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Can we understand/classify all strongly interacting
gapped quantum phases systematically?
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Symmetry breaking theory of phases (orders)

• For a long time, we believe that
phase transition = change of symmetry
the different phases = different symmetry → different materials
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• The math foundation is group theory: classified by (GH ,GΨ)
From 230 ways of translation symmetry breaking, we obtain the
230 crystal orders in 3D.
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New quantum phases beyond symmetry-breaking

• Example:
- Quantum Hall

states σxy = m
n

e2

h
- Spin liquid states

• FQH states and spin-liquid states have have different phases
with no symmetry breaking, no crystal order, no spin order, ...
so they must have a new order – topological order Wen 89
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What IS topological order?

To define a physical concept, such as symmetry-breaking order or
topological order, is to design a probe to measure it

For example,
• crystal order is defined/probed by X-ray diffraction:
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Symmetry-breaking orders through experiments

Order Experiment

Crystal order X-ray diffraction

Ferromagnetic order Magnetization

Anti-ferromagnetic order Neutron scattering

Superconducting order Zero-resistance & Meissner effect

Topological order ???

• All the above probes are linear responses. But topological order
cannot be probed/defined through linear responses.
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Topological orders through experiments (1990)

Topological order can be defined through two topological properties
that are robust against any local perturbations/impurities

(1) Topology-dependent ground state degeneracy Dg Wen 89

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

(2) Non-Abelian geometric’s phases of the degenerate ground
state from deforming the torus: Wen 90

- Shear deformation T : |Ψα〉 → |Ψ′α〉 = Tαβ|Ψβ〉

- 90◦ rotation S : |Ψα〉 → |Ψ′′α〉 = Sαβ|Ψβ〉

• T ,S , define topological order “experimentally”.

• T ,S is a universal probe for any 2D topological orders, just like
X-ray is a universal probe for any crystal orders.
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Symmetry-breaking/topological orders through experiments

Order Experiment

Crystal order X-ray diffraction

Ferromagnetic order Magnetization

Anti-ferromagnetic order Neutron scattering

Superconducting order Zero-resistance & Meissner effect

Topological order Topological degeneracy,
Non-Abelian geometric phases

• The linear-response probe Zero-resistance and Meissner effect
define superconducting order. Treating the EM fields as non-dynamical fields

• The topological probe Topological degeneracy and non-Abelian
geometric phases T ,S define a completely new class of order –
topological order.

• T ,S determines the quasiparticle statistics. Keski-Vakkuri & Wen 93;

Zhang-Grover-Turner-Oshikawa-Vishwanath 12; Cincio-Vidal 12
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What is the microscopic picture of topological order?

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

• Why the macroscopic properties, Dg and S&T , are indenpent of
any local perturbations? What is the microscopic understanding?

• Zero-resistance and Meissner effect → macroscopic definition of
superconducting order.

• It took 40 years to gain a microscopic
picture of superconducting order:
electron-pair condensation
Bardeen-Cooper-Schrieffer 57

• It took 20 years to gain a microscopic
understanding of topological order:
long-range entanglements Chen-Gu-Wen 10

(defined by local unitary trans. and
motivated by topological entanglement
entropy). Kitaev-Preskill 06,Levin-Wen 06
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Gapped quantum phases and local-unitary transformation

EE

ε

∆
∆

g g

E E

g g

• Two gapped states, |Ψ(0)〉 and |Ψ(1)〉, are in the same phase iff
they are connected by a local unitary (LU) evolution

|Ψ(1)〉 = P
(

e− i
∫ T

0 dt H(t)
)
|Ψ(0)〉

where H̃(g) =
∑

i Oi(g)
and Oi(g) are local
hermitian operators.
Hastings, Wen 05;

Bravyi, Hastings, Michalakis 10

e

e

δ−i   T HB

δ−i   T HA

Ui

1 2 l...

• Any LU evolution can be described by a finite-depth quantum
circuit – LU transformation:

|Ψ(1)〉 = P
(

e− i
∫ T

0 dt H(t)
)
|Ψ(0)〉 =

∏
t

(
e− iδt H(t)

)
|Ψ(0)〉

= (local unitary transformation)|Ψ(0)〉
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Pattern of long-range entanglements = topological order

For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase

• Thinking about entanglement: Chen-Gu-Wen 2010

- There are long range entangled (LRE) states

→ many phases

- There are short range entangled (SRE) states

→ one phase

|LRE〉 6= |product state〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to many different phases
= different patterns of long-range entanglements defined by the LU trans.

