International Conference Inverse Problem and Related Topics 18th Aug. 2014

Spectra of graphs with pendants

Akito Suzuki (Shinshu Univ.)

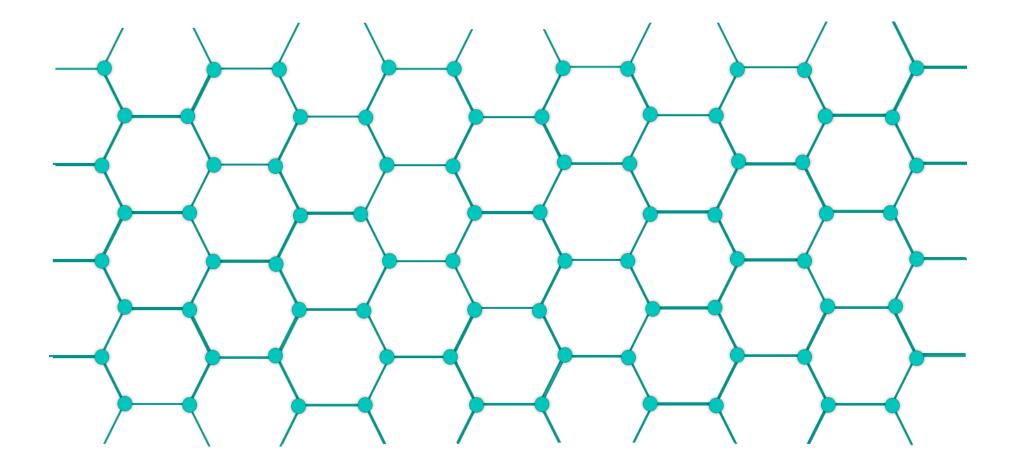
Related papers:

1. A. Suzuki, Spectrum of the Laplacian on a covering graph with pendant edges I, Linear Algebra Appl. **439**, 3464–3489, 2013.

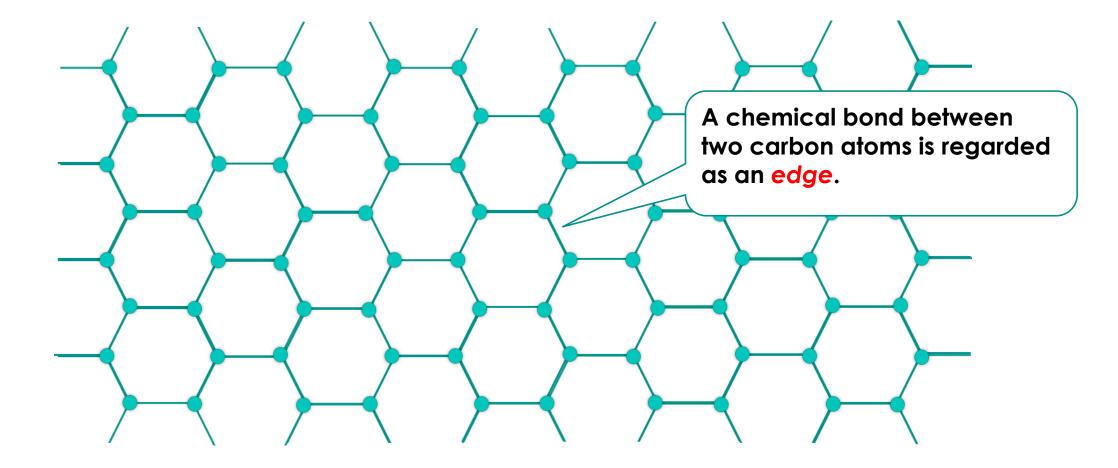
2. I. Sasaki, A. Suzuki, Essential spectrum of the discrete Laplacian on a deformed lattice, in preparation.

1. Graphs with pendants

Graphene: hexagonal lattice consisting of carbon atoms

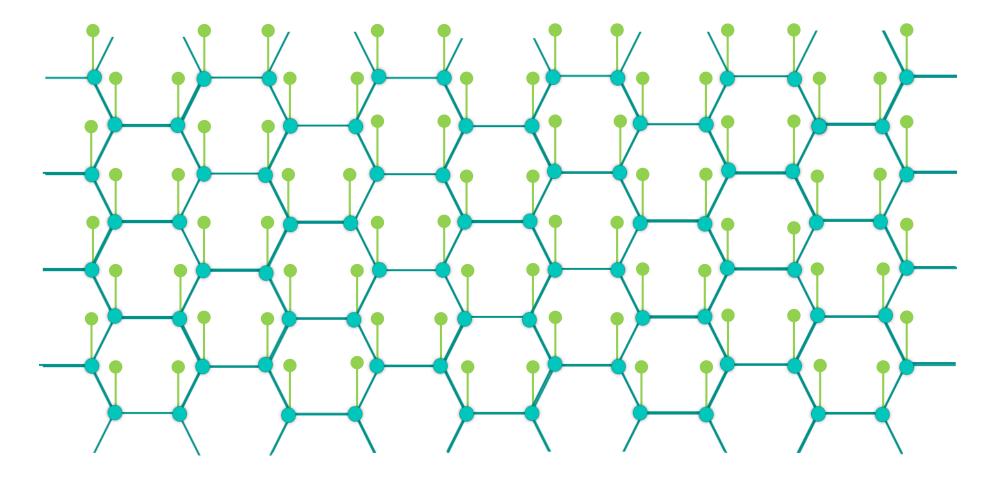


Graphene: hexagonal lattice consisting of carbon atoms



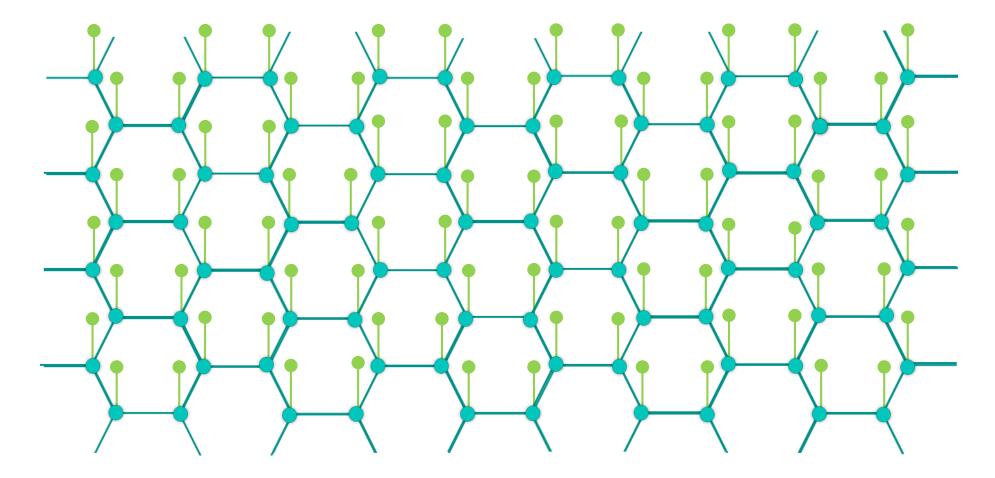
A carbon atom is regarded as a vertex with a degree of 3.

