Spectral properties of Laplacians on non-compact manifolds with general ends

Y. Kurylev, ¹ M. Lassas, ² H. Isozaki, ³

¹University College London

²University of Helsinki

³University of Tsukuba

August, 19, 2014, Euler Institute Inverse Problems and Related Topics

・ロト (周) (E) (E) (E) (E)

Forward and inverse scattering problem on manifolds with asymptotically hyperbolic ends, *J. Funct. Anal.* 258 (2010), 2010-2118.

H. Isozaki, Y. Kurylev and M. Lassas, Conic singularities, genealized scattering matrix, and inverse scattering on asymptotically hyperbolic surfaces, to appear in *J. Reine angew. Math..*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

H. Isozaki, Y. Kurylev and M. Lassas,

Spectral theory and inverse problems on asymptotically hyperbolic orbifolds,

arXiv: 1312.0421

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

For Further Reading Assumptions Instability of the short-range assumption

We consider a connected, non-compact manifold (or orbifold) of the form

 $\mathcal{M} = \mathcal{K} \cup \mathcal{M}_1 \cup \cdots \cup \mathcal{M}_{N+N'}$

where, \mathcal{K} = relatively compact,

 $\mathcal{M}_i \simeq (\mathbf{0}, \infty) \times M_i$, (diffeomprphic),

 M_i = compact manifold (orbifold) of dim n - 1 equipped with the metric $h_M(x, dx)$.

 \mathcal{M}_i is equipped with the metric

$$ds^2 = (dr)^2 + \rho_i(r)^2 h_i(r, x, dx)$$

$$h_i(r,x,dx) - h_{M_i}(x,dx) = O(r^{-\gamma_i})$$
; $\gamma \ge 0$, is the set of γ_i

Author, Another Spectral properties of Laplacians on non-compact manifolds with

For Further Reading Assumptions Instability of the short-range assumption

Typical examples

- (1) $\rho(r) = e^{c_0 r}$, $c_0 > 0$, hyperbolic regular end
- (2) $\rho(r) = r$ Euclidean (or conical)
- (3) $\rho(r) = 1$ cylindrical end (waveguide)
- (4) $ho(r) = e^{c_0 r}, \quad c_0 < 0,$ hyperbolic cusp

(日) (同) (三) (三) (三) (○) (○)

For Further Reading Assumptions Instability of the short-range assumption

We know that

- For (1), (2) No embedded eigenvalues in the continuous spectrum.
- For (3), (4) ∃ embedded eigenvalues
- For (1), (2), (3) One can reconstruct *M* from the physical S-matrix for all energies associated with one end
- For (4), One can reconstruct \mathcal{M} from the generalized S-matrix for all energies associated with one end

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

For Further Reading Assumptions Instability of the short-range assumption

We deal with the metric of the form

$$ho(r) \sim \left\{ egin{array}{l} \exp\left(c_0r + rac{eta}{lpha}r^lpha
ight), & \mathsf{0} \leq lpha < \mathsf{1}, \ r^eta, \end{array}
ight.$$

where

- For the regular end, $c_0 > 0$ or $c_0 = 0, \beta > 0$,
- For the cusp, $c_0 < 0$, or $c_0 = 0$, $\beta < 0$.

Sometimes, it is more convenient to state the assumption in the form

$$\rho(r)^{-1} \in S^{-\beta}.$$

In this setting, the exponentially growing metric corresponds to the case $\beta = \infty$.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

For Further Reading Assumptions Instability of the short-range assumption

Outline

Assumptions

Instability of the short-range assumption

- 2 Rellich-Vekua theorem
- 3 Laplacian on ${\cal M}$
- 4 Spectral representation and S-matrix
- 5 Inverse scattering

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

For Further Reading Assumptions Instability of the short-range assumption

Perturbed warped product metric

Consider the following metric on $(0,\infty) \times M$,

$$ds^2 = (dr)^2 + g_M(r, x, dx),$$

where $g_M(r, x, dx) = g_{M,ij}(r, x) dx^i dx^j$ is a metric on *M* depending smoothly on r > 0. Let

$$g = g(r, x) = \det \big(g_{M, ij}(r, x)\big).$$

Define

$$f(r, x) \in S^{\kappa} \iff \partial_r^m \partial_x^{\alpha} f(r, x) = O(r^{\kappa - m}), \quad \forall m, \alpha.$$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

For Further Reading Assumptions Instability of the short-range assumption

The 1st assumption

$$(A-1) \qquad \frac{g'}{4g} - \frac{(n-1)c_0}{2} - \frac{(n-1)\beta}{2}r^{\alpha-1} \in S^{-1-\epsilon}, \quad \epsilon > 0.$$
$$0 \le \alpha < 1, \ \epsilon > 0,$$
$$\beta \ne 0, \text{ if } c_0 = 0.$$

