH

]-'AB [DuD AP = 8wiB — 8,,w;?B + [wpw,]AB
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RIS IGII Ml Einstein-Hilbert and Einstein-Cartan actions

The Einstein-Cartan gravity contains more d.o.f’s then Einstain-Hilbert gravity and, in
particular, contains new geometry structure: torsion.

(T8, —T2,) ea =Th,.

N =

Without sources the Cartan action is equivalent to the Einstein- Hilbert action.

The fermions are the natural source for the torsion field.
M3 4 1 ,vas AB.C.D | _jui f A
S:E d*z —2Adete—Ze €eaBcDF Ly eq €z + e vy Duy
With the fermions the torsion is not zero at saddle point:

T;‘V ~ (\II\II) bilinear fermion current

However, 4-fermion interaction induced by torsion is suppressed as 1/M123 (at least), e.g.

[Hehl,78], [Diakonov,Tumanov,AV,11]
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RIS IGII Ml Einstein-Hilbert and Einstein-Cartan actions

Speaking about quantum gravity I will keep in mind Einstein-Cartan formulation which is
generically posses two symmetries

& Diffeomorphisms (gen.coordinate transformations) z* — z'#(z)

o Gauge Lorentz invariance ef} (z) — OAB(x)eE (z)

Nowadays, there are quite a lot of models of Quantum Gravity
Loop quantum gravity (spin-foams)

Dynamical triangulation models

Group field theories

String theory based models

¢ ¢ ¢ ¢ ¢

...(Only in Wikipedia one can find 10 more approaches)

Every model has its own weak and strong points, and most part of them looks very unusual
on first glance.
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RTINSl Boundlessness of gravity action

Boundless action

Zgravity[J] = /[De Dw}e’S[J]

Any diffeomerphism invariant action is not sign-definite.

o The only index marring structure is (non sign-definite) Levy-Civita tensor. All the rest
are fluctuating fields.

@ Therefore, the action during fluctuations can contentiously passes through zero.

Large vacuum fluctuations are not suppressed, but even enforced.

The simplest example is cosmological term:
/d4x dete = /d4xe“”p”eABCDeﬁefege£.

The "usual" quantum gravity is not-well defined in general, although the perturbative
definition may exist (a-la phi® theory).

4 e e e e e
e 62 62 el e
det(e) >0  det(e) <0  det(e) >0 2 1

oV

det(e) S 0 det(e) — N det(e) « N
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Spinor gravity [EBIIENtITI

Spinor gravity

Making path integral well-define

@ o One of the ways to overcome the sign problem of gravity is to use only the compact
and/or fermion degrees of freedom. The idea is not very new, see
[Akama,78],[Volovik,90],[Wetterich,05-12].

6;? = W’YADM/J - (DW)WAw

This combination is Hermitian ef = e and transforms as a 1-form and a Lorentz vector.

Another possibility

f = @ADL + (D) Iy A) = iDu (i)
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Definition

Limitations on the action

The Grassman algebra gives some restrictions on the action:

B

o No tetrad with "upper" index: det(e)ey = e popel egeg

d d/2
@ Tetrad in power 22 is zero, (e;i‘(g;))Q —0.

General Relativity action

9 Cosmological term: Scosm = fd4x%EABCDe“”aﬁeﬁeuBegeg.

o Einstein-Hilbert term: Sgg = fd4x1—126ABCDe”"anfVBegeg

¢ The only non-fermion term: fd4x%eABCDe””aﬂffnygéD = Full Derivative

@ Dirac action for W:
Sp = [ dwdet(e)ely (V1 (@)yA Du¥ (@) — (Du¥ (@) 14U () = Scosm

4 A_B_C_D AB_C_D
S = /d 2" Pe pop Aejre, egeﬂ - Fpy egeﬂ +

N VIR finite # of

m

terms
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ST Classical action

How to check that quantum gravity reproduces classical one? Calculate DI correlators e.g.

sphere surface
| dnyg [ e (S =)y s
([ dzy/g) B

But this can not be used for fermion g..,. The classical metric tensor and classical effective
action can be introduced by means of the Legendre transform [Wetterich 11, AV& Diakonov
12]

11(8)

ewvliel = /[D¢TD'¢)D0J] exp (S + /Q;w@“”) , Juv built from fermions

The classical metric: P
cl vr,cl
= — = [Cls
9y (2) 56 (z) l9°]

Effective action is given by Legandre transform: T'[g¢!] = W[O] — gf},,@“”. At the low energy
limit it reads (due to diffeomorphism invariance):

Slow = /dmvgd (61 + c2R(g”) + ) ;

C

— ~538: 107120 How one can guarantee such tiny ratio?