Graphane (with an a): Fully hydrogenated graphene



: A carbon atom: A hydrogen atom

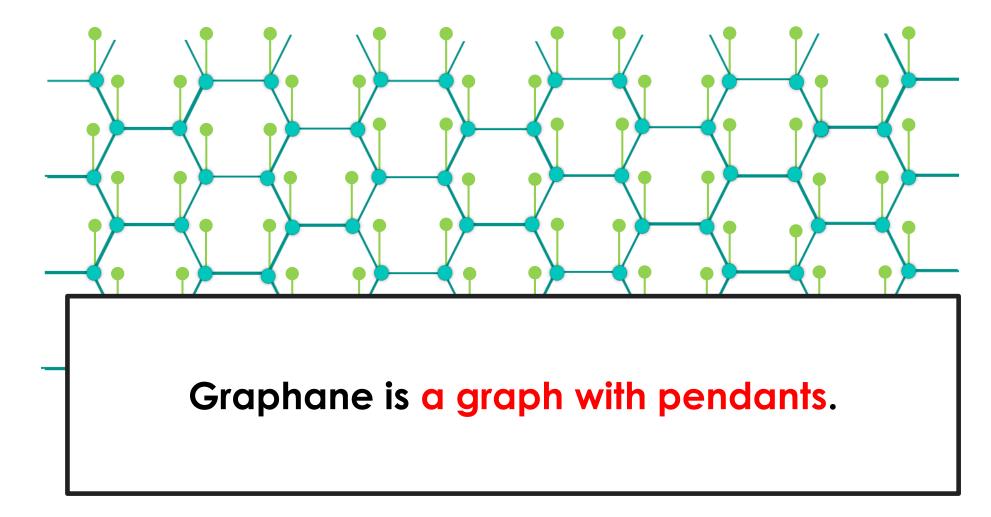
Graphane (with an a): Fully hydrogenated graphene



• : A carbon atom corresponds to a vertex with a degree of 4.

• : A hydrogen atom corresponds to a vertex with a degree of $1. \rightarrow$ a pendant vertex

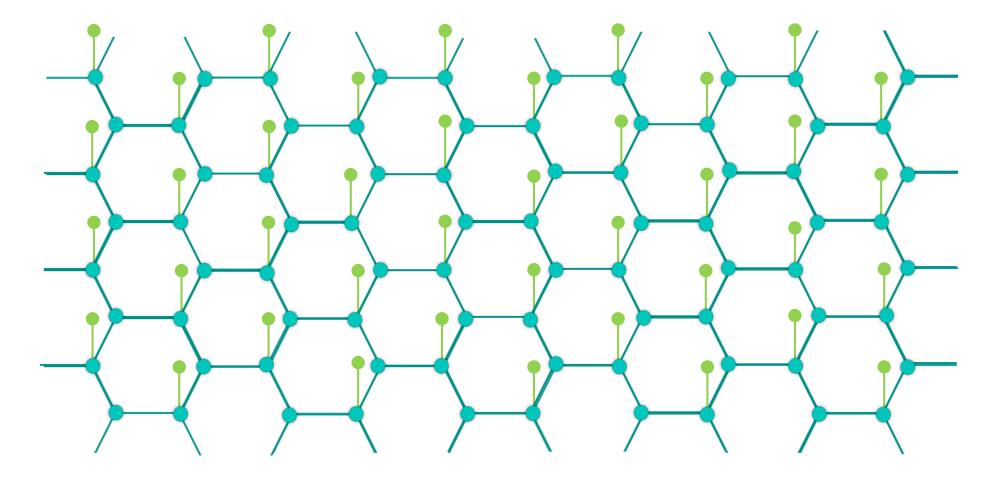
Graphane (with an a): Fully hydrogenated graphene



• : A carbon atom corresponds to a vertex with a degree of 4.

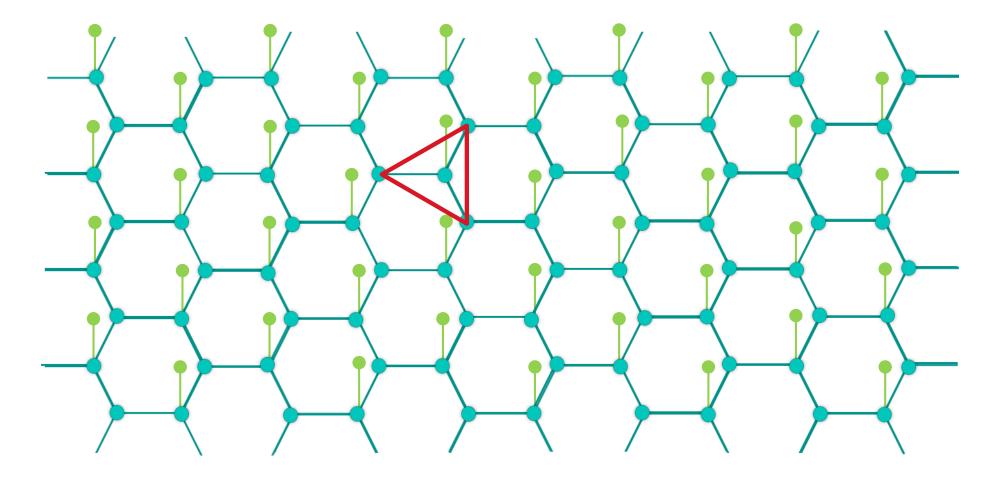
• : A hydrogen atom corresponds to a vertex with a degree of 1. \rightarrow a pendant vertex

Graphone: Half hydrogenated graphene (triangle type)



: A carbon atom: A hydrogen atom

Graphone: Half hydrogenated graphene (triangle type)



• : A carbon atom corresponds to a vertex with a degree of 3 or 4.

A hydrogen atom corresponds to a pendant vertex.

