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Introduction. Consider the defocussing cubic non-linear
Schrödinger equation (dNLS) (the real form)

J
∂ψ

∂t
= −ψxx + 2|ψ|2ψ, J =

(
0 1
−1 0

)
, ψ =

(
ψ1

ψ2

)
,

on the circle T = R/Z, i.e. ψ(x + 1, t) = ψ(x , t) for x , t ∈ R, with
the initial conditions:

ψ(·, 0) = q =

(
q1
q2

)
∈ L2(T)⊕ L2(T),

where q1, q2 are real functions. The dNLS equation has the
Hamiltonian H given by

H(q) =
1

2

∫ 1

0
(|q′(x)|2 + |q(x)|4)dx . (0.1)



For functionals E = E (q) and G = G (q) the Poisson bracket
{E ,G}P has the form

{E ,G}P =

∫ 1

0

(
∂E

∂q1(x)

∂G

∂q2(x)
− ∂G

∂q1(x)

∂E

∂q2(x)

)
dx .

Using the Poisson bracket and the Hamiltonian we rewrite the
DNLS in the following form

∂ψ

∂t
= {H(ψ), ψ}P = −J

(
∂H
∂ψ1
∂H
∂ψ2

)
= −J(−ψxx + 2|ψ|2ψ).



The dNLS equation admits globally defined real analytic
action-angle variables In > 0, φn ∈ [0, 2π), n ∈ Z (see
Veselov-Novikov, McKean-Vaninsky and Grebert-Kappeler- Pöschel
and McKean- Vaninsky). The action-angle variables are canonical
varables:

{In, Im}P = 0, {φn, φm}P = 0, {In, φm}P = δn,m,

∀ n,m ∈ Z.
The main goal of my talk is to demonstrate the new approach to

study integrable systems. This approach is based on so-called
Löwner type equations.



The dNLS equation has the Hamiltonian H and other two
integrals H0 and H1 given by

H0 = ‖q‖2 =
∑
n∈Z

In,

H1 =

∫ 1

0
(q′2(x)q1(x)− q′1(x)q2(x))dx =

∑
n∈Z

(2πn)In,

H =
∑
n∈Z

(2πn)2In + 2H2
0 − V ,

E.K. [05]. Here V is some nonlinear functional. In fact we rewrite
H0,H1 and the main part of H in terms of simple functions of the
actions I = (In)n∈Z.



Introduce the real spaces

`p =

{
f = (fn)n∈Z, ‖f ‖pp =

∑
n

f pn <∞
}
, p > 1.

Recall that we have:
(i) |q| ∈ L2(T) iff (In)n∈Z ∈ `1,
(ii) |q′| ∈ L2(T) iff (nIn)n∈Z ∈ `1.



Mein results. Recall that the Hamiltonian H depends only on
the actions I . Introduce the frequencies Ωn by

Ωn =
∂H

∂In
, n ∈ Z. (0.2)

The parameters Ωn are very important, since the angle variables
φn(t) as functions of time t > 0 have the form

φn(t) = φn(0) + Ωnt, t > 0, n ∈ Z.

Due to the identity H =
∑

n∈Z(2πn)2In + 2H2
0 −V we deduce that

the gradient is given by

Ωn = (2πn)2 + 4H0 −
∂V

∂In
. (0.3)

Thus in order to study Ωn we need to study ∂V
∂In

only. Our goal is
to give a new method to study Hamiltonian as a function of action
variables. In this paper we reformulate the problems for the dNLS
equation as the problems of the conformal mapping theory. The
main technical tool is Theorem 3 about the Löwner type equation.



Why the action-angle variables are important?
We fix time t = 0 and we construct the action-angle variables

ψ(x , 0)→ (In(0), φn(0))n∈Z. This construction is still very
complicated and very very technical!!!!

We consider the NLS equation J ∂ψ∂t = −ψxx + 2|ψ|2ψ and we fix
t > 0. The action variables In(t) = In(0) do not depend on time t
and the angle variables satisfy
φn(t) = φn(0) + Ωnt, t > 0, n ∈ Z.

After this we solve the inverse problem

(In(t), φn(t))n∈Z → ψ(x , t),

which gives the solution of the NLS equation for any time t > 0.
Thus we have

ψ(x , 0)→ (In(0), φn(0))n∈Z → (In(t), φn(t))n∈Z → ψ(x , t).



