1. A. Suzuki, Spectrum of the Laplacian on a covering graph with pendant edges |,
Linear Algebra Appl. 439, 3464-3489, 2013.

2. 1. Sasaki, A. Suzuki, Essential spectrum of the discrete Laplacian on a deformed latfice,
in preparation.




1. Graphs with pendants



Graphene: hexagonal lattice consisting of carbon atoms

® : A carbon atom



Graphene: hexagonal lattice consisting of carbon atoms

A chemical bond between A
‘ two carbon atoms is regarded
o |

® : A carbon atom is regarded as a vertex with a degree of 3.




Graphane (with an a): Fully hydrogenated graphene

® : A carbon atom
: A hydrogen atom



Graphane (with an a): Fully hydrogenated graphene

@ : A carbon atom corresponds to a vertex with a degree of 4.
: A hydrogen atom corresponds to a vertex with a degree of 1. — a pendant vertex



Graphane (with an a): Fully hydrogenated graphene

Graphane is a graph with pendants.

@ : A carbon atom corresponds to a vertex with a degree of 4.
: A hydrogen atom corresponds to a vertex with a degree of 1. — a pendant vertex



Graphone: Half hydrogenated graphene (triangle type)

® : A carbon atom
: A hydrogen atom



Graphone: Half hydrogenated graphene (triangle type)
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@ : A carbon atom corresponds to a vertex with a degree of 3 or 4.
: A hydrogen atom corresponds to a pendant veriex.



Graphone: Half hydrogenated graphene (rectangle type)
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@ : A carbon atom corresponds to a vertex with a degree of 3 or 4. 10
: A hydrogen atom corresponds to a pendant veriex.



Graphone: Half hydrogenated graphene (another type)

@ : A carbon atom corresponds to a vertex with a degree of 3 or 4. 11
: A hydrogen atom corresponds to a pendant veriex.



Spectra of graphs

let G = (V(G), E(G)) be a graph, where V(G) and E(G)
are the sets of vertices and edges.

The Laplacian L is defined as follows:

(Lav)() = — S 0(y), z€V(G)

 degx
8T £~

where v is in the Hilbert space

2 (V(Q)) = {¢ : V(G) — C| Z [(x)|?degx < oo} .

reV(Q)

It is well known that Lg is bounded, self-adjoint and

Spec(Lg) C [—1,1].



Graphene

The specirum of the Laplacian on the graph
that corresponds to graphene is

Spec(Lg) = |—1,1].

Graphane
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Graphene

The spectrum of the Laplacian on the graph (G
that corresponds to graphene is

Spec(Lg) = |—1,1].
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Graphane

The specirum of the Laplacian on the graph
that corresponds to graphane is

etz = |11 o[L1

-1 0 1 14
A spectral gap opens!



Triangle type

......... Rectangle type
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Another type

What do you think

the spectra of graphones are? .
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Spectral gap near 0 and . . . . .
zero eigenvalue exist QQQOOOGGG
- 0a0a0a®
RIS e GaUa®

Another type No spectral gap exists
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Spectral gap near 0
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In this talk, we focus on the following problem:

What arrangement of pendants makes
a speciral gap near zero and zero eigenvalue?

6efiniﬁon: We say that an operator A has a spectral gap near zero if\
m(A) := (inf Spec(A42)\ {0})"/?

A hasa spectral gap near zero

—  Spec(A) N ((=m(A),0) U (0, m(A))) = 0

A has no spectral gap near zero

\ —> Spec(A) N[—e, €] # D withsome € > 0. /]

> 0




2. Preliminary



Adjacency operator and Laplacian
The adjacency operator Ag of a graph G = (V(G), E(GQ)) is

(Aq¥)(x Z V(Y r € V(G),

Yo

where ¥ is a vector in the Hilbert space

CV@)=v: V(@) —=C| Y [P@) <

xeV(

From this lemma,

Lemma _ _ it suffices to know the
(1) dimker Lo = dimker Aq — spectrum of A..

