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Instability of the short-range assumption

We consider a connected, non-compact manifold (or orbifold) of
the form

M=KUMiU---UMpnin

where, K = relatively compact,
M~ (0,00) x M;, (diffeomprphic),

M; = compact manifold (orbifold) of dim n — 1 equipped with the
metric hy(x, dx).

M is equipped with the metric
ds® = (dr)? + pi(r)?hi(r, x, dx)

hi(r,x, dx) — hy,(x, dx) = O(r~7), v > 0.
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Typical examples

@ (1) p(r)=€e%", ¢y >0, hyperbolic regular end
@ (2) p(r) =r Euclidean (or conical)

@ (3) p(r) =1 cylindrical end (waveguide)

@ (4) p(r)=€e%" ¢y <0, hyperbolic cusp
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We know that

@ For (1),(2) No embedded eigenvalues in the continuous
spectrum.

@ For (3), (4) dembedded eigenvalues
@ For (1), (2), (3) One can reconstruct M from the
physical S-matrix for all energies associated with one end

@ For (4), One can reconstruct M from the generalized
S-matrix for all energies associated with one end
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Instability of the short-range assumption

We deal with the metric of the form

B pa
expl(cor+=r¢), 0<a<i,
p(r) ~ rﬁp(o a)

where
@ Fortheregularend, cp >00rcy =0,5 >0,
@ Forthe cusp, cyg < 0,0rcy =0, 5 <0.

Sometimes, it is more convenient to state the assumption in the
form
p(r)~te 8P

In this setting, the exponentially growing metric corresponds to
the case 8 = oc.
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Perturbed warped product metric

Consider the following metric on (0, c0) x M,
ds? = (dr)® + gm(r, x, dx),

where gu(r, x, dx) = g j(r, X)ax'dx’/ is a metric on M
depending smoothly on r > 0. Let

g = g(r,x) = det (gm,(r, x)).
Define

f(r,x) € 8 < 979 f(r,x) = O(r*™=™), Vm,a.
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The 1st assumption

_ i’_(”‘”co (n_1)/8 a—1 —1—¢
(A-1) 4g 5 5 €S ,

0<a<1,e>0,

B0, if ¢y = 0.

Integrating

g = p(n?"0o(1),
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where
exp (cor+§ra ., O<a<i,
exp(cor)r®, a=0.

We can then rewrite gy (r, x, dx) as

gm(r, x, dx) = p(r)2h(r, x, dx),
where h(r, x, dx) is bounded in r.
So, our metric has the form

ds? = (dr)? + p(r)2h(r, x, dx).
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The 2nd assumption
(A-2)  There exists a smooth metric hy(x, dx) on M such that

h(r,x,dx) — hy(x,dx) e S77, ~>0.
We say that
@ M has a regular infinity if
eithercg >0, or ¢ =0, [F>0.
@ M has a cusp if

eithercg <0, or ¢ =0, [<0.

The 3rd assumption

(A-3) My, .-+, My have regular infinities, and
Mpnit, -+, Mpyan have cusp.
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The perturbation term
h(r,x,dx) — hy(x,dx) € S

is said to be short-range if v > 1, and long-range if v < 1.

Usually, the latter is more compilcated than the former.

It seems that there exist of the metric :
Assuming that p(r) = r®, they are (think of
Xnpt = (F + -+ x3) %)

@ 3 =1 : conic surface

@ 3 =1/2: parabola

@ 5=1/3:7
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Instability of the short-range assumptioption

Consider the following metric with
ds® = a(t, z)(dt)? + + w(t)2cj(t,z)dz'd2.

Assume
w(t) 'eS*, a(t,z)—1e S,

bi(t,z) € S, c;(t,z) — hj(t,z) € S,

with the condition
k>1/2, A>1, k+pu>1, v>0.

Note that x corresponds to the volume growth of the manifold.
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Theorem
One can transform the metric with a cross term

ds? = a(t, z)(dt)? + 2w(t)bi(t, z)dtdz' + w(t)?c;(t, z)dz'dZ..
into the perturbed warped product form
ds® = (dr)? + w(r)?h(r, x, dx),
where h(r, x, dx) is an r-dependent metric on M satisfying

E(I’, X, dX) = h(Z(X), dX) c S—min{ll,eo}’

eo = min{\,k + p,2x} — 1.