= different topological orders Wen 1989

→ A classification by tensor category theory Levin-Wen 05, Chen-Gu-Wen 2010

Xiao-Gang Wen, July, 2013 Gapped quantum matter, many-body quantum entanglement, and (symmetry-protected) topological orders



Pattern of long-range entanglements = topological order

For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase

• Thinking about entanglement: Chen-Gu-Wen 2010

- There are long range entangled (LRE) states

→ many phases

- There are short range entangled (SRE) states

→ one phase

|LRE〉 6= |product state〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to many different phases
= different patterns of long-range entanglements defined by the LU trans.

= different topological orders Wen 1989

→ A classification by tensor category theory Levin-Wen 05, Chen-Gu-Wen 2010

Xiao-Gang Wen, July, 2013 Gapped quantum matter, many-body quantum entanglement, and (symmetry-protected) topological orders



Pattern of long-range entanglements = topological order

For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase

• Thinking about entanglement: Chen-Gu-Wen 2010

- There are long range entangled (LRE) states → many phases

- There are short range entangled (SRE) states → one phase

|LRE〉 6= |product state〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to many different phases
= different patterns of long-range entanglements defined by the LU trans.

= different topological orders Wen 1989

→ A classification by tensor category theory Levin-Wen 05, Chen-Gu-Wen 2010

Xiao-Gang Wen, July, 2013 Gapped quantum matter, many-body quantum entanglement, and (symmetry-protected) topological orders



Gapped phases w/ symmetry → SET and SPT phases

• there are LRE symmetric states → Symm. Enriched Topo. phases
- 100s symm. spin liquid through the PSG of topo. excit. Wen 02

- 8 trans. symm. enriched Z2 topo. order in 2D, 256 in 3D Kou-Wen 09

- Many symm. Z2 spin liquid through [H2(SG ,Z2)]2× Hermele 12

- Classify SET phases through H3[SG × GG ,U(1)] Ran 12

• there are SRE symmetric states →

one phase

many different phases

We may call them symmetry protected trivial (SPT) phase

or symmetry protected topological (SPT) phase

1
g

2
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

SB−SRE 2

SY−SRE 2

g
1

LRE 2LRE 1

SRE
SPT phases

symmetry breaking

(group theory)

topological orders

( ??? )

( ??? )

topological order
topological order

symmetry
preserve

no symmetry

phase

transition

SPT 1 SPT 2

- Haldane phase of 1D spin-1 chain w/ SO(3) symm. Haldane 83

- 1 topo. ins. w/ U(1)× T symm. in 2D, Kane-Mele 05; Bernevig-Zhang 06

15 in 3D Moore-Balents 07; Fu-Kane-Mele 07
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Free fermion SPT phases: A K-theory

Kitaev 08

Schnyder-Ryu-Furusaki-Ludwig 08

• How to include strong interactions → Mission impossible?
• SPT phases are ‘trivial’ (short-range entangled) → Mission possible
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Can we understand/classify all interacting SPT phases?

• Symmetry protected topological (SPT) phases are gapped
quantum phases with certain symmetry, which can be smoothly
connected to the same trivial phase if we remove the symmetry.

SPT1 SPT2 SPT3

Product state

with a symmetry G

break the symmetry

• Group theory classifies 230 crystals. What classifies SPT orders?

• A classification of (all?) SPT phase: Chen-Gu-Liu-Wen 11

Input (1) spatial dimension d (2) on-site symmetry group G
→ the corresponding SPT phases are classified by the elements in
Hd+1[G ,U(1)] – the d + 1 cohomology class of the symmetry
group G with G -module U(1) as coefficient.