Integrating

$$\frac{g'}{4g} - \frac{(n-1)c_0}{2} - \frac{(n-1)\beta}{2}r^{\alpha-1} = O(r^{-1-\epsilon}),$$

we have

Author, Another

Spectral properties of Laplacians on non-compact manifolds with

For Further Reading Assumptions Instability of the short-range assumption

where

$$\rho(r) = \begin{cases} \exp\left(c_0 r + \frac{\beta}{\alpha} r^{\alpha}\right), & 0 < \alpha < 1, \\ \exp\left(c_0 r\right) r^{\beta}, & \alpha = 0. \end{cases}$$

We can then rewrite $g_M(r, x, dx)$ as

$$g_M(r, x, dx) = \rho(r)^2 h(r, x, dx),$$

where h(r, x, dx) is bounded in *r*.

So, our metric has the form

$$ds^2 = (dr)^2 + \rho(r)^2 h(r, x, dx).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

For Further Reading Assumptions Instability of the short-range assumption

The 2nd assumption

(A-2) There exists a smooth metric $h_M(x, dx)$ on M such that

$$h(r, x, dx) - h_M(x, dx) \in S^{-\gamma}, \quad \gamma > 0.$$

We say that

• \mathcal{M} has a regular infinity if

either $c_0 > 0$, or $c_0 = 0$, $\beta > 0$.

• \mathcal{M} has a cusp if

$$\text{either} \boldsymbol{c}_0 < \boldsymbol{0}, \quad \text{or} \quad \boldsymbol{c}_0 = \boldsymbol{0}, \quad \boldsymbol{\beta} < \boldsymbol{0}.$$

The 3rd assumption

(A-3) $\mathcal{M}_1, \cdots, \mathcal{M}_N$ have regular infinities, and $\mathcal{M}_{N+1}, \cdots, \mathcal{M}_{N+N'}$ have cusp.

For Further Reading Assumptions Instability of the short-range assumption

The perturbation term

$$h(r, x, dx) - h_M(x, dx) \in \mathcal{S}^{-\gamma}$$

is said to be short-range if $\gamma > 1$, and long-range if $\gamma \leq 1$.

Usually, the latter is more compilcated than the former.

It seems that there exist threshold growth orders of the metric :

Assuming that
$$\rho(r) = r^{\beta}$$
, they are (think of $x_{n+1} = (x_1^2 + \dots + x_n^2)^{\beta/2})$

- $\beta = 1$: conic surface
- $\beta = 1/2$: parabola
- *β* = 1/3 : ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

For Further Reading Assumptions Instability of the short-range assumption

- Assumptions
- Instability of the short-range assumption
- 2 Rellich-Vekua theorem
- \bigcirc Laplacian on $\mathcal M$
- Spectral representation and S-matrix
- 5 Inverse scattering

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

For Further Reading Assumptions Instability of the short-range assumption

Instability of the short-range assumptioption

Consider the following metric with a cross term

$$ds^{2} = a(t,z)(dt)^{2} + 2w(t)b_{i}(t,z)dtdz^{i} + w(t)^{2}c_{ij}(t,z)dz^{i}dz^{j}.$$

Assume

$$egin{aligned} & w(t)^{-1}\in \mathcal{S}^{-\kappa}, \quad a(t,z)-1\in \mathcal{S}^{-\lambda}, \ & b_i(t,z)\in \mathcal{S}^{-\mu}, \quad c_{ij}(t,z)-h_{ij}(t,z)\in \mathcal{S}^{-
u}, \end{aligned}$$

with the condition

$$\kappa > 1/2, \quad \lambda > 1, \quad \kappa + \mu > 1, \quad \nu > 0.$$

Note that κ corresponds to the volume growth of the manifold.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

For Further Reading Assumptions Instability of the short-range assumption

Theorem

One can transform the metric with a cross term

$$ds^2=a(t,z)(dt)^2+2w(t)b_i(t,z)dtdz^i+w(t)^2c_{ij}(t,z)dz^idz^j.$$

into the perturbed warped product form

$$ds^{2} = (dr)^{2} + w(r)^{2}\overline{h}(r, x, dx),$$

where $\overline{h}(r, x, dx)$ is an *r*-dependent metric on *M* satisfying

$$\overline{h}(r, x, dx) - h(z(x), dx) \in \mathcal{S}^{-\min\{\nu, \epsilon_0\}}$$

 $\epsilon_0 = \min\{\lambda, \kappa + \mu, 2\kappa\} - 1.$

Therefore, the metric with cross term can be transformed to the

For Further Reading Assumptions Instability of the short-range assumption

perturbed warped product if

$$w(t) \sim \exp\left(c_0 t + rac{\beta}{lpha} t^{lpha}
ight), \quad ext{or} \quad t^{eta}, \quad ext{with} \quad eta > 1/2.$$

However, even if ν is large, the resulting metric $(dr)^2 + w(r)^2\overline{h}(r, x, dx)$ is

- a short-range perturbed metric of $(dr)^2 + \rho(r)^2 h_M(x, dx)$ only when $\beta > 1$,
- a long-range perturbed metric if $1/2 < \beta \le 1$.