Theorem 1. i) The following estimates hold true:

π

6
‖I‖22 6 V (I ) 6

2π

3
e‖I‖2‖I‖22.

ii) Let A = {I ∈ `1 :
∑

n∈Z In 6 1
82
}. Then the function

V : A → [0,∞) has the derivative ∂V
∂In

for each n ∈ Z, which is
continuous on A and satisfies

|V (I )− ‖I‖22| 6 7π‖I‖32,

‖∂V (I )

∂I
− 2I‖2 6 11π2‖I‖∞‖I‖2.

Remark. i) In order to study the perturbation of the dNLS the
estimates the Hamiltonian H(q) in terms of ‖I‖2 are important.
This is the motivation of these estimates.

ii) V (I ) is a well defined function of action I = (In)n∈Z ∈ `2.



Preliminaries 3. The dNLS equation is integrable and admits a
Lax-pair formalism. Consider the corresponding self-adjoint
Zakharov-Shabat operator Tzs acting in L2(R)⊕ L2(R) and given
by

Tzs = J
d

dx
+ Q, Q =

(
q1 q2
q2 −q1

)
,

where |q| ∈ L2(0, 1). The spectrum of Tzs is purely absolutely
continuous and is union of spectral bands σn, n ∈ Z, where

σn = [z+n−1, z
−
n ], · · · < z−2n−1 6 z+2n−1 < z−2n 6 z+2n < . . . ,

z±n = nπ + o(1) as |n| → ∞.

The intervals σn and σn+1 are separated by gap γn = (z−n , z
+
n )

with the length |γn| > 0. If a gap γn is degenerate, i.e., |γn| = 0,
then the corresponding segments σn, σn+1 merge. We need the
Zakharov-Shabat equation

Jf ′ + Qf = zf , z ∈ C, f =

(
f1
f2

)
( ′) =

∂

∂x
.



Here z±2n, n ∈ Z are the eigenvalues of the equation
Jf ′ + Qf = zf with the periodic boundary condition
f (x) = f (x + 1). And z±2n+1, n ∈ Z are the eigenvalues of the
equation Jf ′ + Qf = zf with the anti-periodic boundary condition
f (x) = −f (x + 1). Define the 2× 2-matrix valued fundamental
solution Ψ = Ψ(x , z) by

J
d

dx
Ψ + QΨ = zΨ, Ψ(0, z) =

(
1 0
0 1

)
, z ∈ C. (0.4)

Introduce the Lyapunov function ∆(z) by

∆(z) =
1

2
TrΨ(1, z), z ∈ C.

The function ∆ is entire and ∆(z±n ) = (−1)n for all n ∈ Z.



We recall results which is crucial for the present paper. For each
q ∈ L2(T) there exists a unique conformal mapping (the
quasimomentum) k : Z→ K(h) (see Fig. 1 and 2) and such that

cos k(z) = ∆(z), z ∈ Z = C \ ∪γn, and

K(h) = C \ ∪Γn, Γn = (πn − ihn, πn + ihn),

Here hn > 0 are the Marchenko-Ostrovski height, defined by
equations cosh hn = |∆(zn)| > 1,

zn ∈ [z−n , z
+
n ], ∆′(zn) = 0,

k(σn) = [π(n − 1), πn], k([z−n , z
+
n ]) = Γn,

k(z) = z + o(1) as |z | → ∞.
Here Γn is the vertical cut and γn = [z−n , z

+
n ] is the horizontal cut.

We have
(hn)n∈Z ∈ `2 ⇔ q ∈ L2(0, 1)

If |q′| ∈ L2(0, 1), then k(·) has asymptotics

k(z) = z − H0

2z
− H1

(2z)2
− H2 + o(1)

(2z)3
as z → i∞.



0 Re z

Im z

z−1 z+1 z−2 z+2 z−3 z+3z+0z−0z+−1z−−1
z+−2z−−2

z+−3z−−3

Figure: The domain Z = C \ ∪γ̄n, where γn = (z−n , z
+
n )

0 Re k

Im k

π−π 2π−2π 3π−3π

ih0
π + ih1−π + ih1

2π + ih2−2π + ih2 3π + ih3−3π + ih3

Figure: The domain K (h) = C \ ∪Γn, where Γn = (πn − ihn, πn + ihn)



The Löwner type equation 4. Define the ball

B(r) = {η : ‖η‖2 6 r} ⊂ `2, r > 0.

Let `pC be the complexification of the space `p. In the complex
space `2C the corresponding ball is denoted by BC (r) ⊂ `2C .