• Hd+1[G ,U(1)] form an Abelian group: a + b = c ,
- Stacking a-SPT state and b-SPT state give us a c-SPT state.

a−SPT

b−SPT
c−SPT
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Bosonic SPT phases in any dim. and for any symmetry
Symmetry G d = 0 d = 1 d = 2 d = 3

U(1)o ZT
2 (top. ins.) Z Z2 (0) Z2 (Z2) Z2

2 (Z2)
U(1)o ZT

2 × trans Z Z× Z2 Z× Z3
2 Z× Z8

2

U(1)× ZT
2 (spin sys.) 0 Z2

2 0 Z3
2

U(1)× ZT
2 × trans 0 Z2

2 Z4
2 Z9

2

ZT
2 (top. SC) 0 Z2 (Z) 0 (0) Z2 (0)
ZT

2 × trans 0 Z2 Z2
2 Z4

2

U(1) Z 0 Z 0
U(1)× trans Z Z Z2 Z4

Zn Zn 0 Zn 0
Zn × trans Zn Zn Z2

n Z4
n

D2h = Z2 × Z2 × ZT
2 Z2

2 Z4
2 Z6

2 Z9
2

SO(3) 0 Z2 Z 0
SO(3)× ZT

2 0 Z2
2 Z2 Z3

2

Table of Hd+1[G ,UT (1)]
“ZT

2 ”: time reversal,
“trans”: translation,
others: on-site symm.
0 → only trivial phase.
(Z2)→ free fermion result

2
g

1
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

g
1

SRE

SB−SRE 2

SY−SRE 2

symmetry breaking

(group theory)

(tensor category

(group cohomology

  theory)

LRE 1 LRE 2

SET orders

  w/ symmetry)

SPT orderes

intrinsic topo. order

topological  order
(tensor category)
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Understand group cohomology through topological terms

• Consider an d + 1D system with symmetry G :
S =

∫
ddxdt 1

2λ(∂g(x i , t))2, symmetry g(x)→ hg(x), h, g ∈ G
If under RG, λ→∞ → symmetric ground state described by a
fixed point theory Sfixed = 0 or e−Sfixed = 1 .

• Another G symmetric system S =
∫

ddxdt 1
2λ(∂g(x i , t))2 + 2π iW

where W [g(x i , t)] is a topological term, which is classified by
Hom(πd+1(G ),Z). πd+1(G ): mapping classes. Hom(): linear mapps.

If under RG, λ→∞ → symmetric ground state described by a
fixed point theory Sfixed = 2π iW – topological non-linear σ-model.

• Fixed point theories (2π-quantized topological terms)↔ symmetric
phases: The symmetric phases are classified by Hom(πd+1(G ),Z)

• But in the λ→∞ limit, g(x i , t) is not a continuous function. The
mapping classes πd+1(G ) does not make sense. The above result
is not valid. However, the idea is OK.

• Can we define topological terms and topological non-linear
σ-models when space-time is a discrete lattice?
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2λ(∂g(x i , t))2 + 2π iW

where W [g(x i , t)] is a topological term, which is classified by
Hom(πd+1(G ),Z). πd+1(G ): mapping classes. Hom(): linear mapps.

If under RG, λ→∞ → symmetric ground state described by a
fixed point theory Sfixed = 2π iW – topological non-linear σ-model.

• Fixed point theories (2π-quantized topological terms)↔ symmetric
phases: The symmetric phases are classified by Hom(πd+1(G ),Z)

• But in the λ→∞ limit, g(x i , t) is not a continuous function. The
mapping classes πd+1(G ) does not make sense. The above result
is not valid. However, the idea is OK.

• Can we define topological terms and topological non-linear
σ-models when space-time is a discrete lattice?
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Lattice topological non-linear σ-model in 1+1D

• Generalize to space-time lattice e−S =
∏
ν(gi , gj , gk),

where ν(gi , gj , gk) = e−
∫
4 L, with branched structure

Generalize to space-time lattice: e−S =
∏
νs(i ,j ,k)(gi , gj , gk),

where νs(i ,j ,k)(gi , gj , gk) = e−
∫
4 L and s(i , j , k) = 1, ∗

G

space−time

−

+ ggg

g

g
gi

j

k
ν(    ,    ,    )i j k

i
j k

i j
k

21

0
3g
g

gg

• νs(i ,j ,k)(gi , gj , gk) is a topological term if
∏
νs(i ,j ,k)(gi , gj , gk) = 1

on any sphere, including a tetrahedron (simplest sphere).

• On a tetrahedron → 2-cocycle condition

ν(g1, g2, g3)ν(g0, g1, g3)ν−1(g0, g2, g3)ν−1(g0, g1, g2) = 1

The solutions of the above equation are called group cocycle.

