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Abstract

We consider Schrödinger operators with periodic potentials on
periodic discrete graphs. The spectrum of these operators consists
of an absolutely continuous part (which is a union of a finite
number of non-degenerated spectral bands) and a finite number of
flat bands, i.e., eigenvalues of infinite multiplicity.

We obtain the following results: 1) estimates of the Lebesgue
measure of the spectrum in terms of geometric parameters of the
graph, 2) spectral bands localization in terms of eigenvalues of
Schrödinger operators on a finite subgraph (a fundamental
domain) of the periodic graph.

The proof is based on Floquet theory and on the precise
representation of fiber Schrödinger operators.



Periodic discrete graphs

Let Γ = (V , E) be a connected infinite graph, possibly having
loops and multiple edges and embedded into Rd . Here V is the set
of its vertices and E is the set of its unoriented edges.

We consider locally finite Zd -periodic graphs Γ, i.e., graphs
satisfying the following conditions:

1) the number of vertices from V in any bounded domain ⊂ Rd

is finite;
2) the degree of each vertex is finite;
3) there exists a basis a1, . . . , ad in Rd such that Γ is invariant

under translations through the vectors a1, . . . , ad :

Γ + as = Γ, ∀ s ∈ Nd = {1, . . . , d}.

The vectors a1, . . . , ad are called the periods of Γ.



Examples of periodic graphs
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Figure: a) Kagome lattice; b) Face-centered cubic lattice.



Discrete Laplace operator

Let `2(V ) be the Hilbert space of all square summable functions
f : V → C, equipped with the norm

‖f ‖2
`2(V ) =

∑

v∈V

|f (v)|2 < ∞.

We define the normalized Laplacian ∆ on `2(V ) by

(
∆f

)
(v) = − 1√κv

∑

(v , u)∈E

1√κu
f (u), v ∈ V , f ∈ `2(V ), (1)

where κv is the degree of the vertex v and all loops in the sum (1)
are counted twice.

It is known that

−1 ∈ σ(∆) ⊂ [−1, 1].



Discrete Schrödinger operator

The Schrödinger operator H acts on `2(V ) and is defined by

H = ∆ + Q,

where ∆ is the normalized Laplacian,

(
Qf

)
(v) = Q(v)f (v), ∀ v ∈ V .

The potential Q is real valued and satisfies

Q(v + as) = Q(v), ∀ (v , s) ∈ V × Nd ,

a1, . . . , ad are the periods of Γ.



Spectrum of Schrödinger operator
In Rd we consider a coordinate system with the origin at some

point O and with the basis a1, . . . , ad (the periods of the graph).
Denote by V∗ the set of all vertices of the graph from the unit

cell [0, 1)d :

V∗ = [0, 1)d ∩ V = {v1, . . . , vν}, ν = #V∗ < ∞.
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Figure: The unit cell [0, 1)2 of the Kagome lattice. The vertices from
V∗ = {v1, v2, v3} are black.

Denote the potential at the vertices of the unit cell by

Q(vn) = qn, n ∈ Nν = {1, . . . , ν}.



Spectrum of Schrödinger operator

The Schrödinger operator H = ∆ + Q on `2(V ) has the
standard decomposition into a constant fiber direct integral

`2(V ) =
1

(2π)d

∫ ⊕

Td

`2(V∗) dϑ, UHU−1 =
1

(2π)d

∫ ⊕

Td

H(ϑ)dϑ,

Td = Rd/(2πZ)d , `2(V∗) = Cν is the fiber space, U is some
unitary operator, the Floquet ν × ν matrix H(ϑ) is given by

H(ϑ) = ∆(ϑ) + q, q = diag(q1, . . . , qν), ∀ϑ ∈ Td .

Each Floquet ν × ν matrix H(ϑ) has ν eigenvalues labeled by

λ1(ϑ) 6 . . . 6 λν(ϑ), ϑ ∈ Td .



Spectrum of Schrödinger operator
The real function λn(·) is continuous on the torus Td and

creates the spectral band

σn(H) = [λ−n , λ+
n ] = λn(Td).

Then the spectrum of H on Γ is given by

σ(H) =
⋃

ϑ∈Td

σ
(
H(ϑ)

)
=

ν⋃

n=1

σn(H).

Note that if λn(·) = Cn = const on some set B ⊂ Td of positive
Lebesgue measure, then H on Γ has the eigenvalue Cn with infinite
multiplicity (flat band). Thus, the spectrum of H on Γ has the form

σ(H) = σac(H) ∪ σfb(H).