Let z(·) = k−1 : K(h)→ Z be the inverse mapping for
k : Z→ K(h). Below we will sometimes write z(k, h), instead of
z(k), when several h are being dealt with.



Recall the simple case about th Loewner equation.
Loewner equation, is an ordinary differential equation discovered

by Charles Loewner in 1923 in complex analysis and geometric
function theory. (Loewner, C. (1923), ”Untersuchungen ber
schlichte konforme Abbildungen des Einheitskreises, I”, Math.
Ann. 89: 103-121). Loewner’s method was later developed in 1943
by the Russian mathematician Pavel Parfenevich Kufarev
(1909-1968).

Loewner equation was used in the following cases:
1) De Brange proved the Bieberbach conjecture.
2) Smirnov, Stanislav (2001). ”Critical percolation in the plane”.

Comptes Rendus de l’Acadmie des Sciences
....



The classical case. Let B ⊂ C be ”good” bounded domain and
Bt = B \ [z0, z0 + it] for t ∈ [0, t0], where z0 ∈ ∂B and the
segment (z0, z0 + it0] ⊂ B. Let g(z , t) be a conformal mapping
from the unit disc D onto the domain Bt such that

g(0, t) = 0, g ′z(0, t) > 0.

Define the new function

f (z , t) = g−1(g(z , 0), t), z ∈ D.

The function f (z , t) is a conformal mapping from the unit disc D
onto the disc D with the cut γ(t), where γ(t) is some curve. For
each |z | < 1 the function f (z , t) satisfies the Löwner equation

∂f

∂t
= −f 1 + kf

1− kf

where k = k(t), |k(t)| = 1 is some continuous function and
f (0, t) = 0, f ′z (0, t) > 0.



Theorem 2. There exist ε > r > 0 such that for any fixed real
h ∈ `2 the function z(k, h + η) has the analytic extension from
(k , η) ∈ K(h, ε)×B(r) into the domain K (h, ε)×BC (r), where

K(h, ε) = {k ∈ C : dist(k ,∪Γn) > ε} ⊂ K(h).

Moreover, for each n ∈ Z the derivatives are given by

∂z(k, h)

∂hn
=

νn
z(k, h)− zn(h)

, hn 6= 0, k ∈ K(h),

k 6= πn ± ihn (it is the Löwner type equation), where

νn(h) = (−1)n−1
sinh hn
∆′′(zn)

, all n ∈ Z.

Remark. 1) In the classical case we have only one cut. In our case
we have infinitely many cuts.

2) In our case the point of the normalisation is the infinity, since
z(iv , h) = iv − (Q0 + o(1))/iv as v →∞ i.e. this point belongs to
boundary of our domain. Remark that in the classical case this
point lies inside the domain.



We show applications. Due to Flashka, McLaughlin we define
the actions In by

In =
2

π

∫
γn

v(z + i0)dz > 0

since v(z + i0) > 0 on the open gap γn 6= ∅.



Theorem 3. i) The mapping given by

I 0 = (I 0n )n∈Z → I = (In)n∈Z, I 0n = h2n,

is a real analytic isomorphism of
`1+ = {f = (fn)n∈Z ∈ `1 : fn > 0,∀ n} onto itself and

‖
(
∂I

∂I 0

)−1
‖ 6 e‖h‖∞ .

ii) The derivatives ∂In
∂I 0j

have the following forms:

∂In
∂I 0j

= −
2ν̃j
π

∫
γn

v(z)dz

(z − zj)2
, j 6= n,

∂In
∂I 0n

= 2νn +
2νn
π

∫
γ\γn

v(z)dz

(z − zn)2
, γ = ∪γs , k = u + iv ,

ν̃j = (−1)n−1
sinh hn

2hn∆′′(zn)
.



Remarks: Define the operator I ′ : `1 → `1 by

I ′ = {I ′n,j}, (I ′f )n =
∑
j∈Z

I ′n,j fj , f = (fj)j∈Z, I ′n,j =
∂In
∂I 0j

.

We have the identity

Ω0
j =

∂H

∂I 0j
=
∑
n∈Z

∂H

∂I 0n

∂In
∂I 0j

,

or in the vector form

Ω0 = (Ω0
n)n∈Z =

∂H

∂I 0
= I ′>Ω, Ω =

∂H

∂I

Theorem 3. The following identities hold true:

(I ′>)−1Ω0 = Ω, Ω0
n =

∂H

∂I 0n
= 2ν̃n(H0 + 2z2n ).