• ν2(g0, g1, g2) and ν̃2(g0, g1, g2) = ν2(g0, g1, g2)β1(g1,g2)β1(g0,g1)
β1(g0,g2) are

both cocycles. We say ν2 ∼ ν̃2 ( equivalent).
The set of the equivalent classes of ν2 is denoted as H2[G ,U(1)].
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Group cohomology Hd [G ,U(1)] in any dimensions

• d-Cochain: U(1) valued function of d + 1 variables

νd(g0, ..., gd) = νd(gg0, ..., ggd) ∈ U(1), → on-site G -symmetry

• δ-map: d + 1 variable function νd → d + 2 variable function (δνd)

(δνd)(g0, ..., gd+1) =
∏
i

ν
(−)i

d (g0, ..., ĝi , ..., gd+1)

• Cocycles = cochains that satisfy

(δνd)(g0, ..., gd+1) = 1.

• Equivalence relation generated by any d − 1-cochain:

νd(g0, ..., gd) ∼ νd(g0, ..., gd)(δβd−1)(g0, ..., gd)

• Hd+1[G ,U(1)] is the equivalence class of cocycles νd .

Lattice topological non-linear σ-models with symmetry G in
d-spatial dimensions are classified by Hd+1[G ,U(1)]:

e−S =
∏
M1+d

ν
s(i ,j ,...)
d+1 (gi , gj , ...), νd+1(g0, g1, ..., gd+1) ∈ Hd+1[G ,U(1)]
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Topological invariance in topological non-linear σ-models

0 2

1 3

2

3

0

1g

g g

g

gg

g g

0

1

0

1

g g g

g

g

g

g
2

3 3

As we change the lattice, the action amplitude e−S does not
change:

ν2(g0, g1, g2)ν−1
2 (g1, g2, g3) = ν2(g0, g1, g3)ν−1

2 (g0, g2, g3)

ν2(g0, g1, g2)ν−1
2 (g1, g2, g3)ν2(g0, g2, g3) = ν2(g0, g1, g3)

as implied by the cocycle condition:

ν2(g1, g2, g3)ν2(g0, g1, g3)ν−1
2 (g0, g2, g3)ν−1

2 (g0, g1, g2) = 1

The topological non-linear σ-model is a RG fixed-point.
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The ground state of the topological non-linear σ-model

g
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gg

gg

gg

gg*

gg

gg
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gg

gg

gg

gg

gg
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3

2

The ground state wave function Ψ({gi}) =
∏

i ν2(gi , gi+1, g
∗)

• is symmetric under the G -transformation Ψ({gi}) = Ψ({ggi})
• is equivalent to a product state |Ψ0〉 = ⊗i

∑
gi
|gi 〉 under a LU

transformation (note that Ψ0({gi}) = 1)

Ψ({gi}) =
∏

i=even

ν2(gi , gi+1, g
∗)
∏

i=odd

ν2(gi , gi+1, g
∗)Ψ0({gi})

= Ψ0({gi})

The ground state is symmetric with a trivial topological order
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Summary: group cohomology → SPT states

2
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g
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SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

g
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SY−SRE 2

symmetry breaking

(group theory)

(tensor category

(group cohomology

  theory)

LRE 1 LRE 2

SET orders

  w/ symmetry)

SPT orderes

intrinsic topo. order

topological  order
(tensor category)

How to probe the topological order and SPT order?

Bulk topological phases ↔ Boundary anomalous theories

theory
with

Topolocally
ordered
state

SPT
state

theory
with
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An application of SPT classification of gauge anomaly

Solved the chiral-fermion/chiral-gauge theory problem:
Any anomaly-free chiral gauge theory can be defined as the
ordinary lattice gauge theory in the same dimension, if we include
direct interactions between the matter fields.

by direct matter interaction

Trivial SPT state

Anomaly−free
chiral gauge theory

Anomaly−free mirror
chiral gauge theory

Trivial SPT state

Anomaly−free
chiral gauge theory

Gapped boundary

The key and the hard part is to show that a chiral gauge theory is
really free of ALL anomalies.
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Boundary excitations of SPT phases

• SPT boundary excitations are describe
by a lattice non-linear σ-model at the
boundary with a non-local Lagrangian
term (a generalization of the WZW term
for continuous σ-model):

2+1D space−time

g

g
gi

j

k

g*

gggi j k g*ν(   ,    ,    ,    )

e
−

∫
∂M1+d

LNLL =
∏
∂M1+d

ν
s(i ,j ,k)
d+1 (gi , gj , gk , g

∗) 6=
∏
∂M1+d

µsymm(gi , gj , gk)

either symmetric in one higher dimension or “non-symmetric” in
the same dimension → discretized WZW term.

