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LAt:':ive Thermography and Its Mathematical Formulation

(- Forward and inverse problems

Mixed problem (set up)

Q CR” (1 <n<3): bounded domain (heat conductor),

0N :C?*(n=23), 90=TPULN,
where IT'? T'V are open subsets of 9§ such that T NI'N = () and

OTP, or'N are C? if they are nonempty.

D C Q : open set ((separated) inclusion(s)), DcCQ,
oD :CH (0 <a<1),Q\D : connected.

Heat conductivity:
y(z) = A(z) + (fl(:v) — A(x))xp : positive definite for each = € Q,

where 4, A € C! (Q) are positive definite and A — A'is always positive

definite or negative in a neigh. of 9D, xp is the char func of D.
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LAt:':ive Thermography and Its Mathematical Formulation

(- Forward and inverse problems

Sobolev spaces
Let X C R™ be a bounded domain and 0.X be its boundary.
anisotropic Sobolev spaces :
HPO®R x R) = {u s (1+ |60, (1+ [1)0%0 € LR}
if p, ¢ > 0, where @ is the Fourier transform of wu.
HP9(R™ x R) := (H—Pv—q(]R" x R))I (duality)
if p, ¢ <0.
HP(Xp) := restriction of HP?(R" x R) to X1 := X x (0,7).
HY2(Xp) :={ue H"W/2(X x (—00,T)) : u(x,t) =0 (t < 0)}.
HP9((0X)r) is defined in a similar way.
L?((0,7); E) := set of Hilbert space E —valued L? functions over (0, 7).
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LAt:':ive Thermography and Its Mathematical Formulation

(- Forward and inverse problems

Mixed problem (forward problem)

Given f € LQ((O,T);E%(FD)),g € L2((0,T); H=2(TN)) (input),
(7) 3! weak solution
u=u(f,g) € W(Qr) = {u e H"*(Qr), Ou € L*((0,T); H(2)*)} :

Ppu(z,t) := dwu(x,t) — divy(y(x)Vyu(z,t)) =0in Qp
uw(z,t) = f(z,t) onTR, dau(x,t) :==v- AVu(z,t) = g(z,t) onTH

u(z,0) =0for x € Q,

where v is the outer unit normal of 01,

1 R
H?(I'P), H=2(TN) are Hérmander's notations of Sobolev sp,

QT = Q(O,T) =0 x (O,T), BQT = QQ(O,T) = 00 X (O,T)
(cylindrical sets)

This is a well-posed problem.
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Measured data
Neumann-to-Dirichlet map Ap:
1
For fixed f € L?((0,T); H?(T'P)), define

Ap : L2((0,T); H=3(TN)) — L2((0, T); H* (V)

Inverse boundary value problem

Reconstruct the unknown inclusion(s) D and A . from Ap.
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Active Thermography and Its Mathematical Formulation

[ Forward and inverse problems

Known results |

* H. Bellout (1992): Local uniqueness and stability.

* A. Elayyan and V. Isakov (1997): Global uniqueness using the
localized Neumann-to-Dirichlet map even for time dependent inclusions.

* M. Di Cristo and S. Vessella (2010): Stability estimate (i.e. log type
stability estimate) even for time dependent inclusions.

« Y. Daido, H. Kang and G. Nakamura (2007) (Inverse Problems) :
Introduced the dynamical probing method for 1-D case.

* Y. Daido, Y. Lei, J. Liu and G. Nakamura (2009) (Applied
Mathematics and Computation) Numerical implementations of 1-D
dynamical probe method for non-stationary heat equation.
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Active Thermography and Its Mathematical Formulation

[ Forward and inverse problems

Known results Il

« Y. Lei, K. Kim and G. Nakamura (2009) (Journal of Computational
Mathematics) Theoretical and numerical studies for 2-D dynamical probe
method.

* V. Isakov, K. Kim and G. Nakamura (2010) (Ann. Scoula Superior di
Pisa) Gave the theoretical basis of dynamical probe method.

* K. Kim and G. Nakamura (2011) Inverse boundary value problem for
anisotropic heat operators.

* M. lkehata (2007) Extracting discontinuity in a heat conductive body:
one-space-dimensional case.

* M. lkehata (2007) Two analytical formulae of the temperature inside a
body by using partial lateral and initial data.
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[ Forward and inverse problems

Known results |11

* M.lkehata and M. Kawashita (2009) The enclosure method for the heat
equation.

* M. lkehata and M. Kawashita (2010) On the reconstruction of
inclusions in a heat conductive body from dynamical boundary data over
a finite time interval.

« H. Isozaki, P. Gaitan, O. Poisson and S. Siltanen (2011) Gave the
enclosure method for many boundary measurements (isotropic case).

* G. Nakamura and S. Sasayama(2013) Reconstructed the conductivities
of inclusions at their boundary (isotropic case).

« G. Nakamura and H. Wang (2013) Gave a linear sampling type method
for many measurements (isotropic case).
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LAt:tive Thermography and Its Mathematical Formulation

(- Forward and inverse problems

Objectives of this talk

(i) Introduce two reconstruction schemes called dynamical probe
method (DP method) and linear sampling type method (LS
method).

