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1. Graphs with pendants
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Graphene: hexagonal lattice  consisting of carbon atoms 

: A carbon atom 3



Graphene: hexagonal lattice  consisting of carbon atoms 

: A carbon atom is regarded as a vertex with a degree of 3.

A chemical bond between 

two carbon atoms is regarded 

as an edge.
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Graphane (with an a): Fully hydrogenated graphene

: A carbon atom

: A hydrogen atom
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Graphane (with an a): Fully hydrogenated graphene

: A carbon atom corresponds to a vertex with a degree of 4.

: A hydrogen atom corresponds to a vertex with a degree of 1. → a pendant vertex
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Graphane (with an a): Fully hydrogenated graphene

: A carbon atom corresponds to a vertex with a degree of 4.

Graphane is a graph with pendants.

: A hydrogen atom corresponds to a vertex with a degree of 1. → a pendant vertex
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: A carbon atom

: A hydrogen atom

Graphone: Half hydrogenated graphene (triangle type)
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: A carbon atom corresponds to a vertex with a degree of 3 or 4.

: A hydrogen atom corresponds to a pendant vertex.

Graphone: Half hydrogenated graphene (triangle type)
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Graphone: Half hydrogenated graphene (rectangle type)

: A carbon atom corresponds to a vertex with a degree of 3 or 4.

: A hydrogen atom corresponds to a pendant vertex.
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Graphone: Half hydrogenated graphene (another type)

: A carbon atom corresponds to a vertex with a degree of 3 or 4.

: A hydrogen atom corresponds to a pendant vertex.
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The Laplacian is defined as follows:

Let be a graph, where             and             

are the sets of vertices and edges.   

where    is in the Hilbert space

It is well known that         is  bounded, self-adjoint and

Spectra of graphs
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Graphene

Graphane

The spectrum of the Laplacian on the graph        

that corresponds to graphene is  

-1

The spectrum of the discrete Laplacian on 

The graph        that corresponds to 

graphane is

0 21

1
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Graphene

Graphane

The spectrum of the Laplacian on the graph        

that corresponds to graphene is  

-1

The spectrum of the Laplacian on the graph        

that corresponds to graphane is

-1 10

1

A spectral gap opens!
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Triangle type Rectangle type

Another type 

Spectral gap

0 - eigenvalue

No spectral gap

Spectral gap

0 21

0 21

0 2

What do you think 

the spectra of graphones are?
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Triangle type Rectangle type

Another type 

Spectral gap near 0 and

zero eigenvalue exist 

No spectral gap exists

Spectral gap near 0 

-1 10

-1 10

-1 1

-1/2 1/2
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Definition: We say that an operator     has a spectral gap near zero if    

has a spectral gap near zero              

has no spectral gap near zero

with some             .

What arrangement of pendants makes 

a spectral gap near zero and zero eigenvalue?

In this talk, we focus on the following problem:
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2. Preliminary
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The adjacency operator       of a graph                                is

where      is a vector in the Hilbert space 

Lemma 

(1)                                                            

(2) 

Adjacency operator and Laplacian

From this lemma,                                              

it suffices to know the 

spectrum of .
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(1) is proven as follows. Note that 

where                                               is a unitary defined by

with  

.         

We know that

which implies                                                .                             

Proof of Lemma
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(2) is also proven by 

,

which implies

provided                      , 

and 

provided                      .         

Therefore

.                             

Proof of Lemma
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Assume that     have pendant vertices: 

Let                            be an arbitrary set and 

.

Suppose that

(H0)                                                      

Put     
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aExample of a graph satisfying (H0):

(H0))
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aExample of a graph satisfying (H0):

(H0))
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aExample of a graph satisfying (H0):

(H0))

25



aExample of a graph satisfying (H0):

(H0))
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aExample of a graph satisfying (H0):

(H0))
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aFor a graph    satisfying (H0), 

we define a graph       by removing vertices of       from     ,      
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aFor a graph    satisfying (H0), 

we define a graph       by removing vertices of       from     ,      
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aaFor a graph    satisfying (H0), 

we define a graph       by removing vertices of       from     ,      

and        by removing vertices of      from       .  
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aaFor a graph    satisfying (H0), 

we define a graph       by removing vertices of       from     ,      

and        by removing vertices of      from       .  
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Let      satisfy (H0). Then                  can be decomposed into

and        can be written as  

,

where                                      is defined as  

.                            32



The following hold:

We have

,

where
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3. Main Results
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Existence of a zero eigenvalue

Let      satisfy (H0) and        be as above.                                                     

Theorem 1. (S.)

In particular,         has zero eigenvalue iff.          has zero eigenvalue.

Remark: 

For bipartite finite graphs, the same statement is found in the book 

entitled “Spectra of graphs’’ by Cvetković, Doob and Sachs.

Theorem 1 means that the same statement holds true for infinite graphs 

that are not bipartite.k
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Sketch of proof.

Let                        . Then

Indeed, we have
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From (H0):

we have              . 

We have

Hence

and
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Hence we have

.

We can prove that

,

which implies that                                              . 
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Isospectral transformation

Let     be a graph (possibly not satisfying (H0)) and      

be as above. 

Let        be the discrete Schrödinger operator on       defined by

where

with 

.

Theorem 2. (S.)

and

.                                           39



Proof of Theorem 2

We use the following well-known lemma.

Lemma. Let 

be a bounded self-adjoint operator on                  with

.

If                     is bounded, then

is bounded self-adjoint on       ,

and

We call          the Feshbach map of     .
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Proof of Theorem 2

Applying the above lemma to                                   as

,

the Feshbach map of        is 

since                                      is bounded provided           .

Here we get

.                                 

Hence we  have                            .                                                                
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Corollary of Theorem 2 (absence of a gap)

Let                and      be a graph obtained by adding pendant 

vertices to      .

Corollary 1.  Suppose that

.

Then

.

In particular, there is no spectral gap near zero:                     .

Remark: This corollary can be generalized to                 and 

hexagonal lattice.

Proof of Corollary 1: It suffices to show the spectrum of                       

includes                                  , 

which comes from                                                             .  
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Corollary of Theorem 2 (existence of a gap)

Let      be a graph obtained by adding pendant vertices to 

each vertex of a graph      . 

Corollary 2.        has a spectral gap near zero:                     .

Proof of Corollary 2: By assumption,                 . 

Let                                        . Then, for            sufficiently small,

with some           . 43



Criteria for existence of a gap. 

Let      be a graph obtained by adding pendant vertices to      . 

Theorem 3.                                                      .

Sketch of proof:

Since                               , we know that                                       is 

bounded if      is sufficiently small. 

Hence the Feshbach map of                                                                        

can be defined by

provided                        .                                       
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We can show that

with some             independent of                        .                                      

By assumption,                        . 

If         has no zero eigenvalue, then we know that

,

which implies that 

.                                   

It the case where         has a zero eigenvalue, it can be proven by 

employing the Feshbach map of           .  
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Remark. 

For a periodic graph    , we can show that   

Theorem 4.   Suppose that        has no zero eigenvalue. Then:

.   

This is equivalent to the reverse statement of Theorem 3:

We omit the proof.
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Thank you for your kind attention!
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