• Conjecture (proved for 1+1D boundary Chen-Liu-Wen 11): The
boundary are gapless or degenerate: Chen-Liu-Wen 11; Xu 12; Senthil-Vishwanath 12; ...

(a) if the boundary does not break the symmetry → gapless or
topologically ordered (degenerate)
(b) if the boundary break the symmetry → gapless or degenerate.
Generalize the result for WZW model in (1+1)D Witten 89
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Symmetry of the effective boundary theory

•• Effective boundary symmetry in path-integral formalism:
e
−

∫
∂M1+d

LBnd =
∏

∂M1+d

ν
s(i,j,k)
d+1 (gi , gj , gk , g

∗) =
∏

∂M1+d

ν
s(i,j,k)
d+1 (ggi , ggj , ggk , g

∗)

but locally νd+1(ggi , ggj , ggk , g
∗) 6= νd+1(gi , gj , gk , g

∗)

Under the symmetry transformation
LBnd [gg(x)] = LBnd [g(x)] + df [g(x)].
→ Anomalous symmetry

g*

g*

gg
i

g’

j

k

• Effective boundary symmetry in Hamiltonian
formalism → non-on-site symmetry

(e−ĤBnd){g ′
i ,...},{gi ,...} 6= (e−ĤBnd){gg ′

i ,...},{ggi ,...}

= U†{g ′
i ,...}

(e−ĤBnd){g ′
i ,...},{gi ,...}U{gi ,...}

where U{gi ,...} =
∏
〈ij〉

νd+1(gi , gj , g
∗, g−1g∗)

Û(g) =
∏
i

Û0(g)
∏
〈ij〉

νd+1(gi , gj , g
∗, g−1g∗)
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An example: SU(2) SPT state in 2+1D Liu & Wen 12

For SU(2), Hom[π3(SU(2)),Z] = H3[SU(2),U(1)] = Z
→ we can use the topological terms in field theory to classify the
SU(2)-SPT states:

Stop = −i
k

12π

∫
M
Tr(g−1dg)3, k ∈ Z, g ∈ SU(2)

The SU(2) symmetry g(x)→ hg(x), h, g(x) ∈ SU(2)

• The edge excitations are gapless (described by fixed-point WZW):

SBnd =

∫
∂M

k

8π
Tr(∂g−1∂g)− i

∫
M

k

12π
Tr(g−1dg)3,

• At the fixed point, we have a equation of motion

∂z̄ [(∂zg)g−1] = 0, ∂z [(∂z̄g−1)g ] = 0, z = x + it.

Right movers [(∂zg)g−1](z) → SU(2)-charges
Left movers [(∂z̄g−1)g ](z̄) → SUL(2)-charges, g(x)→ g(x)hL

Level-k Kac-Moody algebra Witten 84
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M
Tr(g−1dg)3, k ∈ Z, g ∈ SU(2)

The SU(2) symmetry g(x)→ hg(x), h, g(x) ∈ SU(2)

• The edge excitations are gapless (described by fixed-point WZW):

SBnd =

∫
∂M

k

8π
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M
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A classification of gauge anomalies

• The edge SU(2) symmetry is anomalous (non-on-site):
The above edge excitations cannot be described by a pure 1+1D
lattice model with an on-site SU(2) symmetry U(g) = ⊗iUi (g).

• If we gauge the SU(2) symmetry, we will get an anomalous chiral
gauge theory on the edge, and an SU(2) Chern-Simons theory of
level-k in the bulk.

• 2+1D SU(2)-SPT phases are classified by H3(SU(2),U(1)) = Z
• 1+1D SU(2)-gauge-anomalies are classified by
H3(SU(2),U(1)) = Z

In general and roughly speaking (after we gauge the symmetry),
d + 1D G -gauge-anomalies are classified d + 2D SPT phases,
which is, in turn, classified by Hd+2(G ,U(1))

• Hd+2(G ,U(1)) = Z⊕ Z⊕ · · · → Adler-Bell-Jackiw anomalies.