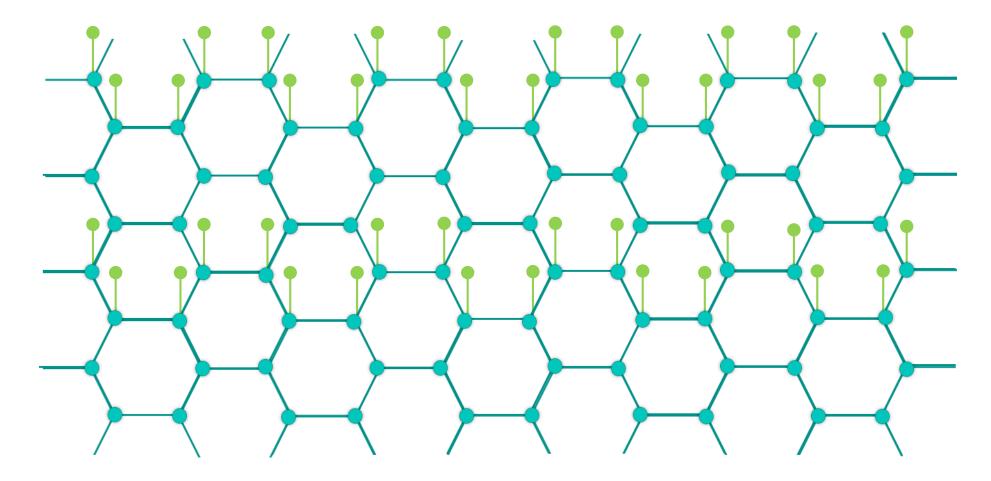
Graphone: Half hydrogenated graphene (rectangle type)



• : A carbon atom corresponds to a vertex with a degree of 3 or 4.

• : A hydrogen atom corresponds to a pendant vertex.

Graphone: Half hydrogenated graphene (another type)



• : A carbon atom corresponds to a vertex with a degree of 3 or 4.

A hydrogen atom corresponds to a pendant vertex.

Spectra of graphs

Let G = (V(G), E(G)) be a graph, where V(G) and E(G) are the sets of vertices and edges.

The Laplacian L_G is defined as follows:

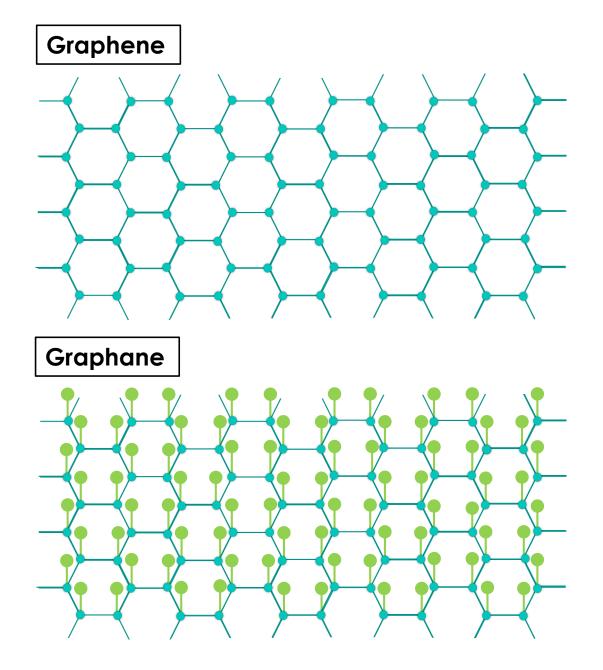
$$(L_G\psi)(x) = \frac{1}{\deg x} \sum_{y \sim x} \psi(y), \quad x \in V(G),$$

where
$$\psi$$
 is in the Hilbert space
 $\ell^2_w(V(G)) = \left\{ \psi: V(G) \to \mathbb{C} \mid \sum_{x \in V(G)} |\psi(x)|^2 \deg x < \infty \right\}.$

It is well known that L_G is bounded, self-adjoint and

$$\operatorname{Spec}(L_G) \subset [-1,1].$$

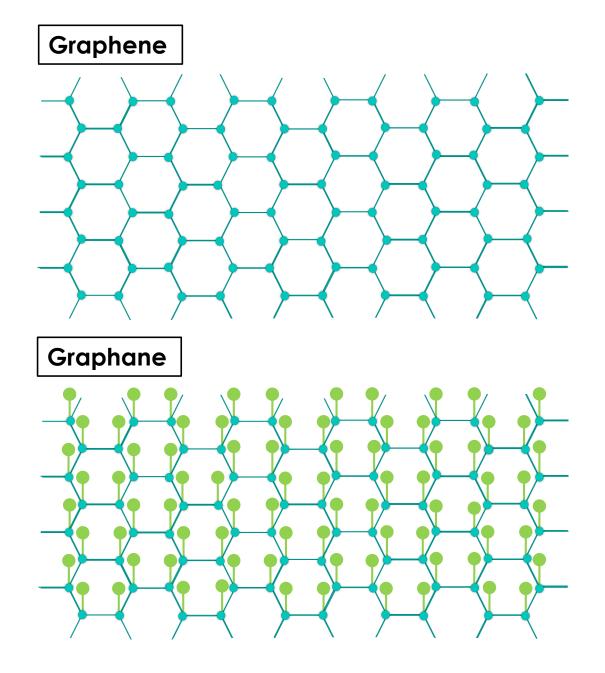
10



The spectrum of the Laplacian on the graph that corresponds to graphene is

$$Spec(L_G) = [-1, 1].$$

13



The spectrum of the Laplacian on the graph G_0 that corresponds to graphene is $% \mathcal{G}_{0}$