Therefore, the metric with cross term can be transformed to the
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perturbed warped product if

w(t) ~ exp <cot+ it“) , or 17, with g>1/2.
However, even if v is large, the resulting metric
(dr)? 4+ w(r)2h(r, x, dx) is
@ a short-range perturbed metric of (dr)? + p(r)?hy(x, dx)
only when g > 1,
@ along-range perturbed metricif 1/2 < g < 1.

Note that the case 5 = 1 corresponds to the standard
asymptotically Euclidean metric (see [Bouclet, 2012]).
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Rellich-Vekua theorem

Consider M = (0, 00) x M with metric
ds® = (dr)? + p(r)2h(r, x, dx),
h(r,x,dx) — hy(x,dx) e S7¢, e>0.
Assume that
(B-1) There exist constants ¢y, cg, dg, € Such that
/
% —c eSS, (rd,+d)p ' <0
and satisfying either (i) or (ii) :
(i) cg>0,00 >1/3,¢90>0,e>0.
(ii)CoZO,(50>O,60:1,6>0.
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Rellich-Vekua theorem

We fix a point pg in M, and let

S(r) = {p € M; dist(p, po) = r}.

Theorem

Suppose there exist constants R > 0, A > ((n — 1)00/2)2 and
u € H2 (M) such that

loc

(—Apm —AN)u=0, for r>R,

liminf r”*/ @
r—oo S(r) 8r

Then u =0 forr > R.

2
|u\2> dS(r) =0, 3v>0.
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Rellich-Vekua theorem

This theorem covers all of the cases :

A exp(cor+§r0‘, O<a<t,
exp(cor)r®, a=0.

To prove this theorem, we consider an abstract differential
equation

—U"(t) + B(t)u(t) + V(t)u(t) — Au(t) =0, t>0

for an Hilbert space - valued functions, and apply the classical
method of T. Kato ([1959], CPAM), or Eidus ([1969], Russ.
Math. Survey).

Here, B(t) (corresponding to —p(r)~2Ay) is a non-negative
self-adjoint operator having the property

t%BY) | By < cre, 60,
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Laplacian on M

Basic spectral properties

Consider the case of one end : M = (0, c0) x M, on which the
metric is
ds? = (dr)? + p(r)2h(r, x, dx).

Then, the Laplacian is

/
—Ap =02 - zgga, + p2B(r),

g=p*""Yh  h=h(r,x) = det(hy),

B(r) = —%ax, (ﬁh’faxj) .
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We put

h(r) = L3(M; /h(r, x)dx),
[25(M) 5 f = || = /O T+ ) o) < oo,

B> f<— sz/zuf”LZ(//) < 00,
j=1

/0 = (O’ 1)’ I/ = (2j_172j)7 (.I > 1)7

. 1 (A -
B* > v<:>supR/ V(NI e(n)™dr < oo,
R>1 0

R

* . 1 2 n—1 _
By 3 V<= E,Iinoo R [Vlkryp(r)™ " dr = 0.
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Laplacian on M

We then have the following inclusion relations
[25cBc P2 cPc27V2cB cl?S s>1)2
We return to our manifold
M=KUM;y--- Mpnin.
Take a partition of unity {x;}5"', and define the norms on M,

e.g.
N-+N'

1flls = Ixofllzgvy + D Ifllzseay)-
j=1

Recall that on each end M, = (0, c0) x M;,

ds? = (dr)? + pi(r)?hi(r, x, dx),
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Laplacian on M

pi(r) =

exp (o, + 2r*), 0 <aj <1,
exp (co,ir)r%, «a;j=0,
hi(r, x,dx) — hy(x,dx) € S,
where

for regularends 1 < i < N,
either ¢p; > 0,0r ¢y ; = 0,5; > 0,

forcuspends N+1<i< N+ N,
either ¢g; < 0,0r ¢y ; =0, B; < 0.

Let
H=—-Ay on M,

R(z)=(H-z)"".
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Laplacian on M

Let
Eoji= ((n—1) 001/2)) , T ={Eo1, -, Eontn}

Eo= min Ey, E = min Ey;.
t1<ichpne Ol F0reg = iy O

(1) 0o(H) = [Eo, 0).

(2)  op(H)N ((Eoreg,0) \ T) = 0.

(8) Suppose Eg < Ep req- Then, the eigenvalues in

(Eo, Eo,reg) \ T are of finite multiplicities with possible
accumulation points at 7.