Note that the case $\beta = 1$ corresponds to the standard asymptotically Euclidean metric (see [Bouclet, 2012]).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Rellich-Vekua theorem

Consider $\mathcal{M} = (0, \infty) \times M$ with metric $ds^2 = (dr)^2 + \rho(r)^2 h(r, x, dx),$ $h(r, x, dx) - h_M(x, dx) \in S^{-\epsilon}, \quad \epsilon > 0.$

Assume that

(B-1) There exist constants $c_0, \epsilon_0, \delta_0, \epsilon$ such that

$$rac{
ho'}{
ho} - c_0 \in S^{-\epsilon_0}, \quad (r\partial_r + \delta_0)
ho^{-1} \leq 0$$

and satisfying either (i) or (ii) :

(i)
$$c_0 \ge 0, \, \delta_0 > 1/3, \, \epsilon_0 > 0, \, \epsilon > 0.$$

(ii)
$$c_0 = 0, \, \delta_0 > 0, \, \epsilon_0 = 1, \, \epsilon > 0.$$

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

We fix a point p_0 in \mathcal{M} , and let

$$S(r) = \{ p \in \mathcal{M} ; \operatorname{dist}(p, p_0) = r \}.$$

Theorem

Suppose there exist constants R > 0, $\lambda > ((n-1)c_0/2)^2$ and $u \in H^2_{loc}(\mathcal{M})$ such that

$$(-\Delta_{\mathcal{M}} - \lambda)u = 0$$
, for $r > R$,

$$\liminf_{r\to\infty}r^{\gamma}\int_{\mathcal{S}(r)}\left(\left|\frac{\partial u}{\partial r}\right|^{2}+\left|u\right|^{2}\right)d\mathcal{S}(r)=0,\quad\exists\gamma>0.$$

Then u = 0 for r > R.

This theorem covers all of the cases :

$$\rho(r) = \begin{cases} \exp\left(c_0 r + \frac{\beta}{\alpha} r^{\alpha}\right), & 0 < \alpha < 1, \\ \exp\left(c_0 r\right) r^{\beta}, & \alpha = 0. \end{cases}$$

To prove this theorem, we consider an abstract differential equation

$$-u''(t) + B(t)u(t) + V(t)u(t) - \lambda u(t) = 0, \quad t > 0$$

for an Hilbert space - valued functions, and apply the classical method of T. Kato ([1959], CPAM), or Eidus ([1969], Russ. Math. Survey).

Here, B(t) (corresponding to $-\rho(r)^{-2}\Delta_M$) is a non-negative self-adjoint operator having the property

$$t \frac{dB(t)}{dt} + \delta B(t) \leq Ct^{-\epsilon}, \quad \delta \geq 0.$$

Basic spectral properties

Consider the case of one end : $\mathcal{M} = (0,\infty) \times M$, on which the metric is

$$ds^{2} = (dr)^{2} + \rho(r)^{2}h(r, x, dx).$$

Then, the Laplacian is

$$\begin{aligned} -\Delta_{\mathcal{M}} &= -\partial_r^2 - \frac{g'}{2g} \partial_r + \rho^{-2} B(r), \\ g &= \rho^{2(n-1)} h, \quad h = h(r, x) = \det(h_{ij}), \\ B(r) &= -\frac{1}{\sqrt{h}} \partial_{x_i} \left(\sqrt{h} h^{ij} \partial_{x_j} \right). \end{aligned}$$

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

We put

$$\mathbf{h}(r) = L^2(M; \sqrt{h(r, x)} dx),$$

$$L^{2,s}(\mathcal{M}) \ni f \Longleftrightarrow \|f\|_{s}^{2} = \int_{0}^{\infty} (1+r)^{2s} \|f(r)\|_{\mathbf{h}(r)}^{2} \rho(r)^{n-1} dr < \infty,$$

$$\mathcal{B}
i f \Longleftrightarrow \sum_{j=1}^{\infty} 2^{j/2} \|f\|_{L^2(l_j)} < \infty,$$

$$I_0=(0,1), \quad I_j=(2^{j-1},2^j), \quad (j\geq 1),$$

$$\mathcal{B}^* \ni \mathbf{v} \Longleftrightarrow \sup_{R>1} \frac{1}{R} \int_0^R \|\mathbf{v}(r)\|_{\mathbf{h}(r)}^2 \rho(r)^{n-1} dr < \infty,$$

$$\mathcal{B}_{0}^{*} \ni v \iff \lim_{R \to \infty} \frac{1}{R} \int_{0}^{R} \|v\|_{\mathbf{h}(r)}^{2} \rho(r)_{n}^{n-1} dr = 0.$$

