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1. Fractional Quantum Hall Effect;

2. Quantum Hydrodynamics of Incompressible Fluid,;

Search for Conformal Symmetry in Hydrodynamics



PECULIAR FLUID OF FQH STATES: v = 1/3

Particles on a plane in a quantized magnetic field with a strong Coulomb

interaction at a fractionally filled v = 1/3 Landau level form a quantum fluid



SCALES

* Energies
> Cyclotron energy - distance between Landau levels;
hw, = — ~ 25K
mc

» Coulomb interaction — a gap at fractional filling: number of electrons per flux

quantum v =1/3,
2

e
A~ 7 ~ 10K
* Length scale: £ = f—; ~ 10nm
* Size of the device ~ 10 — 100um
* Number of electrons N ~ 10°

Fractional Quantum Hall States Exist only because

Aw, > A




HoLoMORPIC STATES

At
fw,. — o0

All states are contained within the first Landau level are holomorphic:
U(z1,29,-.52y), 2 =X+ 1Y

If the only remaining scale, the gap

States below the gap is "topological sector":

boundaries -state correspondence



CHARACTERISTIC FEATURES OF FQH LIQUIDS

* States
* Liquid;
* Incompressibile;

* Fractionally quantized vortices;

* Energy and Forces
* Dissipation-free;
* Fractionally quantized Lorenz force (Hall conductance)

* Fractionally quantized Lorenz shear force (aka odd viscosity or Hall viscosity)
J. Avron, R. Seiler, P Zograf, Phys. Rev. Lett. 75, 697 (1995);



LAUGHLIN STATE(S)

All these features are encompassed by the Laughlin w.f.
(interesting physics occurs only at N — 00)

B
N
_ 127402
Uy(21,...,2y) = l_[(zi—zj) ML
i

* { -magnetic length;
* v =1/ - is a filling fraction;
% B=1-IQHE; [ =3-FQHE.

Important features:

after N. Kang * Wave-function is holomorphic;
* Degree of zero at z; — z; is larger than 1;



VORTICES
Each state < holomorphic symmetric polynomial:

N
Istates) = Q=) | Gz =)
i
Quasi-holes - punctures in the bulk

Wy(2) = ]__[(z —2)- ¥,

* How do they move?




QUANTUM HYDRODYNAMICS

Reducing all complexity of Quantum states to just one pair of canonical fields:
density p and velocity v

[v(r,0), p(r',0)] = —ihVS(r—r')
Classical case: local equilibrium

principal of local equilibrium allows to reduce the Boltzmann kinetic equation for
the distribution function to hydrodynamics equations for density and velocity.

Quantum case:

A strong coherence of flows (?), holomorphic states.



KnowN QuaNTUM FLUIDS

Superfluid: Landau (1946), Feynman (1956); Khalatnikov (1965)
Electronic liquids in 1D:  Luttinger (1964);

FQHE: Girvin, MacDonald, Platzmann (1984);

Also:

N. Read (1989) and M. Stone (1990), I. Tokatly (2007), D. T. Son (2007-2012),
N. Read (2007-2012).



MINIMAL SET OF ASSUMPTIONS:

o flow is incompressible;

@ inviscid;
All states are in the form of
N
States = [ symm.holomorphic pol] x l_[(zl- — zj)ﬁ

i#j

N —



Incompressible rotating 2D fluid

* Vortices are only degrees freedom;
* Turbulent flow: state with many vortices;

* Quantum fluid: circulation of vortices are quantized.



Point of interest: the vortex fluid

* Fast motion: fluid precessing around vortices;
* Slow motion of vortices.



DIGRESSION:
CLASSICAL INCOMPRESSIBLE ROTATING 2D FLUID

Incompressibility V-u=0,

Vorticity o=Vxu

Vorticity is transported along the velocity field:

the material derivative of the vorticity in that flow vanishes:

Dw .
—=w+u-Vo =0.
Dt



KIRCHHOFF EQUATIONS

Helmholtz (and later Kirchhoff)

N

T
u(z,t) = —i0z + iZ

=z — (1)

Kirchhoff equations

N r}'
i7] 7,(0)—z(t)

IEI :QEI—Z




CARTESIAN COSMOGONY

1644, Principia philosophiae
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CHIRAL FLow
Large number of vortices largely compensating rotation

Q:anri

Kirchhoff equations I'; =T

Y r
5 =05 ),

i

N
— 12 2
Uy(zy,...,2y) = l_[(zi — )P Tilal /e’
i
N
r
0. log¥, =0z — s
2,108 ¥o i ;zi(t)—zj(t)



KirRcHOFF EQUATIONS ARE HAMILTONIAN

.—_ - il r
B =0 )

i

A =m,Q Z[lei|2 — FZlog |2; —zjl2
i i

(m,.Q){z,, Zj}P.B. = _i5ij



CANONICAL QUANTIZATION OF KIRCHHOFF EQUATIONS
Kirchhoff equations are Hamiltonian

* Poisson brackets — commutator:

{§i7 Zj}P.B. g [21', Zj] = 2€25y;

* Representation: the operator z; becomes a canonical momentum of the
coordinate z;

g, =20%0,

* Quantum states: Holomorphic polynomials ¥(z,, ..., 2y).
* Hermitian conjugation (chiral condition)

R -
Zi_zi

Bargmann space - a Hilbert space of analytic polynomials with the inner product

Iz;12

(/| W) ZJV\P du, d,u:l_[e_z?dzzi
i



LAUGHLIN W.E.