(4) If all ends are cusp, the eigenvalues in (Ey, o) \ T are of
finite multiplicities with possible accumulation points at 7 and
infinity.
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Spectral representation and S-matrix

Take any compact interval
I C (Eg,0) \ (O'p(H) U{Eo1,- - 7EO,N+N’})'

Assume long-range, i.e. for hi(r, x, dx) — hy,(x, dx) € S,
v >0, Vi=1,--- N+N.

Theorem

For any f € B and X\ € /, there exists a wak x-limit
lim._,o R(\ L ie)f,i.e. for f,ge B

lim(R(\ £ ie)f, g) = (R()\ £ i0)f, ).

e—0

Moreover
IR\ £ i0)f||g- < C||fllg, A€l
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Spectral representation and S-matrix

The representation space

Let
h; = L2(M)).
J,00 C, N+1<j<N+N,
NN/
ho = & hj,ooa
j=1
~  N+N
H= 9 [?((Eoj,0): hooji dA).
j:

Let Hac(H) be the absolutely continupus subspace for H, i.e.
Hac(H) > f <= d(En (M), f) is absolutely continuous.
(

where Ey()\) is the spectral decomposition of H.
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Spectral representation and S-matrix

We assume either
Bi Z 17 Vi > 07

or
ﬂ,‘>0, ’y,'>1.

As in the case of R”, there exists a spectral reresentation (or
) associated with H. It is first
defined on H,

FOW) = (FI0). Filu(0) € B(B; ),

(to be be explained later),
and then extended to L2(M) by the formula

(FE)(N) = FE (ML
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Spectral representation and S-matrix

Theorem

There exists a unitary operator F(&) : H-(H) — H having the
following properties.

(1) (FENH(N) = FEW, vf € B.

(2) (FEHF)(N) = M(FEF)(N), Y € D(H).

(3) FE(N)* € B(hy; B*), and
(H—=NFH ) =o.

(4) For any f € Hac(H), the inversion formula holds

e (+) (+)
f— 21: onfj (V) (FFH) (N dA.
/: .
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Spectral representation and S-matrix

Asymptotic expansion of the resolvent at infity

Each operator }‘ (A) is constructed as follows.
Note that —Ap, has

@ eigenvalues B(j), £=0,1,2,---,

e eigenprojections PV, ¢ = 0,1,2,- -
Thenfor1 <j <N,

FHO) = Zf(i N e PP,
(=0
forN+1<j< N+ N,

(£)(y) = £
Fi () = Fjo (A)-

Here F/-(’jf)(/\) are related to the asymptotic behavior of the
resolvent at infinity:
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For f € B, R(A + i0)f behaves like as r — ~
@ onM;,1<j<N,

. (£) .
3" G (Np(N) D2 OO ED (3 @ PO,
>0

oonM;, N+1<j<N+N,

io(E) .
Gi(\)pi(N) 20 D ED (N © PYF,

)

(n—1)2¢c3,
P ) ~ ir\/)\ -
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Helmholtz equation

Let
N+N’
heo(N) = ,-3 X(Eo,n00) (Moo -

{ueB*; (H=\u=0}=FH N\ h(N).
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S-matrix

Take o = (™ ... ,w%’BN,) € ho()), and let
Wi = Py,

Then 31u € B* and 314(°) ¢ h(\) such that (H — \)u = 0,
which behaves as follows :

(1) on the regular ends M;, 1 <j <N,

U~ Z w(_/'!)()\)pj()\)f(nq)/zeficpj(x,r)wﬁig)’

— Z wg7€)()‘)pj(r)_(n_1)/Zei%()\7r)¢ﬁzUt)
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(2) onthe cuspends M;, N+1<j< N+ N
U~ w(_j)(/\)pj()\)—(n—1)/Ze—igp,-()\,r)wj(in)

_w(/)()\)pj(,)—(n—1 )/2ei¢,(x,r)¢j(out)
The S-matrix is then defined by

S(A) - hoo (V) 3 UM — (0 < b (\)

which is unitary.
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Inverse scattering

Inverse Scattering

Theorem (Inverse scattering from regular ends)

Given two manifolds MM, M@, let MV, M'?) be regular
ends, and assume that

a1 a2
S =8P 0), A,

moreover M) and M{?) are isometric. Then M() and M®)
are isometric.