Author, Another

We then have the following inclusion relations

$$L^{2,s} \subset \mathcal{B} \subset L^{2,1/2} \subset L^2 \subset L^{2,-1/2} \subset \mathcal{B}^* \subset L^{2,-s}, \quad s>1/2.$$

We return to our manifold

$$\mathcal{M} = \mathcal{K} \cup \mathcal{M}_1 \cdots \mathcal{M}_{N+N'}.$$

Take a partition of unity $\{\chi_j\}_{j=0}^{N+N'}$, and define the norms on \mathcal{M} , e.g.

$$\|f\|_{s} = \|\chi_{0}f\|_{L^{2}(\mathcal{M})} + \sum_{j=1}^{N+N'} \|\chi_{j}f\|_{L^{2,s}(\mathcal{M}_{j})}.$$

Recall that on each end $\mathcal{M}_i = (0, \infty) \times M_i$,

Author, Another

Spectral properties of Laplacians on non-compact manifolds with

$$\rho_i(r) = \begin{cases} \exp\left(c_{0,i}r + \frac{\beta_i}{\alpha_i}r^{\alpha_i}\right), & 0 < \alpha_i < 1, \\ \exp\left(c_{0,i}r\right)r^{\beta_i}, & \alpha_i = 0, \end{cases}$$

$$h_i(r, x, dx) - h_{M_i}(x, dx) \in S^{-\gamma_i},$$

where

for regular ends
$$1 \le i \le N$$
,
either $c_{0,i} > 0$, or $c_{0,i} = 0$, $\beta_i > 0$,
for cusp ends $N + 1 \le i \le N + N'$.

either
$$c_{0,i} < 0$$
, or $c_{0,i} = 0$, $\beta_i < 0$.

Let

$$H = -\Delta_{\mathcal{M}}$$
 on \mathcal{M} ,

 $R(z) = (H - z)^{-1}$.

Let

$$E_{0,i} = \left((n-1)c_{0,i}/2 \right)^2, \quad \mathcal{T} = \{E_{0,1}, \cdots, E_{0,N+N'}\}$$
$$E_0 = \min_{1 \le i \le N+N'} E_{0,i}, \quad E_{0,reg} = \min_{1 \le i \le N} E_{0,i}.$$

Lemma

(1) $\sigma_e(H) = [E_0, \infty).$

(2)
$$\sigma_p(H) \cap ((E_{0,reg},\infty) \setminus \mathcal{T}) = \emptyset.$$

(3) Suppose $E_0 < E_{0,reg}$. Then, the eigenvalues in $(E_0, E_{0,reg}) \setminus \mathcal{T}$ are of finite multiplicities with possible accumulation points at \mathcal{T} .

(4) If all ends are cusp, the eigenvalues in $(E_0, \infty) \setminus \mathcal{T}$ are of finite multiplicities with possible accumulation points at \mathcal{T} and infinity.

Take any compact interval

$$I \subset (E_0,\infty) \setminus \left(\sigma_{\mathcal{P}}(H) \cup \{E_{0,1},\cdots,E_{0,N+N'}\} \right).$$

Assume long-range, i.e. for $h_i(r, x, dx) - h_{M_i}(x, dx) \in S^{-\gamma_i}$,

$$\gamma_i > 0, \quad \forall i = 1, \cdots, N + N'.$$

Theorem

For any $f \in \mathcal{B}$ and $\lambda \in I$, there exists a wak *-limit $\lim_{\epsilon \to 0} R(\lambda \pm i\epsilon)f$, i.e. for $f, g \in \mathcal{B}$

$$\lim_{\epsilon\to 0} (R(\lambda\pm i\epsilon)f,g) = (R(\lambda\pm i0)f,g).$$

Moreover

$$\|R(\lambda \pm i0)f\|_{\mathcal{B}^*} \leq C\|f\|_{\mathcal{B}}, \quad \lambda \in I.$$

The representation space

Let

$$\mathbf{h}_{j} = L^{2}(M_{j}).$$
$$\mathbf{h}_{j,\infty} = \begin{cases} \mathbf{h}_{j}, & 1 \leq j \leq N, \\ \mathbf{C}, & N+1 \leq j \leq N+N', \end{cases}$$
$$\mathbf{h}_{\infty} = \bigoplus_{j=1}^{N+N'} \mathbf{h}_{j,\infty},$$
$$\widehat{\mathcal{H}} = \bigoplus_{j=1}^{N+N'} L^{2}((E_{0,j},\infty); \mathbf{h}_{\infty,j}; d\lambda).$$

Let $\mathcal{H}_{ac}(H)$ be the absolutely continuous subspace for H, i.e.