(ii) Show some improvement on the DP method.

(iii) The DP method is good at probing D from its outside and LS
method is good at probing D from its inside. By combining these
two methods, | will propose a sampling type reconstruction scheme.
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LDynamit:al probe method
Runge’s approximation, pre-indicator function and reflected solution

Dynamical probe method (fundamental solutions)
For (y,s), (v, s") € R" xR, (z,t) € Qr,
I'(x,t;y,s) : fundamental solution of Py := 9, — V - (A(2)V)
[*(x,t;9,s") : fundamental solution of P := —0; — V- (A(x)V)

G(z,t;y,8), G*(z,t;y',8"):

P@G($7t;y7 S) = 5(1‘ - y)5(t — S) in QT,
G(')';yvs) =0on ]-—‘1['?7
G(z,t;y,8) =0forz € Q, t <s

PyG*(z,t;y,8") = 0(x — y)d(t — &) in Qr,
G*(-,y',8') =00on TR,
G*(x,t;y,8)=0forz e Q, t > 5

G(x,t;y,8) — T(x, t;y,5), G*(x,t;y,8) —T*(x, t;9/,8") : CF, C? in Q.
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LDynalmit:al probe method
Runge’s approximation, pre-indicator function and reflected solution

Dynamical probe method (Runge’s approximation)
3 {U?zj,s)}' WOj s/)} € H2’1(Q(—E,T+E)) for Ve > 0 s.t.

(v,

Poviy ) =0 in Q_crie)s

’U?;s):() on FDX(—E,T—l—g),

v?j)s)(:v,t) =0 if —c<t<o,

oy = Gloswss) i HPHU (=2, T4 2)) as j — o,
P$¢?Z,’S,) =0 in Q(_&T_i_s)’
QZ}?‘;/ 5/) = O on ]_—‘D X (_E,T+6)’
wgglsl)(myt)zo IfTSt<T_|_6’
,(’b(oli' s') - G*<7 ';y',s’) in H271(U X (_€I7T + E/)) as j — oo

for 0 < Ve' <¢g, YU C Q) : open s.t.
U cQ,Q\U : connected, dU : Lipschitz, U Zy, 3/, and 0 < 5, s’ < T.
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LDynamical probe method

Runge’s approximation, pre-indicator function and reflected solution

Dynamical probe method (Runge approx funcs)

Let v, 9 satisfy

Pyv=0in Qp, Pip=0in Qr,

v=fon TR, Y =0o0n I'Z,

dav=0o0n 'Y, a1 = (different fix) g on T¥,
v(z,0) =0 for z €, Y(x, T)=0 for z €.

For j =1,2,---, we define

Y,5)

v{ ::v+v?5’s) — V(%s) 1=’U+G(-,-;y,s)
] ) ]
Uy oy =0+ U0 o) = Vi) =0+ G (9, 8).

in H>1(Ur) as j — oc.

{v{y’s)}, {Q/J‘(jy,’s,)} : Runge’s approximation functions
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LDynalmit:al probe method

Runge’s approximation, pre-indicator function and reflected solution

Pre-indicator function

Definition 1

(Y,9): (¢, ') € Qr

{v{yd)}, {pry,)s,)} C W(Qr) : Runge's approximation functions

Pre-indicator function :
I(y', sy, )

= Jim [ |04, lry oy = A0 Oatdy ey 04ty lry ]
T

whenever the limit exists.
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LDynalmit:al probe method

Runge’s approximation, pre-indicator function and reflected solution

Reflected solution

Lemma 2

y¢D,0<s<T, {v], o} CW(Qr) : Runge's approximation functions,
J - J J R o
Ulys) 7= Ul 00y o log)s Wy 0 = Wy T Yy

Then, w{y,s) has a limit w, ., € W(Qr) satisfying

Ppw(y.s) = diva((A — A)xpVaVy.s) in Qr,
’U}(y,s) = O on Fle'v7 8Aw(y,s) = O on F'ZIY
Wey,s)(2,0) =0 for z € Q.

w(y,s) © reflected solution
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Runge’s approximation, pre-indicator function and reflected solution

Representation formula

Theorem 3

Fory,y ¢ D, 0 < s, s <T such that (y,s) # (y',s'), the
pre-indicator function I(y’,s';y, s) has the representation formula in

terms of the reflected solution w, )

Iy, sy, 8) = —wis (Y, s") —/6(2 Wy, 0¥ (yy 5y dodt
T
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LDynamical probe method

leentifying seperated inclusions and isotropic conductivity

indicator function

Definition 4
C :={c(\); 0 < X\ <1} : non-selfintersecting C° curve in (2,
¢(0),¢(1) € 9Q (We call this C a needle.)