The physical S-matrix for the cusp end does not have sufficient
information to recover the whole manifold.
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Inverse scattering

Generalized S-matrix

Assume that for the cusp ends M;, j=N+1,--- N+ N, the
metric has the form

dsZ\M. — (dr)? + py(r)2hu (x, dx),

)

exp (Cojr + ﬁr“/), 0<aj<1,
o
j

exp (Co7jf')f’6/, Q= 0,
where ¢y ; < 0,0r ¢y =0, 3 < 0.
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Inverse scattering

Let0 = B(()j) < B1U) < Bg) < --- be the eignevalues of —Ay,

with normarized eigenvectors qbg), ¢=0,1,2,---. We put
1 n? —2n 0} o\1/2
o;(r :/ £ -2+ - dt.
(1) 1(p/2 i G))
Note

®i(r) = o0, as r— oo.

Then, there exist solutins of the equation

n—1)o gY)
—U”—( )pju/+<£2_ >u:07
Pj Pj
which behave like
U~ pi(r) (" 2gEN) s o,
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Inverse scattering

Take any solution u of the equation
(-Ap—A)u=0, on M;, j=N+1,--- N+N.
Expanding it by d>§j), we have
(v, 612y = @ U (r) + b u) (1),

Here, we introduce two sequences A(i/) :

AD > (a2} = Y o Plull (N < oo, Wr>1.
/=0

Then, cé’i behaves like, roughly,

o
i () ¢ .
AD s {cri)izo == lon 26280 < oo, vr> 1.
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So, AE{) is the space of super-exponentially decaying

sequences, and AY s the space of super-exponentially
growing sequences.

If {a¥1 € AY, then (b} c A

~
=
1<
=

For the cusp end, we define the generalized incoming data and
outgoing data by

Wi Z A0 (e (x).  {a)izg < A,
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Inverse scattering

(which is exponentially growing as r — o),
v =N DU (N (x), {60}, € AV,

(which is exponentially decaying as r — o).

For the regular end, we put

oo
wj(ln) _ ng)()\’ Bg))w( )()\ r: B(/))wj(g)’
(=0

\Ul(-our) _ Zw(_/)()\’ Béj)) (- )()\ r BU))l/J(OUt).
=0
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Inverse scattering

Theorem

For any incoming data w}i") € L2(M;) from regular ends and
genaralized incoming data from cusp ends, there exist a
solution u of the equation (—A ¢ — \)u = 0 and the outgoing

data such that
N+N/

u- > v ep
j=N-+1
moreover

u:tlij(.m)—\lfj(-ow), on Mj, j=1,---,N,

u:lllj(.m)—lllj(-om), on M;, j=N+1,.-- N+N.
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Inverse scattering

We call the mapping

. (wSOUt)’ 3 (out {b(N-H)} 7{b§N+N/)})

the generalized scatteing matrix.

Theorem (Inverse scattering from cusp)

Let MSRJFM,, Mf\i)JrNé be cusp ends of M) and M(®2). Assume
that

(i) Mf\})JrN, and Mf\f)JrNé are isometric,

(il) The components of the generalized S-matrix associated
with the cusp ends coincide for all energies. Then M (") and
M® are isometric.
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Inverse scattering

|ldea of the proof

Introduce an artificial boundary
S={(r,x); r=2,xe M} C Mj.

Let
Mext = M1 N {r > 2}v

Mint = M\ Mex:.
Then §11(k) determines the N-D map

H1(S)9f—>u87

where u is the solution to the equation
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Inverse scattering

(H - A)U = 07 in Minty

ou

E_f’ on S,

U satisfies the radiation condition.

Using this N-D map, one can apply the boundary control
method due to Belishev-Kurylev to reconstruct the manifold M.
For the case of cusp, one needs to introduce the generaized
S-matrix.

(On the cusp end My a7, One uses eigenprojections
associated with —Ay, to reduce to the 1-dimensional problem,
and observe the behavior of growing and decaying solutions.)
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Inverse scattering

Remarks on the assumption

The decay assumption is roughly as follows. For the sake of
simplicity, let us consider only the case of regular ends, and
assume that

p(r)~ e s,

h(r,x,dx) — hy(x,dx) e S77.

Then we assume :
(1) For the limiting absorption principle,

8>0, ~v>0.
(2) For the spectral repesentation, and the inverse scattering,

either 6>1, >0, or >0, ~v>1.
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