1
5
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SO BLIC Lattice diffecomorphism invariance

Lattice regularization of diffeomorphism invariant actions

Z[J, A\ = /[Dw Dyt Dyle®,

4 A_B,C_D A_B_C D A_B CD
S:/d a:[e‘“’p"eABCD (Aleuey e, €5 + e eje; fo + Azey e Fo, -l—)

AB_A_B
+ AP F e e, -l—]

In order to formulate quantum theory properly one has to regularize it at short distances.
The most clear-cut regularization is lattice discretization

o Explicit invariance under gauge transformation (lattice gauge theory).

o In continuum limit, the lattice action reduces to diffeomorphism invariant (lattice
diffeomorphism invariance).
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SO BLIC Lattice diffecomorphism invariance

Lattice regularization of diffeomorphism invariant actions

Lattice diffeomorphism invariance

Spinor gravity is diffeomorphism invariant:
z — 2’ (z) /ddxﬁ(x) = /ddx'ﬁ(x'(r))

The lattice action should be independent on form of the lattice, only the neighborhood
structure is important.

z(n) = =’ (z(n)) Zﬁ(n|r) = Z L(n|z")

z(n) is the map from discrete set of lattice vertices to the manifold.

g

T

Realization of the integral measure without diffeomorphism equivalent configurations

v
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SO BLIC Lattice diffecomorphism invariance

Explicit construction

"

i

Taking the simplex lattice with coordinates of vertices x
Volume of a simplex:

€10,8192.%d H1[2--Hd

(d+1)! d!

K1 M1 Hd

Vvsimplex = (xil i0 )"(xld - m?od)

Discredited version of a tetrad:
ety = I Uips — PlU v i = (@ — a)elt + O(Az?)
Discredited version of gauge strength tensor (plaquette)
1
P{?E = d—tr (O'ABUijUijki)
f

U;; is a holonomy (link):

e
U;j = Pexp (?Z/ ! wﬁBcrABdg;“) .
x

7
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AR Lattice diffcomorphism invariance

Cosmological term:

igi1..iq A1Ag..Ag
ST et et e
(d+1)! d! 10%1 “toi2 " Tioig

simplices

~ S Vimplexdet(e) (1 + O(Az)) ~ / e det(e),

simplices
Einstein-Hilbert action:

‘ ci0i1iq (A1As. Ay AyAs As A,
i Z | | Pioili2 Cigiz " Cigia
(d+1)! d!

simplices

- d, A1.Ag_p1..iq TA1As A _Ag
,/d xe € ]7“1#2 €ns - Cug

The lattice action is independent on the coordinate realization of
the lattice.
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SO BLIC Lattice diffecomorphism invariance

Continuum limit

9 In order to guarantee existence of continuum limit we need to search for
long-range correlation. Usually (in lattice QCD) one uses the lattice RG to reveal the
lattice-spacing dependance of parameters.

o This is a very unusual lattice field theory — with many-fermion vertices but no bilinear
term for the fermion propagator! Typical (only?) behavior of correlations is fast (several
lattice cells) exponential decay.

& There is no scale on diffeomorphism invariant lattice (by definition), and thus, no handle
to turn the on the correlations (like 8 — oo in QCD).

o The only stable way to provide long-range correlations is look for the phase transition
and make fine-tuning. Exactly at the phase transition surface the correlation lengths are
infinite and this automatically sets the constant A to be small.

Let us investigate such possibility on the simplest (but non-trivial) model: 2D spinor gravity.
v

Lattice spinor gravity 15.07.13 14 / 24



Spinor gravity on lattice [ERIBNSSTRIIFINEtaY

2D spinor gravity

In 2D the Lorentz group SO(2) ~ U(1) and the spinor has two components (y"? = o

AFIVE _ 53).
EH term = ffVBe“”eAB = Full Derivative.

Only determinant-like terms are available
er = VIV Dy — (Du)' vy, £ = iDL Ty )
A
S = /d% (,\1 det(f) + Az det(e) + ?SEABE”"efL‘ff)

1,2
k

U U Lattice regularization U, U,

_ 'ij AB
S = Z 3 ()qf”f + Xoéiel + xseS fh),

simplices

éfj:wIwAUijwj—zﬁij“% FA& = il Ujin A Usjos — vl i)
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Spinor gravity on lattice [ERIBNSSTRIIFINEtaY

Exact results

Physical volume

Average physical volume is an extensive quantity (as it should be):

1 dZ M
(V) = (det(e)) == -
A1 =0 =0 Zdhaly—o 2N
Susceptibility of physical volume:
M
@ =vH -3 =-
A1=0 A1=0 223

For large volumes the fluctuations dies out:

VAV2/V ~1/VM = 0.

Scalar curvature

Average curvature and susceptibility of curvature:
(det(e)R) = 2(Fi3) =0,  ((det(e)R)*) ~ M

M is total number of simplices.