 $\mathcal{H}_{ac}(H) \ni f \iff d(E_H(\lambda)f, f)$ is absolutely continuous.

where $E_H(\lambda)$ is the spectral decomposition of H.

= 990

We assume either

$$\beta_i \geq \mathbf{1}, \ \gamma_i > \mathbf{0},$$

or

$$\beta_i > \mathbf{0}, \ \gamma_i > \mathbf{1}.$$

As in the case of \mathbf{R}^n , there exists a spectral reresentation (or generalized Fourier transformation) associated with H. It is first defined on \mathcal{H} ,

$$\mathcal{F}^{(\pm)}(\lambda) = (\mathcal{F}_1^{(\pm)}(\lambda), \cdots, \mathcal{F}_{N+N'}^{(\pm)}(\lambda)) \in \mathbf{B}(\mathcal{B}; \mathbf{h}_{\infty}),$$

(to be be explained later), and then extended to $L^2(\mathcal{M})$ by the formula

$$(\mathcal{F}^{(\pm)}f)(\lambda) = \mathcal{F}^{(\pm)}(\lambda)f.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Theorem

There exists a unitary operator $\mathcal{F}^{(\pm)} : \mathcal{H}_{ac}(H) \to \widehat{H}$ having the following properties.

(1)
$$(\mathcal{F}^{(\pm)}f)(\lambda) = \mathcal{F}^{(\pm)}(\lambda)f, \forall f \in \mathcal{B}.$$

(2) $(\mathcal{F}^{(\pm)}Hf)(\lambda) = \lambda(\mathcal{F}^{(\pm)}f)(\lambda), \forall f \in \mathcal{D}(H).$
(3) $\mathcal{F}^{(\pm)}(\lambda)^* \in \mathbf{B}(\mathbf{h}_{\infty}; \mathcal{B}^*), \text{ and}$

$$(H-\lambda)\mathcal{F}^{(\pm)}(\lambda)^*=0.$$

(4) For any $f \in \mathcal{H}_{ac}(H)$, the inversion formula holds

$$f = \sum_{j=1}^{N+N'} \int_{E_{0,j}}^{\infty} \mathcal{F}_j^{(\pm)}(\lambda)^* \big(\mathcal{F}_j^{(\pm)} f \big)(\lambda) d\lambda.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Asymptotic expansion of the resolvent at infity

Each operator $\mathcal{F}_{j}^{(\pm)}(\lambda)$ is constructed as follows. Note that $-\Delta_{h_{j}}$ has

- eigenvalues $B_{\ell}^{(j)}, \ell = 0, 1, 2, \cdots$,
- eigenprojections $P_{\ell}^{(j)}$, $\ell = 0, 1, 2, \cdots$.

Then for $1 \leq j \leq N$,

$$\mathcal{F}_{j}^{(\pm)}(\lambda) = \sum_{\ell=0}^{\infty} \mathcal{F}_{j,\ell}^{(\pm)}(\lambda) \otimes \boldsymbol{P}_{\ell}^{(j)},$$

for $N + 1 \leq j \leq N + N'$,

$$\mathcal{F}_{j}^{(\pm)}(\lambda) = \mathcal{F}_{j,0}^{(\pm)}(\lambda).$$

Here $\mathcal{F}_{j,\ell}^{(\pm)}(\lambda)$ are related to the asymptotic behavior of the resolvent at infinity:

For $f \in \mathcal{B}$, $R(\lambda \pm i0)f$ behaves like as $r \to \infty$

• on \mathcal{M}_j , $1 \leq j \leq N$,

$$\sum_{\ell\geq 0} c_j(\lambda)\rho_j(\lambda)^{-(n-1)/2} e^{i\varphi_{j,\ell}^{(\pm)}(\lambda,r)} \mathcal{F}_{j,\ell}^{(\pm)}(\lambda) \otimes \mathcal{P}_{\ell}^{(j)}f,$$