Then, for each ¢()\) € Q and each fixed s € (0,T),

indicator function (mathematical testing machine)

J(c(N),s) == limlimsup [I(c(\ — 0),s + €% ¢(A = §), 5)|
el0 510

whenever the limit exists.
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[ Identifying seperated inclusions and isotropic conductivity

c(0)

(1)

Figure 1 : Domains 2, D, and a curve C'
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LDynalmit:al probe method

leentifying seperated inclusions and isotropic conductivity

Seperated inclusions case result (theorem)

Theorem 5

Let D consist of separated inclusions, and C, ¢()\) be as in the definition

above. Fix s € (0,T).

(i) C c Q\ D except ¢(0) and c(1)
= J(c(N\),s) <o forall A, 0 <A< 1
(i) cND #0
s (0< XA <1) st c(As) €D, c(N\) € Q\D (0< A< ))

=

s=sup{0 <A <1;J(c(N),s) <oo forany 0<\N <A}
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LDynamical probe method

leentifying seperated inclusions and isotropic conductivity

Remarks :

(i) A numerical realization of this reconstruction method has been done
for isotropic conductivities.

(i) If TP £ 0, u(f, g) decays exponentially after a time from which there
is not any input. Hence, in this case, we can repeat many measurements.
in a short time.

(iii) What is the advantage of the freedom to choose s (0 < s <T) ?
Can parameterize ¢(\) by s.

(iv) All other arguments are OK for non-separated inclusions except the
behavior of reflected solution.

(v) What about the case if there are inner boundaries or buried inclusions
inD?

(vi)Overshooting ¢(A\g) may happen in numerical implementation.
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leentifying seperated inclusions and isotropic conductivity

Identifying isotropic conductivity

Let the conductivity v be isotropic and piecewise homogeneous:
v=1+(—-1)xp (1)
with 0 < k # 1 (constant).

Theorem 1
By explicitly computing the asymptotic behavior of the limit of
pre-indicator function I(c(Xo),s +&%;¢(Xo), s), we can recover k. Here

¢(Xo) is the first touching point of needle C to dD.

Remark We note that the result is from the short time asymptotic of the

reflected solution.
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LDynamit:al probe method
leentifying seperated inclusions and isotropic conductivity

Improvement of the identification results

Let k£ > 1 for example. By directly considering the pre-indicator function
I(g) = I(y,s +¢e%y,s) with 177 = dist (y,dD) for any fixed
~v (0 < v < 1/10),

1

1E) = G —n

e L O™ (e — 0).

From this, by looking at the asymptotic behavior as y tends to 9D, we
can know the distance to 9D and k.
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Linear Sampling Type Method
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LLinear sampling type method

Linear sampling type method

Let I'” = (), and for the conductivity v = Ay + (A — Ao)xp, Ao = I and

for example A > I on 0.

For g € HY/2Y4(00r), let v = v9 € HY'/2(Q7) be the solution to
Ow—Av=0 in Qp,
v=g on 0fr, (2)
v=0 att=0.

Define

Sp : HY2Y4%00p) — HYY2(Dyp) g 09|

Dr
Lo : HY/2Y400r) — HY/2=Y40Q7) g+ 0,09,
G(y,s) : Green function of the heat equation satisfying Neumann

boundary condition on 0Q7.
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LLinear sampling type method

By using layer potentials, we have the following.

Theorem 2 (linear sampling type theorem) Let s € (0, T).
(i) Assume that y € D. Then for any € > 0, there exists g¥ such that

[(Ap = Mp)Lag? — Gy, llmrr2aroar) <e (3)
and is locally bounded in € > 0. Furthermore, we have
1Sp9¢ | 1172 pyys W92 E1 200000,y =00 asy — O0D.  (4)

(ii) Assume thaty € Q\ D. Then for any e > 0 and 6 > 0, there exists
g¢ 5 € HY2Y4(9Qr) such that

[(Ap — A@)Lﬂgg@ - G(y,s)||H1/2,1/4(aQT) <e+d, (5)

19092 5\l grrase(ppys 192 sllm1/200300,) — 00 asd— 0. (6)
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[ Future work

Future Work
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Sampling type method

® o o o e o
i
i3 2 j1 j+1 j+3
. . ] L[] [ . [

Figure 2 : Sampling type method

Lety; € Q,s; € (0,T),s; T (j1). For each (y;,s;), find
gvr% € HY2Y4007) + (Ap — Ag)Lagh ™™ ~ Gy, s,)

and compute
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[ Future work

. . . Ll . . .
i

i3 j2 ja j+L i+3

. . . . . . .

Figure 3 : Sampling type method

I sm(wy) = 19%% | /2174000y

Ipp(y;) == I (yj, s5 + €, yj,55)|-
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L Future work

Note that Gy, s,) can be used instead of V{, . for I(y;,s; + €,Y;,55)
and the whole G, ; ;) can be put used as one set of input data over

(0, 7).

Then, for each y; € , define

I(y;) = min{mini <k <3| g\ (Yj+(k—1)), Mmini<k<a3lpp (¥j—k-1))}-

This I(y;) can be used to sample y; ~ 9D or not.
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[ Future work

Thank you for your attention.
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