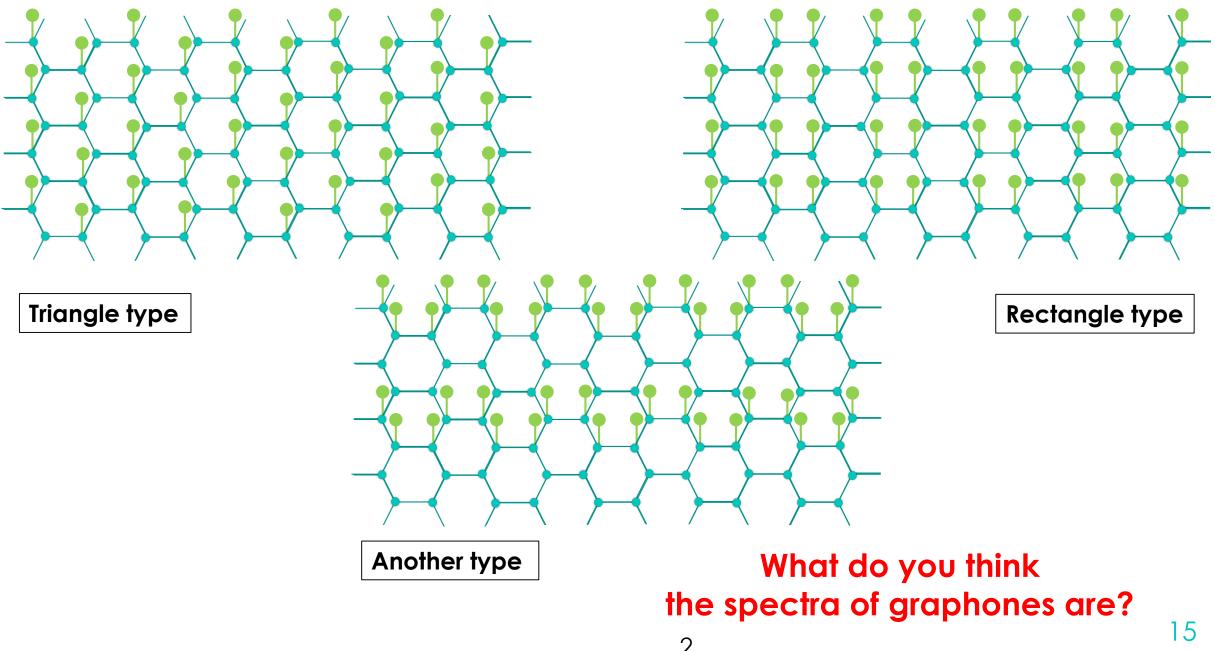
$$Spec(L_G) = [-1, 1].$$

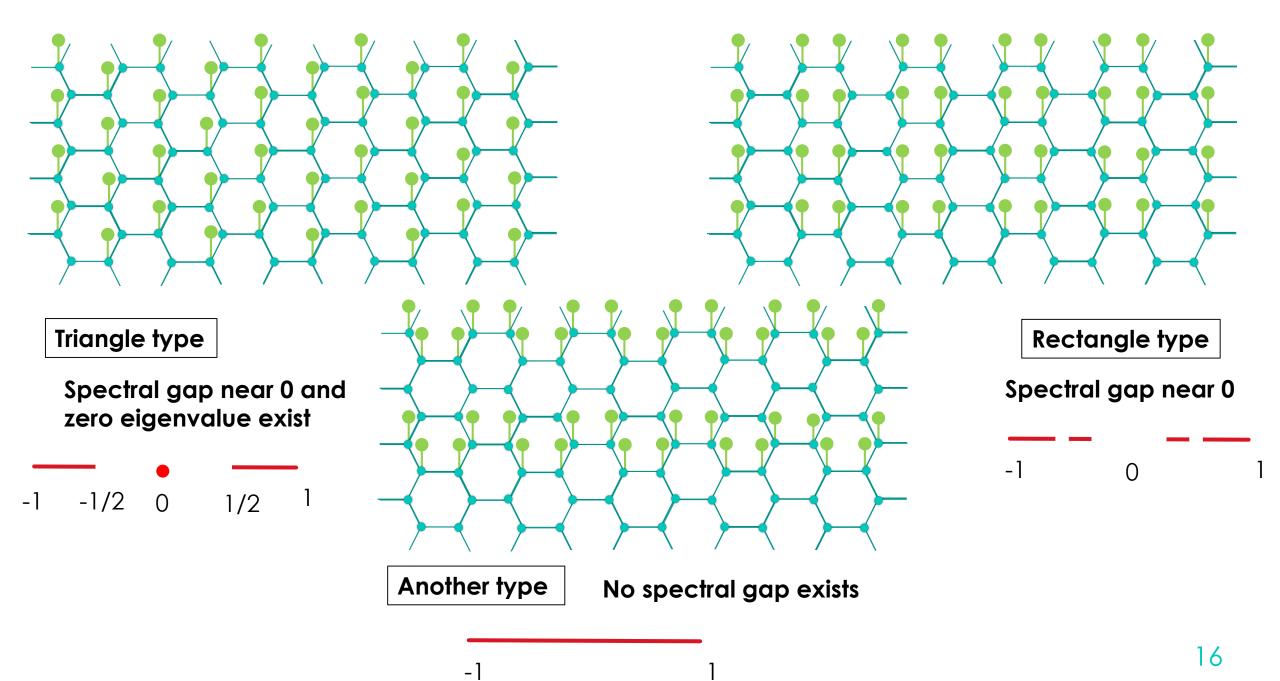
-1

The spectrum of the Laplacian on the graph that corresponds to graphane is

$$\operatorname{Spec}(L_G) = \left[-1, -\frac{1}{4}\right] \cup \left[\frac{1}{4}, 1\right]$$
-1 0 1 1

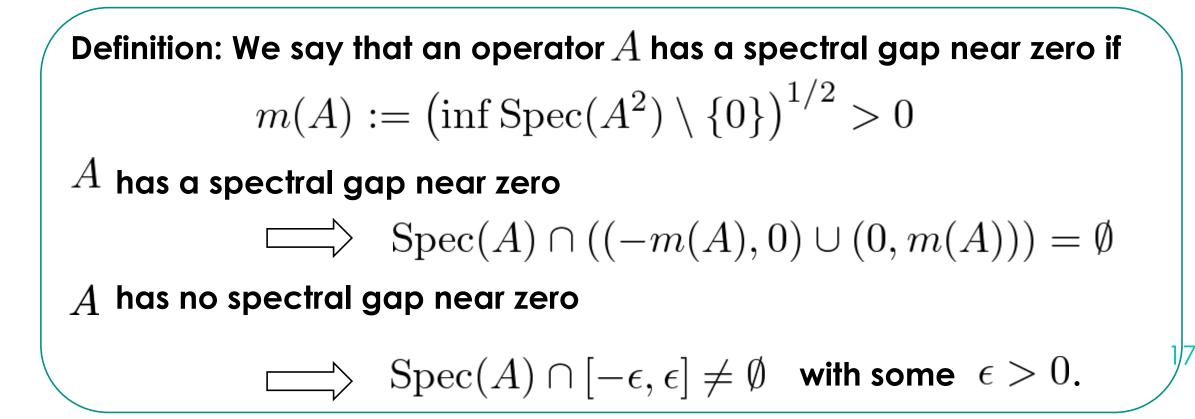
A spectral gap opens!





In this talk, we focus on the following problem:

What arrangement of pendants makes a spectral gap near zero and zero eigenvalue?



2. Preliminary

Adjacency operator and Laplacian

The adjacency operator A_G of a graph G = (V(G), E(G)) is

$$(A_G\psi)(x) = \sum_{y \sim x} \psi(y), \quad x \in V(G),$$

where ψ is a vector in the Hilbert space
$$\ell^2(V(G)) = \left\{ \psi: V(G) \to \mathbb{C} \mid \sum_{x \in V(G)} |\psi(x)|^2 < \infty \right\}.$$

From this lemma,
it suffices to know the
spectrum of A_G .
(2) $m(L_G) > 0 \iff m(A_G) > 0$

Proof of Lemma

(1) is proven as follows. Note that

$$U^*L_GU=D^{-1/2}A_GD^{-1/2}$$
 where $U:\ell^2(V(G))\to\ell^2_{\rm w}(V(G))$ is a unitary defined by
$$U=D^{-1/2}\psi,\quad\psi\in\ell^2(V(G))$$

with

$$(D\psi)(x) = (\deg x)\psi(x), \quad x \in V(G)_{.}$$

We know that

$$\ker \left(U^* L_G U \right) = \{ D^{1/2} \psi \mid \psi \in \ker A_G \}$$
which implies dim ker $L_G = \dim \ker A_G$.