• Hd+2(G ,U(1)) = Zm ⊕ Zn ⊕ · · · → new global anomalies, for
bosonic systems.
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Two definitions of the gauge anomaly

First definition: non gauge invariance
• S =

∫
ddxL(aµ, ψ) =

∫
ddxL(aµ + ∂µf , e i f ψ), but

Z =
∫

DψDAµ e i
∫

ddxL(aµ,ψ) 6=
∫

DψDaµ e i
∫

ddxL(aµ+∂µf ,e i f ψ)

• Example: 1+1D chiral SU(2) gauge theory:

S =
∫
d2x

[
ψ†R(i∂t − a0 − i∂x + ax)ψR + ψ†L(i∂t + i∂x)ψL + 1

λ(Fµν)2
]

Second definition
• Anomalous gauge theory has no non-perturbative definition, say on

lattice. (ie no UV completion in the same dimension.)

Second’ definition
• Take λ→ 0 limit → a theory with chiral SU(2) symmetry

S =
∫
d2x

[
ψ†R(i∂t − i∂x)ψR + ψ†L(i∂t + i∂x)ψL

]
ψR → UψR , ψL → ψL.
• The above theory has no non-perturbative definition, say on

lattice, without breaking the symmetry.
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Lattice models and non-perturbative definition

ψ ψL R

SU(2) SU(2)
trivial charged

H =
∑

i ψ
†
i ψi+1 + h.c.

We can have a non-perturbative definition
only if we break the SU(2) symmetry.

There is a way, without breaking the SU(2) symmetry!

• Go to one higher dimension:
ν = 1 QH state state for spin-up and spin-down fermions +
ν = −1 QH state state for two spin-0 fermions,
which is a non-trivial 2+1D symmetry protected topological (SPT)
state protected by SU(2) symmetry.

Summary

(fermionic) gauge anomaly
↔ (fermionic) anomalous symmetry (non-on-site symmetry)
↔ (fermionic) SPT state in one higher dimension
↔ group (super)-cohomology
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A lattice definition of any anomaly-free gauge theories

chiral
gauge
theory

the mirror
of chiral
gauge
theory

theory
chiral
anomaly−free

gauge
SPT
state

ν

statesSPT
ν

ν

ν

1

2

3

(a) (b)

gauge
theory
chiral

the mirror of
anomaly−free  

l

gapping

• For anomaly-free gauge theories, the corresponding SPT state in
one-higher dimensions is trivial

∑
νi = 0 →

• the edge states can be gapped with no ground state degeneracy
and symmetry breaking →

• any anomaly-free gauge theories can be defined on lattices by
considering interacting boson/fermion.
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Try to define the U(1)× SU(2)× SU(3) standard model

• After so many years of study, U(1)× SU(2)× SU(3) standard
model is not even a proper quantum theory, since we still do not
have a non-perturbative definition of the model.
(So it is not even a quantum model with a well defined Ĥ.)

Try to define a U(1) chiral fermion model
• Let us try to put a 3+1D chiral fermion

Ĥ = ψ†( i∂i + Ai )σ
iψ, ψ = two-component fermion operator

on a 3D spatial lattice.

• We may set Ai = 0 and view Ĥ as a theory with a U(1) symmetry.

• We cannot define the chiral fermion as a 3D free lattice model
- We can define the chiral fermion model as a boundary of

a 4D gapped U(1) symmetric free fermion lattice model
- The 4D free fermion lattice model is a non-trivial free fermionic

U(1) SPT state (1 ∈ Z).
- We cannot gap out the mirror sector without breaking the U(1)

symmetry. (Can be done by breaking the U(1) symmetry.)
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Try to define a U(1) chiral fermion model
• Let us try to put a 3+1D chiral fermion
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Ĥ = ψ†( i∂i + Ai )σ
iψ, ψ = two-component fermion operator

on a 3D spatial lattice.
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• We may set Ai = 0 and view Ĥ as a theory with a U(1) symmetry.