Here σac(H) is the absolutely continuous spectrum (a union of
non-degenerated intervals), and σfb(H) = {µ1, . . . , µr}, r < ν, is
the set of all flat bands. An open interval between two neighboring
non-degenerated spectral bands is called a gap.



Example (stanene)
The Floquet 4× 4 matrix ∆(ϑ) is given by

∆(ϑ) = −




0 1
2

b(ϑ)
4 0

1
2 0 0 0

b(ϑ)
4 0 0 1

2
0 0 1

2 0


 , b(ϑ) = 1 + e iϑ1 + e iϑ2 .

The characteristic equation for the matrix ∆(ϑ)

λ4 − λ2

(
1

2
+
|b(ϑ)|2

16

)
+

1

16
= 0.

The eigenvalues of each matrix ∆(ϑ) are given by

λ1,2,3,4(ϑ) = ±|b(ϑ)|
8

±
√
|b(ϑ)|2 + 16

8
.

The spectrum of the Laplacian on Γ has the form

σ(∆) = σac(∆) = [−1;−0.5]∪ [−0.5;−0.25]∪ [0.25; 0.5]∪ [0.5; 1].



Example (d-dimensional lattice with pendant edges)
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The spectrum of the Laplacian ∆

σ(∆) = σac(∆)∪σfb(∆), σfb(∆) = {0}, σac(∆) = σ1(∆)∪σ2(∆),

σ1(∆) = [−1,−1+2d
ξ ], σ2(∆) = [1− 2d

ξ , 1], ξ = ν−1+2d .

Adding a generic potential (qj 6= qk for all j , k ∈ Nν , j 6= k)
destroys the flat bands.



What is the maximum number of flat bands?

Figure: Graph Γ obtained by adding N = 2 vertices on each edge of the square
lattice.

The spectrum of the Laplacian on Γ has the form

σ(∆) = σac(∆) ∪ σfb(∆),

where σac(∆) = [−1, 1] is the absolutely continuous part and the
set of all flat bands has the form

σfb(∆) =
{

cos
πn

N + 1
: n = 1, . . . , N

}
.



Bridges
Recall that the set of all vertices of the graph from the unit cell

[0, 1)d is denoted by V∗:

V∗ = [0, 1)d ∩ V = {v1, . . . , vν}, ν = #V∗ < ∞.

Bridges of the unit cell are the edges of Γ connecting the vertices
from V∗ (black points) with the vertices from V \ V∗ (white
points).
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Figure: The unit cell [0, 1)2 of the Kagome lattice. The vertices from
V∗ = {v1, v2, v3} are black and the bridges are bold.



Theorem 1. The Lebesgue measure |σ(H)| of the spectrum of
the Schrödinger operator H = ∆ + Q satisfies

|σ(H)| 6
ν∑

n=1
|σn(H)| 6 2β , β =

ν∑
n=1

βn

κn
, (2)

βn is the bridge degree (the number of bridges incident to vn) and
κn is the degree of vn ∈ V∗. Moreover, if in the spectrum σ(H)
there exist s spectral gaps γ1(H), . . . , γs(H), then

s∑

n=1

|γn(H)| > C − 2β, C = max{λ̂− q• + 1 , q• − 2},

q• = max
n

qn −min
n

qn; λ̂ is the upper point of the spectrum of ∆.

Remark. 1) In the case H = ∆ the estimate (2) is not trivial iff
β < 1. This condition holds when the number of bridges at each
vertex v ∈ V∗ is sufficiently small compared to the degree of the
vertex.

2) For some classes of graphs the estimate (2) becomes an
identity.



How does it work?

|σ(∆)| 6 2β, β =
ν∑

n=1

βn

κn
. (3)
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Figure: a) The Kagome lattice; b) the unit cell of a new graph, obtained
from the Kagome lattice by adding vertices and edges.

For the Kagome lattice β = 3 · 2
4 = 3

2 > 1. The estimate (3) is
trivial.

For the new graph β = 3 · 2
7 = 6

7 < 1. The estimate (3) gives
|σ(∆)| 6 12

7 < 2.



Example (decorations of d -dimensional lattice)
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Figure: a) Decorated square lattice; b) finite graph.

For a decorated d-dimensional lattice

|σ(H)| = 2β, β =
ν∑

n=1

βn

κn
=

2d

2d + κ∗
.

The Lebesgue measure |σ(H)| of the spectrum of H = ∆ + Q
does not depend on the potential Q.

For the decorated square lattice β = 4
8 and we have |σ(H)| = 1.