Proof of Lemma

(2) is also proven by

$$U^* L_G U = D^{-1/2} A_G D^{-1/2}$$

which implies

$$\left(\sup_{x\in V(G)} \deg x\right) m(L_G) \ge m(A_G) \text{ provided } m(A_G) > 0,$$

and $m(A_G) \ge \left(\inf_{x \in V(G)} \deg x\right) m(L_G)$ provided $m(L_G) > 0$.

Therefore

$$m(L_G) > 0 \iff m(A_G) > 0.$$

Assume that G have pendant vertices:

$$\Lambda_G := \{ x \in V(G) \mid \deg x = 1 \} \neq \emptyset$$

Let $V_2(
eq \emptyset) \subset \Lambda_G$ be an arbitrary set and

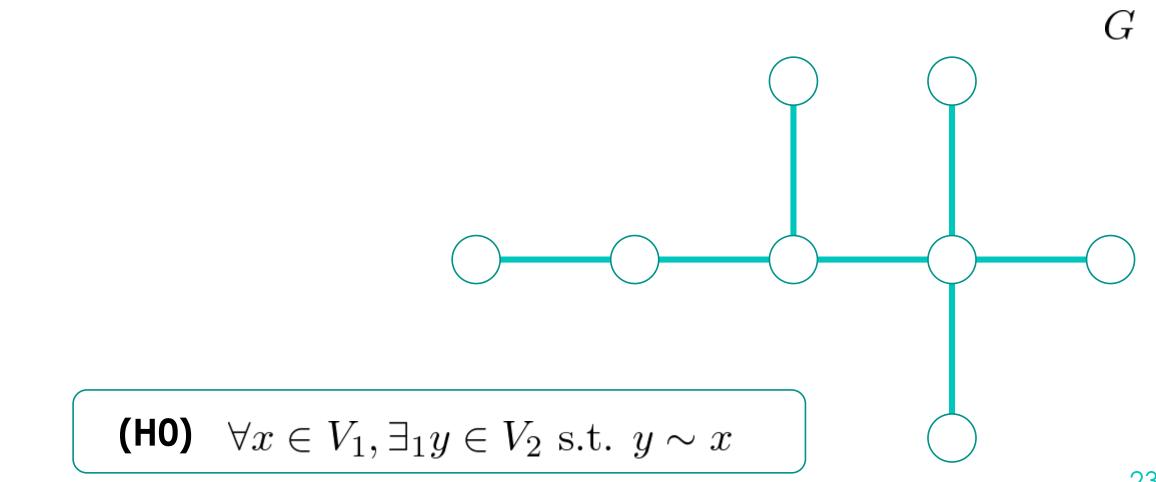
$$V_1 := \{ x \in V(G) \mid x \sim y, y \in V_2 \}.$$

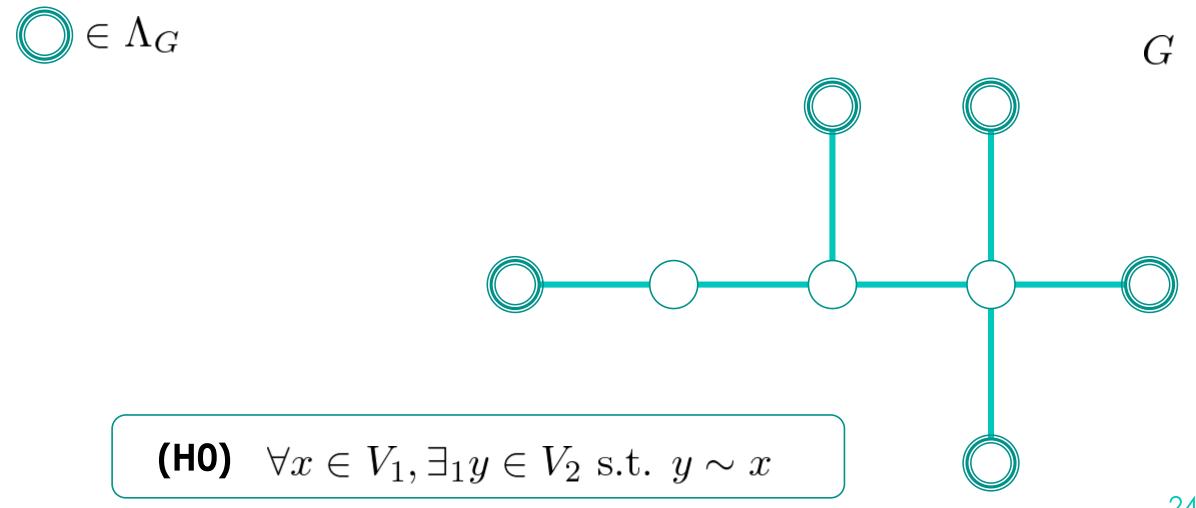
Suppose that

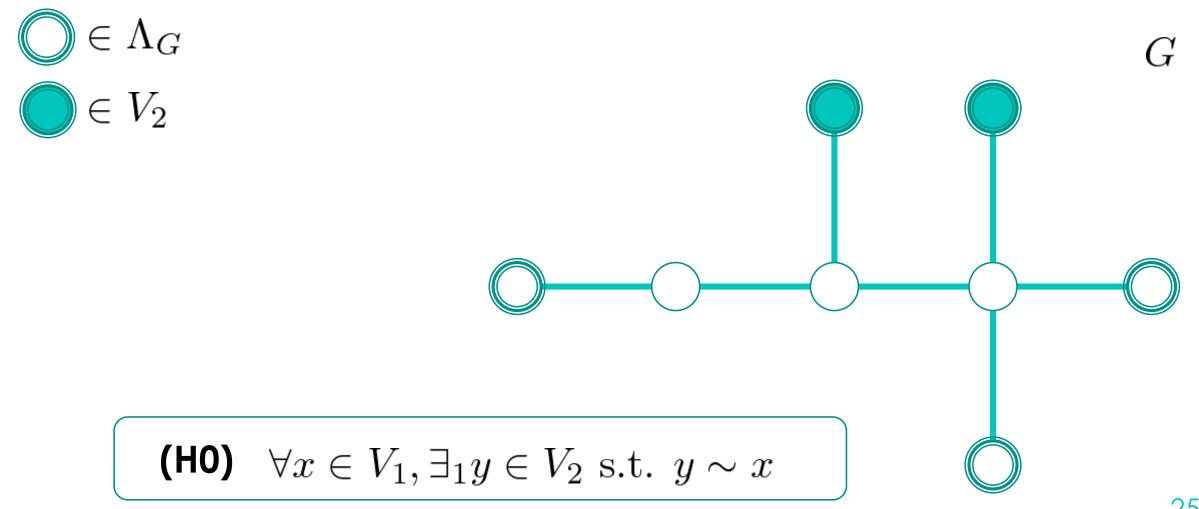
(H0)
$$\forall x \in V_1, \exists_1 y \in V_2 \text{ s.t. } y \sim x$$