(2) m(Lg) > 0<+= m(Ag) >0




Proof of Lemma

(1) is proven as follows. Note that

U*LqU = D™Y2AgD™Y?
where U : (*(V(G)) — 2 (V(Q)) is a unitary defined by

U=D""2y, e V(G))

e (D¥)() = (dega)b(a), = € V(G)

We know that

ker (U*LaU) = {D'%y | ¢ € ker A}
which implies dimker Lo = dimker Aq -
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Proof of Lemma

(2) is also proven by

U*LoU = D‘1/2AgD‘1/2,
which implies

( sup degsc) m(Lg) > m(Aq) provided m(Ag) > 0,
xeV(G)

and
m(Aqg) > ( inf dega:) m(Lg) provided m(Lg) > 0 -

cV(Q)
Therefore
m(Lag) > 0 <= m(Aqg) > 0.



Assume that G have pendant vertices:
Ag :={z € V(G) | degz =1} # 0
Let Vao(# 0) C Ag be an arbitrary set and
Vii={zeV(G)|z~yye Vs}

Suppose that

{ (HO) Vz e Vi,diye Vost. y~=x }

Put
-‘/[] = V(G) ﬂ VIC ﬂ V2C
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Example of a graph satisfying (HO):

{ (HO) vz e Vi,Jwye Vost. y~zx }
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Example of a graph satisfying (HO):

GAG




Example of a graph satisfying (HO):




Example of a graph satisfying (HO):




Example of a graph satisfying (HO):




For a graph (G satisfying (HO),
we define a graph (G| by removing vertices of 5 from G,




For a graph (G satisfying (HO),
we define a graph G| by removing vertices of 5 from G,




For a graph (G satisfying (HO),
we define a graph G| by removing vertices of 5 from G,

and (G, by removing vertices of V| from G .




For a graph (G satisfying (HO),
we define a graph G| by removing vertices of 5 from G,

and (G, by removing vertices of V| from G .




Let G satisfy (HO). Then ¢*(V (G)) can be decomposed into
CV(G) =0Vo) @ (Vi) & €2(Va)

and As can be written as
Aoo Ao1  Ao2
Ac = | Ao A1 A
Agg A1 Aza/)

where A;; : (?(V;) — (2(V;) is defined as
> wily), zeV,

(Aij%)(fﬂ) = § y~zyeV;
0, r &V



The following hold:

AOO — AGD: (

Ago Aol
— A
A1o A11) “1

Agg = Ago = A2 =0, A;;, = Aji.

NVe have y -
_ G
Aa = ( T 0 )
where
Ac. Aot 0
Aq, = 0 T =1(0. A T =
\_ 1 (Am A11) ’ (0, Az1), (Am
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3. Main Resulis



Existence of a zero eigenvalue

Let & satisfy (H0) and Gy be as above.

4 )

Theorem 1. (§.) dim ker AG — dim ker AGD

In particular, Ag has zero eigenvalue iff. AGD has zero eigenvalue.
N\ J

Remark:
For bipartite finite graphs, the same statement is found in the book

entitled “Spectra of graphs’ by Cvetkovi¢, Doob and Sachs.
Theorem 1 means that the same statement holds true for infinite graphs

that are not bipartite.
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Sketch of proof.

Let Yo € ker Ag,. Then

(b

Indeed, we have

Aw(
|

Yo
— 0 c ker Agq.
—A21A10%0

Ag, A1 O %o
Ao A Ao 0

0 A21 0 —A21A10¢0

Agy o
Aroto —10%)
0

)

36



We have

(A12Antn)(z) = ) (A1) (y)

y~xiyeVs
= ). ). ), weVi
y~xyeVo zrvyzeVy Q Q Y

From (HO):

Vee Vi, Jiye Vost. y~=x
we have 2z ==,
Hence

(A12A21w1)($) — wl (I)

and
[A12A21 = 1dg2(v;) ]




Hence we have

Ag, Yo
Ay = | A1ovo — A12A421A10%0
0

0

= | A1ovo — 1dg2(v;)A10v0 | =0-
0

We can prove that

Yo
0
—A21A10v%0

which implies that dimker Ag = dimker Ag,.

ker Ag = Yo € ker Ag, .