• We cannot define the chiral fermion as a 3D free lattice model
- We can define the chiral fermion model as a boundary of

a 4D gapped U(1) symmetric free fermion lattice model
- The 4D free fermion lattice model is a non-trivial free fermionic

U(1) SPT state (1 ∈ Z).
- We cannot gap out the mirror sector without breaking the U(1)

symmetry. (Can be done by breaking the U(1) symmetry.)

Xiao-Gang Wen, July, 2013 Gapped quantum matter, many-body quantum entanglement, and (symmetry-protected) topological orders



Try to define a U(1) chiral fermion model

• We cannot define the chiral fermion as a 3D inter. lattice model
- We can define the chiral fermion model as a boundary of

a 4D gapped U(1) symmetric free/inter. fermion lattice model
- The 4D fermion lattice model is a non-trivial inter. fermionic

U(1) SPT state (which induces AdAdA CS-term).
- We cannot gap out the mirror sector without breaking the U(1)

symmetry, even with interactions. (Can be proved)

• If we view the massless U(1) chiral fermion as the boundary
fermion of a 4+1D lattice, after we turn on the U(1) gauge field,
the massless gauge boson will live in the 4+1D bulk.
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Try to define the SO(10) chiral fermion model

• Try to put 16 chiral fermion in 3+1D
Ĥ = ψ†α i∂iσ

iψα, ψα form the 16-dim. spinor rep. of SO(10)
on a 3D spatial lattice.

• We cannot define the SO(10) chiral fermion as a 3D free model
- We can define the SO(10) chiral fermion model as a boundary

of a 4D gapped SO(10) symmetric free fermion lattice model
- The 4D free fermion lattice model is a non-trivial free fermionic

SO(10) SPT state.
- We cannot gap out the mirror sector without breaking the

SO(10) symm. But can gap out the mirror sector by breaking the
SO(10) symm. δH = ψT

α εnaΓa
αβψβ + h.c ., na form the 10-dim.

rep. of SO(10) Γa has 8 +1 eigenvalues and 8 −1 eigenvalues.
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Try to define the SO(10) chiral fermion model

• We can define the SO(10) chiral fermion as a 3D interacting
fermion lattice model.

- We can define the SO(10) chiral fermion model as a boundary
of a 4D SO(10) symmetric free/inter. fermion lattice model

- The 4D fermion lattice model is a trivial inter. fermionic
SO(10) SPT state.

- We can gap out the mirror sector without breaking the SO(10)
symmetry, by adding interactions. How to design interaction?

(1) we gap out the mirror sector by breaking the SO(10) symmetry:
δH = ψT

α εnaΓa
αβψβ + h.c . na form the 10-dim. rep. of SO(10)

(2) we let na to have long-wave length fluctuations, to restore the
SO(10) symmetry, hopefully, the fluctuations do not kill the gap.

(3) na form a S9 space with πd(S9) = 0 for d = 0, · · · , 4.
No zero-modes and, hopefully, not to kill the gap.

• We can define the U(1)× SU(2)× SU(3) standard model as a
3D interacting fermionic lattice model with continuous time.
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of a 4D SO(10) symmetric free/inter. fermion lattice model
- The 4D fermion lattice model is a trivial inter. fermionic

SO(10) SPT state.
- We can gap out the mirror sector without breaking the SO(10)

symmetry, by adding interactions. How to design interaction?

(1) we gap out the mirror sector by breaking the SO(10) symmetry:
δH = ψT

α εnaΓa
αβψβ + h.c . na form the 10-dim. rep. of SO(10)

(2) we let na to have long-wave length fluctuations, to restore the
SO(10) symmetry, hopefully, the fluctuations do not kill the gap.

(3) na form a S9 space with πd(S9) = 0 for d = 0, · · · , 4.
No zero-modes and, hopefully, not to kill the gap.

• We can define the U(1)× SU(2)× SU(3) standard model as a
3D interacting fermionic lattice model with continuous time.
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Topological states, anomalies, and the standard model

• A classification of gapped quantum pahses
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• Bulk topological phases ↔ Boundary anomalous theories
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• We can put the U(1)× SU(2)× SU(3) standard model on
lattice by simply allow fermions to interact

Xiao-Gang Wen, July, 2013 Gapped quantum matter, many-body quantum entanglement, and (symmetry-protected) topological orders