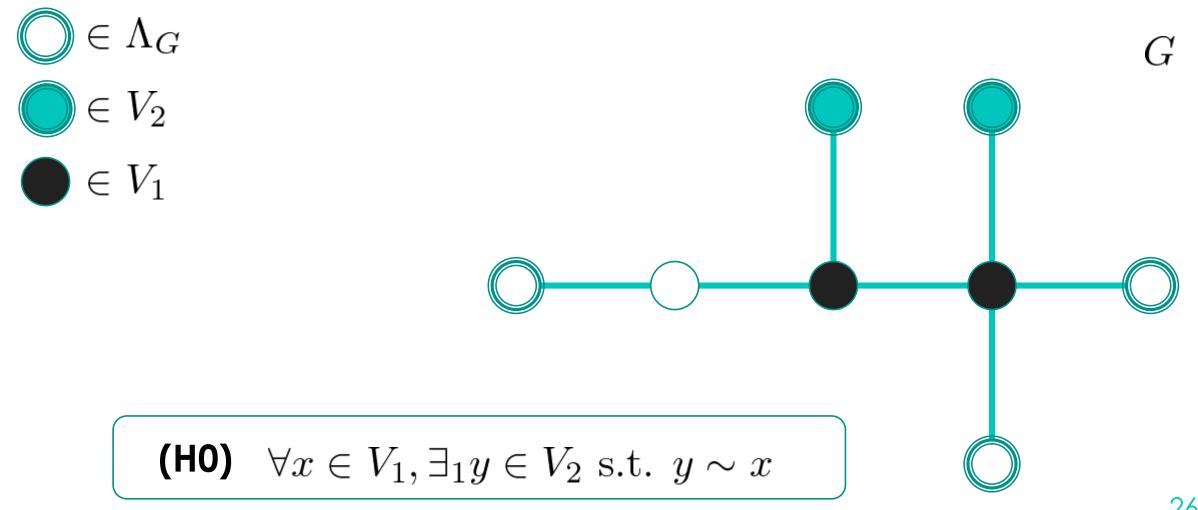
Put

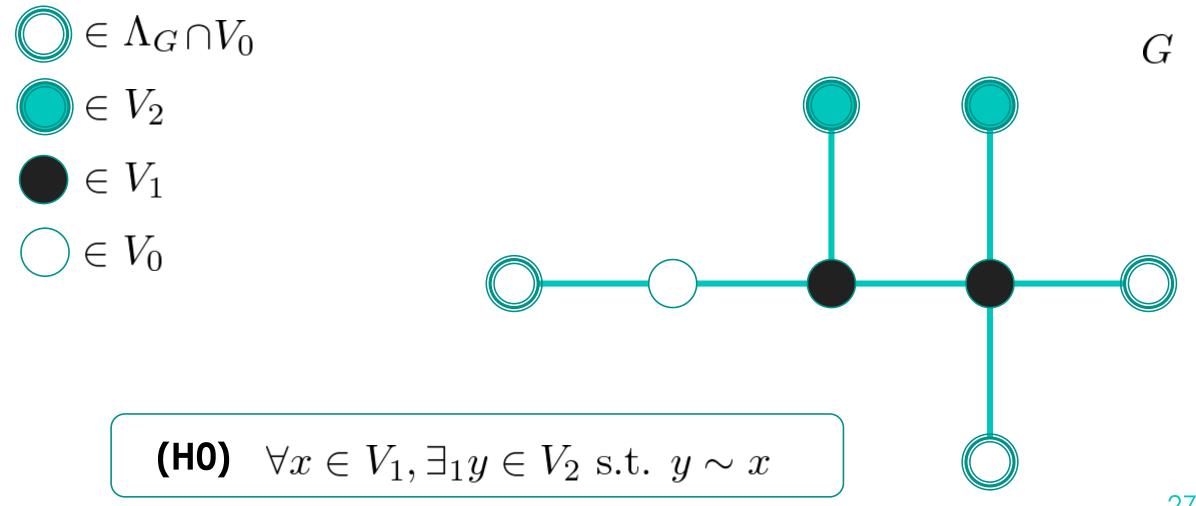
$$V_0 := V(G) \cap V_1^{\mathbf{c}} \cap V_2^{\mathbf{c}}$$



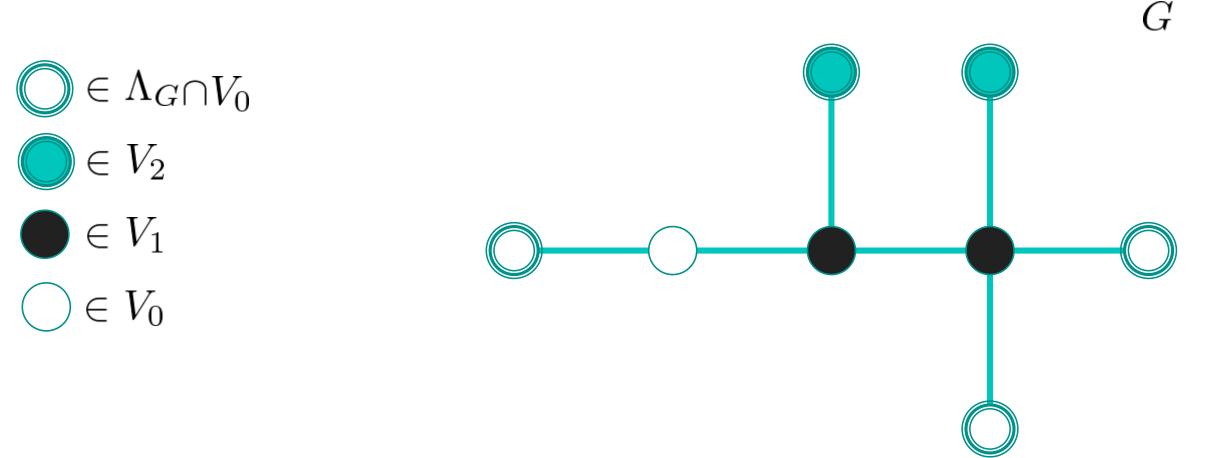




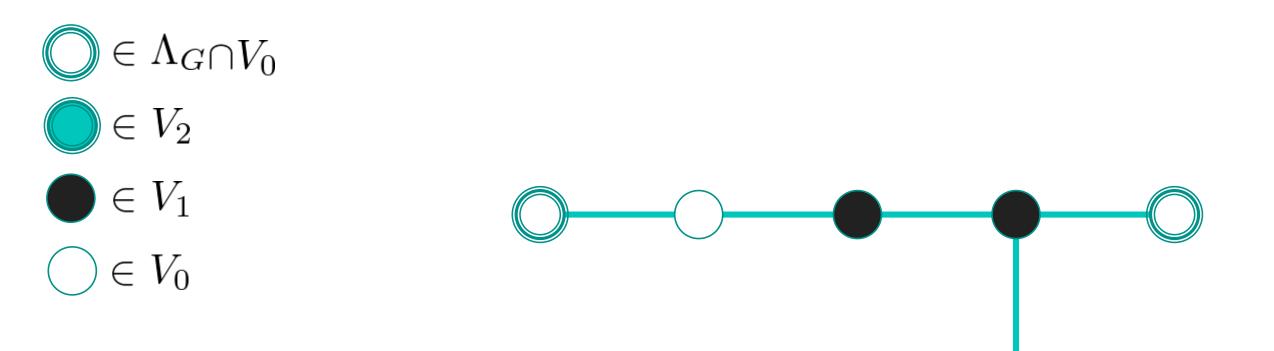




For a graph G satisfying (H0), we define a graph G_1 by removing vertices of V_2 from G,