• on \mathcal{M}_j , $N + 1 \leq j \leq N + N'$,

$$c_j(\lambda)\rho_j(\lambda)^{-(n-1)/2}e^{i\varphi_{j,0}^{(\pm)}(\lambda,r)}\mathcal{F}_{j,0}^{(\pm)}(\lambda)\otimes P_0^{(j)}f,$$

$$\varphi_{j,\ell}^{(\pm)}(\lambda,r) \sim \pm r \sqrt{\lambda - \frac{(n-1)^2 c_{0,j}^2}{4}}.$$

Helmholtz equation

Let

$$\mathbf{h}_{\infty}(\lambda) = \bigoplus_{j=1}^{N+N'} \chi_{(E_{0,j},\infty)}(\lambda) \mathbf{h}_{\infty,j}.$$

Theorem

$$\{u\in \mathcal{B}^*; (H-\lambda)u=0\}=\mathcal{F}^{(\pm)}(\lambda)^*\mathbf{h}_{\infty}(\lambda).$$

Author, Another Spectral properties of Laplacians on non-compact manifolds with

S-matrix

Take
$$\forall \psi^{(in)} = (\psi_1^{(in)}, \cdots, \psi_{N+N'}^{(in)}) \in \mathbf{h}_{\infty}(\lambda)$$
, and let
 $\psi_{j,\ell}^{(in)} = \mathcal{P}_{\ell}^{(j)}\psi_j^{(in)}$.

Then $\exists 1 u \in \mathcal{B}^*$ and $\exists 1 \psi^{(out)} \in \mathbf{h}_{\infty}(\lambda)$ such that $(H - \lambda)u = 0$, which behaves as follows :

(1) on the regular ends \mathcal{M}_j , $1 \leq j \leq N$,

$$\begin{split} u &\simeq \sum_{\ell=0}^{\infty} \omega_{-}^{(j,\ell)}(\lambda) \rho_{j}(\lambda)^{-(n-1)/2} \boldsymbol{e}^{-i\varphi_{j}(\lambda,r)} \psi_{j,\ell}^{(in)}, \\ &- \sum_{\ell=0}^{\infty} \omega_{+}^{(j,\ell)}(\lambda) \rho_{j}(r)^{-(n-1)/2} \boldsymbol{e}^{i\varphi_{j}(\lambda,r)} \psi_{j,\ell}^{(out)} \end{split}$$

Author, Another Spectral properties of Laplacians on non-compact manifolds with

(2) on the cusp ends \mathcal{M}_j , $N + 1 \leq j \leq N + N'$

$$u \simeq \omega_{-}^{(j)}(\lambda)\rho_{j}(\lambda)^{-(n-1)/2} e^{-i\varphi_{j}(\lambda,r)}\psi_{j}^{(in)}$$
$$-\omega_{+}^{(j)}(\lambda)\rho_{j}(r)^{-(n-1)/2} e^{i\varphi_{j}(\lambda,r)}\psi_{j}^{(out)}$$

The S-matrix is then defined by

$$\widehat{\boldsymbol{S}}(\lambda): \boldsymbol{\mathsf{h}}_{\infty}(\lambda) \ni \psi^{(\textit{in})} \to \psi^{(\textit{out})} \in \boldsymbol{\mathsf{h}}_{\infty}(\lambda)$$

which is unitary.

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Inverse Scattering

Theorem (Inverse scattering from regular ends)

Given two manifolds $\mathcal{M}^{(1)}, \mathcal{M}^{(2)},$ let $\mathcal{M}^{(1)}_1, \mathcal{M}^{(2)}_1$ be regular ends, and assume that

$$\widehat{S}_{11}^{(1)}(\lambda) = \widehat{S}_{11}^{(2)}(\lambda), \quad \forall \lambda,$$

moreover $\mathcal{M}_1^{(11)}$ and $\mathcal{M}_1^{(2)}$ are isometric. Then $\mathcal{M}^{(1)}$ and $\mathcal{M}^{(2)}$ are isometric.

The physical S-matrix for the cusp end does not have sufficient information to recover the whole manifold.

・ロト (周) (E) (E) (E) (E)

Generalized S-matrix

Assume that for the cusp ends M_j , $j = N + 1, \dots, N + N'$, the metric has the form

$$ds^{2}\Big|_{\mathcal{M}_{j}} = (dr)^{2} + \rho_{j}(r)^{2}h_{M_{j}}(x, dx),$$

$$\rho_{j}(r) = \begin{cases} \exp\left(c_{0,j}r + \frac{\beta_{j}}{\alpha_{j}}r^{\alpha_{j}}\right), & 0 < \alpha_{j} < 1, \\ \exp\left(c_{0,j}r\right)r^{\beta_{j}}, & \alpha_{j} = 0, \end{cases}$$

where $c_{0,j} < 0$, or $c_{0,j} = 0$, $\beta_j < 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Let $0 = B_0^{(j)} \le B_1^{(j)} \le B_2^{(j)} \le \cdots$ be the eignevalues of $-\Delta_{M_j}$ with normarized eigenvectors $\phi_{\ell}^{(j)}, \ell = 0, 1, 2, \cdots$. We put

$$\Phi_j(r) = \int_1^r \Big(\frac{B_{\ell}^{(j)}}{\rho_j^2} - \lambda + \frac{n^2 - 2n}{4} \Big(\frac{\rho_j'}{\rho_j}\Big)^2\Big)^{1/2} dt.$$

Note

$$\Phi_j(r) \to \infty$$
, as $r \to \infty$.