One may say that the model (in absence of sources) describes-a flat"background-metric.
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SIS TIACIA WEN 3o  Dynamical mean-field approach

Dynamical mean field approach

<

Z= [T, Al dpjdU;jeS = / Ay dippm AUy emm / AU pie5mi / Ayl dipidU; jeSii

cavity border enviroment

[ dUimeSim =1+ 3 Op (¥, Ym, Umn)Op (], ¥4, Usy)
Cutting out one simplex out of infinite number changes nothing:

eseff,nLn = esmn (1 + Zp Op('lZ)In,'lZ)m, Umn)> (O;>

@ Self-consistency equation:

<

<

<O > — fdw;rndd}mdUmneseff’mn Op(zpinwauUmn)
! [ A}t dUpeSessmn)
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SRRl Dynamical mean-field approach

Dynamical mean field approach

Cavity method allows us to calculate only local quantities.

; \ _ Pol10({0))
In 2D models there are 9 operators, and 9 equations of the form (O;) = Wg((@)
The accuracy of the method in 2D is about 15%.
M M
(V) = 0.572)\— (mean field) versus 0.5)\— (exact)
1 1

Ao=0

The accuracy can be increased by taking large cavities or greater dimensions. Approach is
exact in d — oo.
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/ity on lattice

Spontaneous chiral symmetry breaking

Spontaneous chiral symmetry breaking

The model posses the chiral symmetry in
additional to DI and local Lorentz symmetry.
3 3
e i T
Looking for the spontaneous breaking of chiral

symmetry we introduce an explicit symmetry
breaking term:

Sx-oda = [ daidet(emy,

then we consider chiral-odd operator at
m — 0.
In some sub-space of the parameters
(A1, A2, A3) the chiral condensate:

C1 = i(yTy) #0,

at m=20

Phase transition of 2" order

Lattice spinor gravity
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RO Spontancous chiral symmetry breaking

The value of the chiral condensate (C1) at
Spontaneous chiral symmetry breaking takes A3 = 0 plane. At phase transition line the
place inside a cone: condensate vanishes.

A2 < T7.23)2 4 5.36)3

We have also checked for other possible symmetries breaking (e.g. fermion number violation)
but did not anything in addition. J
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TSI TGO WL 3ol Spontancous chiral symmetry breaking

Effective Goldstone action

Under the chiral rotations the condensate operators transforms as:
cf =i (vty) xi(vloPy) —— eFiocs
Let the phase of condensate slowly vary from cell to cell:
(Clﬂ:> — plej:ia(cell)

Then using the same mean-field method we derive the low-energy action for the
Goldstone-boson a(z):
eSG(Q) = H Zcell(a(ceu))

cells

M(82Z 18282)

= _ ==

=—-MInZ(0) — _—
SGB . ( ) 8ai8aj Z (90(1' 8aj

Aa;Aaj + O(Aat)
a=0

where M is a total number of cells and Aq; is variation of v between cell ¢ and current cell.
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SO RLIIC M Spontancous chiral symmetry breaking

Effective Goldstone action

d’x
Aoy = Opo(at! —at) + .., M:Z: V(cell)

. 1 1 0%z
lim —_—
Az—0 V(cell) Z19 Oa;0a;

Azl Ay = VGG

where G#*”(x) depends on A1,2,3, and can be calculated from self-consistency equation.

1
SaB = 3 /dm2\@G“”(x)8ua8,,a + .

For a concrete map to the Cartazian coordinates we
found:

VGG (z) = T(A1, Az, A3)6H*

regular lattice
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SO RLIIC M Spontancous chiral symmetry breaking

"Gell-Mann-Oakes-Renner" relation

Explicit break of the chiral symmetry (e.g. by parameter m) leads to mass of Goldstone
boson:

Sap = %/de\/é(x) (G* ()Opadyo + p2a2) + ..

,u2 ~mt(A1,2,3)

At the phase transition surface p goes to zero at non-zero m.

Mermin-Wagner theorem

A continuous symmetry cannot be spontaneously broken in 2d as the resulting Goldstone
bosons would have an unacceptably large, actually divergent free energy. If, however, the
Goldstone field a(z) is Abelian as here, the actual phase is, most likely, that of
Berezinsky—Kosterlitz—Thouless where the chiral condensate pe*® indeed vanishes owing to
the violent fluctuations of «a(x) defined on a circle (0, 27), but the correlation functions of the
type (em(m) e*m(y)) have a power-like behavior, and there is a phase transition depending
on the original couplings of the theory.
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Conclusion

Conclusion

<

The lattice version of spinor gravity is constructed.

¢ The resulting theory is similar to the spin-foam models and to the strongly correlated
fermion systems.

©

The lattice mean-field approach is presented and applied to 2D spinor gravity.

<

The presence of phase-transitions are shown, in particular chiral-phase transition.
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