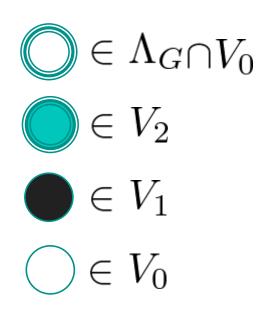


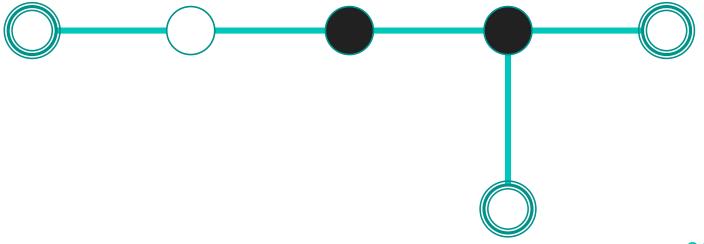
For a graph G satisfying (H0), we define a graph G_1 by removing vertices of V_2 from G,



 G_1

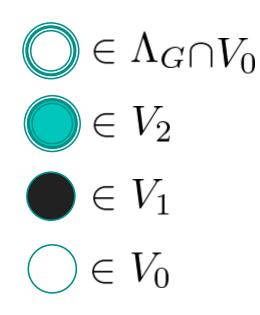
For a graph G satisfying (H0), we define a graph G_1 by removing vertices of V_2 from G, and G_0 by removing vertices of V_1 from G_1 .





 G_1

For a graph G satisfying (H0), we define a graph G_1 by removing vertices of V_2 from G, and G_0 by removing vertices of V_1 from G_1 .



 G_0

Let G satisfy (H0). Then $\ell^2(V(G))$ can be decomposed into $\ell^2(V(G)) = \ell^2(V_0) \oplus \ell^2(V_1) \oplus \ell^2(V_2)$

and A_G can be written as

$$A_{G} = \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix},$$

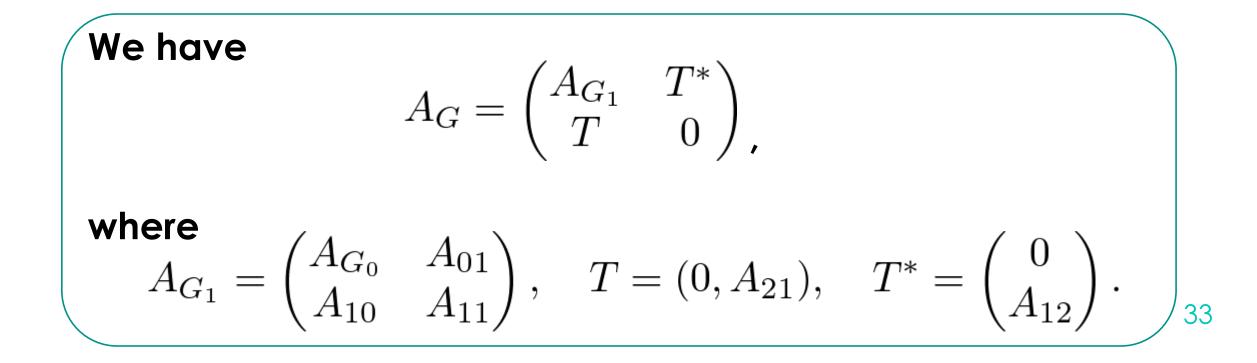
where $A_{ij}: \ell^2(V_j) \to \ell^2(V_i)$ is defined as

$$(A_{ij}\psi_j)(x) = \begin{cases} \sum_{y \sim x; y \in V_j} \psi_j(y), & x \in V_i \\ 0, & x \notin V_i \end{cases}$$

32

The following hold:

$$A_{00} = A_{G_0}, \quad \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} = A_{G_1}$$
$$A_{22} = A_{20} = A_{02} = 0, \quad A_{ij}^* = A_{ji}.$$



3. Main Results

Existence of a zero eigenvalue

Let G satisfy (H0) and G_0 be as above.

Theorem 1. (S.) $\dim \ker A_G = \dim \ker A_{G_0}$ In particular, A_G has zero eigenvalue iff. A_{G_0} has zero eigenvalue.

Remark:

For bipartite finite graphs, the same statement is found in the book entitled "Spectra of graphs" by Cvetković, Doob and Sachs. Theorem 1 means that the same statement holds true for infinite graphs that are not bipartite.

Sketch of proof. Let $\psi_0 \in \ker A_{G_0}$. Then $\psi := \begin{pmatrix} \psi_0 \\ 0 \\ -A_{21}A_{10}\psi_0 \end{pmatrix} \in \ker A_G.$

Indeed, we have

$$A_{G}\psi = \begin{pmatrix} A_{G_{0}} & A_{01} & 0\\ A_{10} & A_{11} & A_{12}\\ 0 & A_{21} & 0 \end{pmatrix} \begin{pmatrix} \psi_{0} \\ 0\\ -A_{21}A_{10}\psi_{0} \end{pmatrix}$$
$$= \begin{pmatrix} A_{G_{0}}\psi_{0} \\ A_{10}\psi_{0} - A_{12}A_{21}A_{10}\psi_{0} \\ 0 \end{pmatrix}$$

36

We have $(A_{12}A_{21}\psi_1)(x) = \sum (A_{21}\psi_1)(y)$ $y \sim x; y \in V_2$ $= \sum \quad \sum \quad \psi_1(z), \quad x \in V_1.$ G $y \sim x; y \in V_2 z \sim y; z \in V_1$ From (H0): $\forall x \in V_1, \exists_1 y \in V_2 \text{ s.t. } y \sim x$ we have z = x. x $\bigcirc \in \Lambda_G \cap V_0$ Hence $\in V_2$ $(A_{12}A_{21}\psi_1)(x) = \psi_1(x)$ $\in V_1$ and $A_{12}A_{21} = \mathrm{id}_{\ell^2(V_1)}$ 37 $\in V_0$

Hence we have

$$A_{G}\psi = \begin{pmatrix} A_{G_{0}}\psi_{0} \\ A_{10}\psi_{0} - A_{12}A_{21}A_{10}\psi_{0} \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ A_{10}\psi_{0} - \mathrm{id}_{\ell^{2}(V_{1})}A_{10}\psi_{0} \\ 0 \end{pmatrix} = 0.$$

We can prove that
$$\ker A_G = \left\{ \begin{pmatrix} \psi_0 \\ 0 \\ -A_{21}A_{10}\psi_0 \end{pmatrix} \middle| \psi_0 \in \ker A_{G_0} \right\},$$

which implies that $\dim \ker A_G = \dim \ker A_{G_0}$.