Localization of spectral bands

Lledó and Post (2008) obtained the spectral band localization
(eigenvalue bracketing) for the Laplacians on metric graphs. Via
an explicit correspondence of the metric and discrete graph
spectrum they carry over these estimates from the metric graph
Laplacian to the discrete case. Finally, they write

”It is a priori not clear how the eigenvalue bracketing can be
seen directly for discrete Laplacians, so our analysis may serve as
an example of how to use metric graphs to obtain results for
discrete graphs.”

Lledó, F.; Post, O. Eigenvalue bracketing for discrete and metric graphs,
J. Math. Anal. Appl. 348 (2008), 806–833.



Fundamental domain of periodic graph

A subgraph Γ1 = (V1,E1) of Γ is called a fundamental domain of
Γ if it satisfies the following conditions:

1) Γ1 = (V1,E1) is a finite connected graph with an edge set E1

and a vertex set V1 ⊃ V∗; V∗ is the set of all vertices of the graph
from the unit cell [0, 1)d ;

2) Γ1 does not contain any Zd -equivalent edges;
3)

⋃
m∈Zd

(
Γ1 + m

)
= Γ.

The fundamental domain Γ1 is not uniquely defined and we fix
one of them.



Example of fundamental domain
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Figure: Periodic graph Γ and one of its fundamental domain Γ1 (the vertices
and the edges of Γ1 are bold). The set of all vertices of the unit cell
V∗ = {v1, . . . , v5}.



We define the set V0 of all inner vertices of Γ1 = (V1, E1) by

V0 = {v ∈ V1 : κv = κ1
v},

where κ1
v is the degree of the vertex v ∈ V1 on the graph Γ1.

We define a boundary ∂V1 of Γ1 by the identity:

∂V1 = V1 \ V0.
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Figure: Periodic graph Γ and its fundamental domain Γ1 (the vertices and the
edges of Γ1 are bold). The set of inner vertices V0 = {v1, v2, v3} and the
boundary ∂V1 = {v4, v5, v6, v7}.



On the finite graph Γ1 = (V1, E1) we define two self-adjoint
operators H1 and H0:

1) The operator H1 on `2(V1) is the discrete Schrödinger
operator on the graph Γ1.

2) The Dirichlet operator H0 on f ∈ `2(V1) is defined by

H0f = H1f , where f |∂V1 = 0.

Let νφ = |Vφ| be the number of vertices in Vφ, φ = 0, 1.
Denote by

λφ
1 6 λφ

2 6 . . . 6 λφ
νφ

the eigenvalues of the operators Hφ, φ = 0, 1, counted according
to multiplicity.

We rewrite the sequence q1, . . . , qν in nondecreasing order

q•1 6 q•2 6 . . . 6 q•ν .

Here q•1 = qn1 , q
•
2 = qn2 , . . . , q

•
ν = qnν for some distinct numbers

n1, n2, . . . , nν ∈ Nν .



Theorem 2. Each spectral band σn(H) of the discrete
Schrödinger operator H = ∆ + Q on the periodic graph Γ satisfies

σn(H) ⊂ Jn ∩ Kn, n ∈ Nν ,

where the intervals Jn, Kn are given by

Jn =

{
[λ1

n, λ
0
n], n = 1, . . . , ν0

[λ1
n, q

•
n + 1], n = ν0 + 1, . . . , ν,

Kn =

{
[q•n − 1, λ1

n+ν1−ν ], n = 1, . . . , ν − ν0

[λ0
n−ν+ν0

, λ1
n+ν1−ν ], n = ν − ν0 + 1, . . . , ν

.

Remark. 1) Theorem 2 estimates the position of the spectral
bands in terms of eigenvalues of the operators H1 and H0 on the
finite graph Γ1.

2) In some cases Theorem 2 allows to detect the existence of
gaps and flat bands in the spectrum of the Schrödinger operator H.

3) Lledó and Post (2008) obtained the estimate σn(∆) ⊂ Jn for
the Laplacian ∆.
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Figure: a) A periodic graph Γ and its finite graph Γ1, the vertices and the
edges of Γ1 are bold; b) Eigenvalues of the operators ∆1 and ∆0, the intervals
Jn and Kn, n ∈ N5, and their intersections, the spectrum of the Laplacian ∆.



The similar results can be formulated for the combinatorial
Laplacians

(
∆∗f

)
(v) =

∑

(v , u)∈E

(
f (v)− f (u)

)
, v ∈ V , f ∈ `2(V ),

and for the Schrödinger operators H∗ = ∆∗ + Q.



Thank you for attention!