Velocity v=v, —iv,

N

r
classical : iv; =Qz — - -
l lézi(t)—zj(t)

h 1
quantum: ip; = " (vo, — Z )

i i

Stationary state (no flow):

p;lground state) =0

Solution is the Laughlin’s w.f.

Vo= l_[(zi _Zj)ﬁ; B=v""

i>j

Laughlin state is a ground state of a rotating incompressible quantum fluid
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STOCHASTIC QUANTIZATION

&, = 5, _i rdt

i#j Zi(t) - zj(t)

+ dgi:

- 2T
E[dE;d&;] = 75ijdt



HybproDYNAMICS OF VORTEX FLow

* Fast motion: fluid precessing around vortices - velocity u;
* Slow motion of vortices - velocity v:

Task: Hydrodynamics of vortex flow (secondary fluid)

Vorticity - density of vortices : p(r)= Z o(r—ry),

L
Momentum of vortices : P=pv =Z5(r—ri Wv;.
i

v, »v(r) < u(r)

iu:s22+2 r —Qz+rfp—@dzi

z—z z—C

| Vortex flow < Fluid flow |




SUBTLETY: SHORT DISTANCE ANOMALY

* Short-distance anomaly: Relation between P = pv and pu
h r
pv=pu+-—VXp, v=u+-p VXp
4v 4
x Effective change of velocity
r
u—v=u+ ZV x logp

* Origin of the short distance anomaly:

vortex does not interact with itself




CALCULATIONS

N

pv= Z5(r —r)v;, Vv;=—iQz + 1;
i i#j

Zi_zj

L n - 1, 1 R
pv=1ﬂzp(z)+1%8[(zz_2i) —Z(Z_Zi)z]zpu—l-ﬂgap

pv=pu+ %pr




LORENTZ SHEAR FORCE:

AVRON, SEILER, ZOGRAF, 1995
* Effective change of velocity
r
VoV — ZV x log p

* Anomalous viscous term emerges in the momentum flux tensor

fluid : Il; = pvv; +poy;,
vortex fluid : ; — I — oy
o , h
odd or Hall viscosity : 0= —4—p(eikvjvk + i Vivy) =
v

h 1



LORENTZ SHEAR FORCE

Pressure acts orthogonal to shear, proportional to a shear
(with a universal coefficient ii/4v

I
o= a;y = —4—Vp(vay +V,v,),
Y
Oy =0, = 4—Vp(vax -V,v,)

vx(y+d‘_v)

i
*

vy -dy)




CHIRAL CONDITION

Holomorphic states (all physics is constraint by the first Landau level):

@ Incompressibility: V.v=0,

@ Chiral condition: density determines velocity (or vorticity of the secondary
flow)

= (VxV)=p—p+ (5 —v)Alogp




LORENTZ SHEAR FORCE AND TRACE ANOMALY

Stream function
v=V X1
/

h 1
U,uv = —Zp(vuvv - 55’LWA)\I/

Metric space g¥:

Geometric Action = f f ol{jgij JZd?E = 4%;5 (J JRw JEd2E + % J Kl/)ds)

trace anomaly

R is Riemann curvature, K is the boundary curvature.



CURVED SPACE (TRACE ANOMALY)

R — Curvature

Force: —o/ = iR
) e 16my
Charge :

—R
8mv




ALGEBRA

_ 1 h 1
m 1 [P(r), P ()] = —E(PX V)6 (r—r') + o (27Tp26(r—r’) + ZV [p-V&(r— r’)])

anomalous term

[P(r), p(r)] = —ihpd&(r —1").

Obeys Jacobi condition



POTENTIAL FLOW: VIRASORO ALGEBRA

Potential flow:
V xv=0, p =const

P=). %an‘”

n#0

Flux is harmonic

c
[L,,L,]=Mm—m)L .+ —(m® - m)6 -

12

c=1-6(v/v—1/v/v)?



SUMMARY

* Quantization of vortex fluid;
* Conformal symmetry of the vortex fluid;

* Known physical properties of FQHE can be obtained from the quantum
vortex flow in incompressible 2D fluid;

* Possible applications to turbulence