Isospectral fransformation
Let G be a graph (possibly not satisfying (H0)) and

(-1 be as above.
Let H, be the discrete Schrodinger operator on (G| defined by

Hy=Aq, + X7V, X#0,

where (

X V
V(:r):<n ren
0, x € Vj
with
ny =#lycVo |y~
4 )

Theorem 2.(S.) )\ € Spec(Ag) <= A € Spec(H))

and
dimker(Aqg — ) =dimker(Hy — \).
- J
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Proof of Theorem 2
We use the following well-known lemma.

Lemma. Let o Bi1  Bio
B21 B2

be a bounded self-adjoint operator on H1 & Ho with
Bij . Hj — Hfg,

If (B22 — )" 'is bounded, then

F(X\) := Bi1 — Bi12(B22 — \) 1By — A
is bounded self-adjoint on H,

A € Spec(B) <= 0 € Spec(F(}\))

dimker(B — \) = dimker(F'()))
We call F(\) the Feshbach map of B.

and




Proof of Theorem 2 Ae. T
Applying the above lemma to Ag = ( Tl 0 ) as

Bi1 = Ag,, Bi2=T", Bo1 =T, Byx=0

the Feshbach map of A is
F(\) = Ag, + A {7 T)- A
since (Baa — A\)~ '= )\ "'isbounded provided \ # 0.

Here we get 0
e ()0 A
A12

(8 A120A21) (8 Ti) = V().

Hence we have I'(\) = H) — ).



Corollary of Theorem 2 (absence of a gap)
Llet G1 = 7Z and G be a graph obtained by adding pendant

vertices to (7.

/Corollqry 1. Suppose that h

Hzxpn}t €Zst. (l[xy, —n,zp+n|NZ)C V-
Then
|—2,2| C Spec(Ag)

In particular, there is no spectral gap near zero: m(Ag) = 0 /

Proof of Corollary 1: It suffices to show the spectrum of

Hy = Az + A1V includes Spec(Az) = [-2,2],

which comes from ([z,, — n,z, +n] N Z) N suppV = 0.

Remark: This corollary can be generalized to G| = Z¢ and 42
hexagonal lattice.




Corollary of Theorem 2 (existence of a gap)
Let G be a graph obtained by adding pendant vertices to
each vertex of a graph G.

[ Corollary 2. Ag has a spectral gap near zero: m(Ag) > 0. J

Proof of Corollary 2: By assumption, V(x) = 1.

Let )\51 = sup degg, . Then, for A > 0 sufficiently small,
reV(Gy)

Hy—A=Aqg, + X1 =\
= (A, + 20 1) + (A7 =257 = )

>AT AT = A >«
with some ¢ > 0, 43




Criteria for existence of a gap.
Let G be a graph obtained by adding pendant vertices to 1.

[ Theorem 3. m(Ag,) > 0= m(Ag) > 0. ]

Sketch of proof:

Sincen, >1 (x € Vi), weknowthat (A1 + AN tn, — )\)_1 is
bounded if || is sufficiently small.

Hence the Feshbach map of

 (Ag, — A Aopq
Hy=A= ( A1 A+, — /\)

can be defined by
Fo(N) = Ag, — X — A1 (A1 + X" tng — N) 71 A o
provided 0 < |\| << 1.



We can show that
Fo(A\)? > A, — CI)|
with some C' > 0 independent of 0 < |\| << 1.

By assumption, m(Ag,) > 0.
If Ac,has no zero eigenvalue, then we know that
Fo(\)? = m(Ag,)? = CI]A[ >0 (0 <[\ << 1)
which implies that
m(A(';) > 0 .

It the case where Ax, has a zero eigenvalue, it can be proven by
employing the Feshbach map of Fo()).



Remark.
For a periodic graph G, we can show that

-
Theorem 4. Suppose that A has no zero eigenvalue. Then: A

_ m(AGD) :0:>m(A(;') — 0, y

This is equivalent to the reverse statement of Theorem 3:
m(Ag) > 0= m(Aqg,) >0

We omit the proof.
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Thank you for your kind attention!