Then, there exist solutins of the equation

$$-u^{\prime\prime}-rac{(n-1)
ho_j^{\prime}}{
ho_j}u^{\prime}+\Big(rac{B_\ell^{(j)}}{
ho_j^2}-\lambda\Big)u=0,$$

which behave like

$$\begin{array}{c} u_{\ell,\pm}^{(j)} \sim \rho_j(r)^{-(n-1)/2} e^{\pm \Phi_j(r)}, \quad r \to \infty \quad \text{if } r \to \infty \quad \text$$

Take any solution *u* of the equation

$$(-\Delta_{\mathcal{M}} - \lambda)u = 0$$
, on \mathcal{M}_j , $j = N + 1, \cdots, N + N'$.

Expanding it by $\phi_{\ell}^{(j)}$, we have

$$(u, \phi_{\ell}^{(j)})_{L^{2}(M_{j})} = a_{\ell}^{(j)} u_{\ell,+}^{(j)}(r) + b_{\ell}^{(j)} u_{\ell,-}^{(j)}(r).$$

Here, we introduce two sequences $\mathbf{A}_{\pm}^{(j)}$:

$$\mathbf{A}_{\pm}^{(j)} \ni \{ \boldsymbol{c}_{\ell,\pm} \}_{\ell=0}^{\infty} \Longleftrightarrow \sum_{\ell=0}^{\infty} |\boldsymbol{c}_{\ell,\pm}|^2 |\boldsymbol{u}_{\ell,\pm}^{(j)}(\boldsymbol{r})|^2 < \infty, \quad \forall \boldsymbol{r} > 1.$$

Then, $c_{\ell,\pm}^{(j)}$ behaves like, roughly,

$$\mathbf{A}_{\pm}^{(j)} \ni \{ \mathbf{c}_{\ell,\pm} \}_{\ell=0}^{\infty} \iff \sum_{\ell=0}^{\infty} |\mathbf{c}_{\ell,\pm}|^2 \mathbf{e}^{\pm 2B_{\ell}^{(j)} \Phi_j(\mathbf{r})} < \infty, \quad \forall \mathbf{r} > 1.$$
Author, Another
Spectral properties of Laplacians on non-compact manifolds with

So, $\mathbf{A}_{+}^{(j)}$ is the space of super-exponentially decaying sequences, and $\mathbf{A}_{-}^{(j)}$ is the space of super-exponentially growing sequences.

Lemma

If
$$\{a_{\ell}^{(j)}\} \in \mathbf{A}_{+}^{(j)}$$
, then $\{b_{\ell}^{(j)}\} \in \mathbf{A}_{-}^{(j)}$.

For the cusp end, we define the generalized incoming data and outgoing data by

$$\Psi_{j}^{(in)} = \sum_{\ell=0}^{\infty} a_{\ell}^{(j)} u_{\ell,+}^{(j)}(r) \phi_{\ell}^{(j)}(x), \quad \{a_{\ell}^{(j)}\}_{\ell=0}^{\infty} \in \mathbf{A}_{+}^{(j)},$$
Author, Another
Spectral properties of Laplacians on non-compact manifolds with

(which is exponentially growing as $r \to \infty$),

$$\Psi_j^{(out)} = \sum_{\ell=0}^{\infty} b_{\ell}^{(j)} u_{\ell,-}^{(j)}(r) \phi_{\ell}^{(j)}(x), \quad \{b_{\ell}^{(j)}\}_{\ell=0}^{\infty} \in \mathbf{A}_{-}^{(j)},$$

(which is exponentially decaying as $r \to \infty$).