Isospectral transformation

Let G be a graph (possibly not satisfying (H0)) and G_1 be as above.

Let H_{λ} be the discrete Schrödinger operator on G_1 defined by

 $H_{\lambda} = A_{G_1} + \lambda^{-1} V, \quad \lambda \neq 0,$

where

$$V(x) = \begin{cases} n_x, & x \in V_1 \\ 0, & x \in V_0 \end{cases}$$

with

$$n_x = \#\{y \in V_2 \mid y \sim x\}$$

Theorem 2. (S.) $\lambda \in \operatorname{Spec}(A_G) \iff \lambda \in \operatorname{Spec}(H_\lambda)$ and $\dim \ker(A_G - \lambda) = \dim \ker(H_\lambda - \lambda).$

Proof of Theorem 2 We use the following well-known lemma.

Lemma. Let

$$B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

be a bounded self-adjoint operator on $\mathcal{H}_1 \oplus \mathcal{H}_2$ with $B_{ij} : \mathcal{H}_j \to \mathcal{H}_i$. If $(B_{22} - \lambda)^{-1}$ is bounded, then $F(\lambda) := B_{11} - B_{12}(B_2 2 - \lambda)^{-1}B_{21} - \lambda$ is bounded self-adjoint on \mathcal{H}_1 , $\lambda \in \operatorname{Spec}(B) \iff 0 \in \operatorname{Spec}(F(\lambda))$ and $\dim \ker(B - \lambda) = \dim \ker(F(\lambda))$

We call $F(\lambda)$ the Feshbach map of B.

Proof of Theorem 2 Applying the above lemma to $A_G = \begin{pmatrix} A_{G_1} & T^* \\ T & 0 \end{pmatrix}$ as $B_{11} = A_{G_1}, \quad B_{12} = T^*, \quad B_{21} = T, \quad B_{22} = 0$ the Feshbach map of A_G is $F(\lambda) = A_{G_1} + \lambda^{-1} T^* T - \lambda$ since $(B_{22} - \lambda)^{-1} = -\lambda^{-1}$ is bounded provided $\lambda \neq 0$. Here we get $T^*T = \begin{pmatrix} 0\\A_{12} \end{pmatrix} (0, A_{21})$ $= \begin{pmatrix} 0 & 0 \\ 0 & A_{12}A_{21} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & n_r \end{pmatrix} = V(x).$ Hence we have $F(\lambda) = H_{\lambda} - \lambda$.

41

Corollary of Theorem 2 (absence of a gap)

Let $G_1 = \mathbb{Z}$ and G be a graph obtained by adding pendant vertices to G_1 .

Corollary 1. Suppose that $\exists \{x_n\} \in \mathbb{Z} \text{ s.t. } ([x_n - n, x_n + n] \cap \mathbb{Z}) \subset V_0$. Then $[-2, 2] \subset \operatorname{Spec}(A_G)$

In particular, there is no spectral gap near zero: $m(A_G) = 0$.

Proof of Corollary 1: It suffices to show the spectrum of $H_{\lambda} = A_{\mathbb{Z}} + \lambda^{-1}V$ includes $\operatorname{Spec}(A_{\mathbb{Z}}) = [-2, 2]$, which comes from $([x_n - n, x_n + n] \cap \mathbb{Z}) \cap \operatorname{supp} V = \emptyset$.

Remark: This corollary can be generalized to $G_1 = \mathbb{Z}^d$ and 42 hexagonal lattice.

<u>Corollary of Theorem 2 (existence of a gap)</u>

Let G be a graph obtained by adding pendant vertices to each vertex of a graph G_1 .

Corollary 2. A_G has a spectral gap near zero: $m(A_G) > 0$.

 $\begin{array}{l} \displaystyle \underbrace{ \operatorname{Proof of \ Corollary \ 2:}}_{X \in V(G_1)} \ \operatorname{By \ assumption}, \ V(x) \equiv 1. \\ \displaystyle \operatorname{Let} \lambda_0^{-1} := \sup_{x \in V(G_1)} \deg_{G_1} x. \ \text{Then, for } \lambda > 0 \ \text{sufficiently small,} \\ \displaystyle H_\lambda - \lambda = A_{G_1} + \lambda^{-1} - \lambda \\ \displaystyle = \left(A_{G_1} + \lambda_0^{-1}\right) + \left(\lambda^{-1} - \lambda_0^{-1} - \lambda\right) \\ \displaystyle \geq \lambda^{-1} - \lambda_0^{-1} - \lambda > \epsilon \end{array}$ with some $\epsilon > 0$.

43

Criteria for existence of a gap.

Let G be a graph obtained by adding pendant vertices to G_1 .

Theorem 3.
$$m(A_{G_0}) > 0 \Longrightarrow m(A_G) > 0$$
.

Sketch of proof:

Since $n_x \ge 1$ $(x \in V_1)$, we know that $(A_{11} + \lambda^{-1}n_x - \lambda)^{-1}$ is bounded if $|\lambda|$ is sufficiently small.

Hence the Feshbach map of

$$H_{\lambda} - \lambda = \begin{pmatrix} A_{G_0} - \lambda & A_{01} \\ A_{10} & A_{11} + \lambda^{-1} n_x - \lambda \end{pmatrix}$$

44

can be defined by

$$F_0(\lambda) = A_{G_0} - \lambda - A_{01}(A_{11} + \lambda^{-1}n_x - \lambda)^{-1}A_{10}$$

provided $0 < |\lambda| << 1$.

We can show that

$$F_0(\lambda)^2 \ge A_{G_0}^2 - C|\lambda|$$

with some C > 0 independent of $0 < |\lambda| << 1$.

By assumption, $m(A_{G_0}) > 0$. If A_{G_0} has no zero eigenvalue, then we know that

$$F_0(\lambda)^2 \ge m(A_{G_0})^2 - C|\lambda| > 0 \quad (0 < |\lambda| << 1),$$
 which implies that
$$m(A_G) > 0.$$

It the case where A_{G_0} has a zero eigenvalue, it can be proven by employing the Feshbach map of $F_0(\lambda)$.

<u>Remark.</u> For a periodic graph G, we can show that

Theorem 4. Suppose that A_G has no zero eigenvalue. Then:

$$m(A_{G_0}) = 0 \Longrightarrow m(A_G) = 0.$$

This is equivalent to the reverse statement of Theorem 3:

$$m(A_G) > 0 \Longrightarrow m(A_{G_0}) > 0$$

We omit the proof.

Thank you for your kind attention!