For the regular end, we put

$$\Psi_{j}^{(in)} = \sum_{\ell=0}^{\infty} \omega_{-}^{(j)}(\lambda, B_{\ell}^{(j)}) \Psi_{j}^{(-)}(\lambda, r; B_{\ell}^{(j)}) \psi_{j,\ell}^{(in)},$$

$$\Psi_j^{(out)} = \sum_{\ell=0}^{\infty} \omega_-^{(j)}(\lambda, \mathcal{B}_\ell^{(j)}) \Psi_j^{(-)}(\lambda, r; \mathcal{B}_\ell^{(j)}) \psi_{j,\ell}^{(out)}.$$

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

Theorem

For any incoming data $\psi_j^{(in)} \in L^2(M_j)$ from regular ends and genaralized incoming data from cusp ends, there exist a solution *u* of the equation $(-\Delta_M - \lambda)u = 0$ and the outgoing data such that

$$u-\sum_{j=N+1}^{N+N'}\Psi_j^{(in)}\in\mathcal{B}^*,$$

moreover

$$u \simeq \Psi_j^{(in)} - \Psi_j^{(out)}, \quad \text{on} \quad \mathcal{M}_j, \quad j = 1, \cdots, N,$$

 $u = \Psi_j^{(in)} - \Psi_j^{(out)}, \quad \text{on} \quad \mathcal{M}_j, \quad j = N + 1, \cdots, N + N'.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

We call the mapping

$$\begin{aligned} \mathcal{S}(\lambda) &: \left(\psi_1^{(in)}, \cdots, \psi_N^{(in)}, \{\boldsymbol{a}_\ell^{(N+1)}\}, \cdots, \{\boldsymbol{a}_\ell^{(N+N')}\}\right) \\ &\to \left(\psi_1^{(out)}, \cdots, \psi_N^{(out)}, \{\boldsymbol{b}_\ell^{(N+1)}\}, \cdots, \{\boldsymbol{b}_\ell^{(N+N')}\}\right) \end{aligned}$$

the generalized scatteing matrix.

Theorem (Inverse scattering from cusp)

Let $\mathcal{M}_{N_1+N_1'}^{(1)}$, $\mathcal{M}_{N_2+N_2'}^{(2)}$ be cusp ends of $\mathcal{M}^{(1)}$ and $\mathcal{M}^{(2)}$. Assume that (i) $\mathcal{M}_{N_1+N_1'}^{(1)}$ and $\mathcal{M}_{N_2+N_2'}^{(2)}$ are isometric, (ii) The components of the generalized S-matrix associated with the cusp ends coincide for all energies. Then $\mathcal{M}^{(1)}$ and $\mathcal{M}^{(2)}$ are isometric.

・ロト (周) (E) (E) (E) (E)

Idea of the proof

Introduce an artificial boundary

$$S = \{(r, x); r = 2, x \in M_1\} \subset \mathcal{M}_1.$$

Let

$$\mathcal{M}_{ext} = \mathcal{M}_1 \cap \{r \ge 2\},$$

 $\mathcal{M}_{int} = \mathcal{M} \setminus \mathcal{M}_{ext}.$

Then $\widehat{S}_{11}(k)$ determines the N-D map

$$H^1(S)
i f \to u\Big|_S$$

where u is the solution to the equation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

$$(H - \lambda)u = 0$$
, in \mathcal{M}_{int} ,

$$\frac{\partial u}{\partial r} = f$$
, on S ,

u satisfies the radiation condition.

Using this N-D map, one can apply the boundary control method due to Belishev-Kurylev to reconstruct the manifold \mathcal{M} . For the case of cusp, one needs to introduce the generaized S-matrix.

(On the cusp end $\mathcal{M}_{N+N'}$, one uses eigenprojections associated with $-\Delta_h$ to reduce to the 1-dimensional problem, and observe the behavior of growing and decaying solutions.)

Remarks on the assumption

The decay assumption is roughly as follows. For the sake of simplicity, let us consider only the case of regular ends, and assume that

$$\rho(r)^{-1} \in S^{-\beta},$$

$$h(r, x, dx) - h_M(x, dx) \in S^{-\gamma}.$$

Then we assume :

(1) For the limiting absorption principle,

$$\beta > \mathbf{0}, \quad \gamma > \mathbf{0}.$$

(2) For the spectral repesentation, and the inverse scattering,

either
$$\beta \ge 1$$
, $\gamma > 0$, or $\beta > 0$, $\gamma > 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

For Further Reading I

- H. Isozaki, Y. Kurylev and M. Lassas, Conic singularities, genealized scattering matrix, and inverse scattering on asymptotically hyperbolic surfaces, to appear in *J. Reine angew. Math..*
- H. Isozaki, Y. Kurylev and M. Lassas,

Spectral theory and inverse problems on asymptotically hyperbolic orbifolds,

arXiv : 1312.0421

H. Isozaki, Y. Kurylev and M. Lassas, Recent progress of inverse scattering theory on non-compact manifolds,

to appear in Contemp. Math.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

For Further Reading II

Author, Another Spectral properties of Laplacians on non-compact manifolds with