
On the Borg-Levinson type theorems

Valery Serov

Department of Mathematical Sciences, University of Oulu, Finland

V.Serov (University of Oulu) 1 / 31



The starting point is the following result of Ambartsumyan (1929) :
If q(x) ∈ L∞(0, 1) be real-valued and the spectrum of the boundary value
problem (with appropriate normalization)

−y ′′(x) + q(x)y(x) = λky(x), y ′(0) = 0, y ′(1) = 0

is equal to
λk = (πk)2, k = 0, 1, ...

then q(x) = 0 a.e. on the interval (0,1). Hence, the Neumann spectrum
uniquely determines the potential.
Borg in 1946 proved that a single spectrum in general does not suffice to
determine potential uniquely, and therefore the result of Ambartsumyan is
an exception.
A positive result can be provided by the celebrating Borg-Levinson
theorem.
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The classical one-dimensional Borg-Levinson theorem is formulated as
follows : let q be real-valued and belongs to L∞(0, 1), and y(x , λ) solves
the initial value problem

−y ′′(x , λ) + q(x)y(x , λ) = λy(x , λ), y(0, λ) = 0, y ′(0, λ) = 1.

Define the Dirichlet eigenvalues λk(q) by the condition

y(1, λk) = 0

and define the norming constants ck(q) by

ck(q) =

∫ 1

0
|yk(x , λk)|2 dx .
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The result of Borg (1946) and Levinson (1949) is : if for two different
potentials q1 and q2 their Dirichlet spectrums and norming constants are
equal

λk(q1) = λk(q2), ck(q1) = ck(q2), k = 1, 2, ...,

then q1 = q2.
It can be reformulated as : if for all k = 1, 2, ...

λk(q1) = λk(q2), y ′k(1, λk ; q1) = y ′k(1, λk ; q2),

then q1 = q2. Thus, the Dirichlet eigenvalues and normal derivatives of
the eigenfunctions at the boundary uniquely determine a potential.
We generalize the classical Borg-Levinson theorem for the case of
multidimensional elliptic differential operators.
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We start with magnetic Schrödinger operators. Let Ω ⊂ Rn, n ≥ 2, be a
smooth bounded domain and let λk(A,V ), k = 1, 2, ..., be the Dirichlet
eigenvalues of the magnetic Schrödinger operator

HA,V = − (∇+ iA)2 + V ·

with real valued electric potential V and real-valued magnetic vector
potential A. Associated to the eigenvalues λk(A,V ), we have the
eigenfunctions φk(x ; A,V ), k = 1, 2, ..., forming an orthonormal basis in
L2(Ω).
Inverse spectral problem is : given the spectrum λk and normal derivatives
∂νφk of the corresponding eigenfunctions at the boundary of Ω of the
magnetic Schrödinger operator, can we determine V and A ?
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Borg-Levinson theorem for the Schrödinger operators for the first time was
proved by Nachman, Sylvester and Uhlmann (1988) for the potentials
V ∈ C∞(Ω). Their proof remains however valid if one assumes that
V ∈ L∞(Ω).
The same result independently was obtained by Roman Novikov (1988).
For singular (meaning not bounded) potentials V ∈ Lp(Ω) for p > n

2 this
theorem was proved by Päivärinta and Serov (2002).
For magnetic Schrödinger operator with singular potentials this theorem
was proved by Serov (2010).
For Riemannian manifolds this result was proved by Katchalov, Kurylev
and Lassas (they call this problem as the Gelfand inverse problem for
quadratic pencil) in series publications (1999-2000).
For zero order perturbation of the bi-harmonic operator see Ikehata (1991)
who proved the first result for the operator of order 4.
For elliptic partial differential operator (with constant coefficients) with
L∞-potentials Borg-Levinson theorem was proved by Krupchyk and
Päivärinta (2012).
For the first order perturbation of the poly-harmonic operator see
Krupchyk, Lassas and Uhlmann (2012 and 2014).
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One-dimensional so-called ”magnetic” equation can be written as

−
(

d

dx
+ iA(x)

)2

u(x) + V (x)u(x) = λu(x), x ∈ (0, 1)

with real-valued functions A(x) and V (x). Assuming that A ∈W 1
1 (0, 1)

and V ∈ L1(0, 1) we can rewrite it as

− d2

dx2
v(x) + V (x)v(x) = λv(x)

with the same λ and with v(x) = e ih(x)u(x), where h(x) =
x∫
0

A(y) dy .
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This transformation saves the Dirichlet eigenvalues and the norming
constants. Hence, the result of Borg and Levinson implies immediately that

V1(x) = V2(x)

from the ”magnetic” equation. And even more is true : we may conclude
that

1∫
0

A1(y) dy =

1∫
0

A2(y) dy ,

A1(0) = A2(0), A1(1) = A2(1).

So, more detailed analysis is required even in one-dimensional case.
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Consider in the smooth bounded domain Ω ⊂ Rn, n ≥ 2, the magnetic
Schrödinger operator

HA,V = − (∇+ iA)2 + V ·

with electric potential V and magnetic vector potential A. We assume
that A and V are real-valued and satisfy the following quite general
conditions :

(i) A = (a1, a2, ..., an), aj ∈ L2(Ω),

(ii) V ∈ L1(Ω), V ≥ 0.
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Under these conditions on A and V for any function u ∈ C∞0 (Ω)

(HA,V u, u)L2 ≥ ‖(∇+ iA)u‖2
L2 ≥ ‖∇|u|‖2

L2 .

These inequalities allow us to conclude that there is self-adjoint extension
denoted by HA,V which is positive and with domain

D(HA,V ) = {f ∈ D(∇+ iA) : HA,V f ∈ L2(Ω)}.

The conditions (i) and (ii) for the coefficients are very general, but
nevertheless we can use so-called ”diamagnetic inequality” and obtain the
needed result.
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The diamagnetic inequality (DMI) of Barry Simon says that for any t ≥ 0
and any f ∈ L2(Ω)

|e−tHA,V f (x)| ≤ e−tH0,0 |f |(x), a.e. x ∈ Ω.

The operators e−tHA,V and e−tH0,0 can be understood via J. von Neumann
spectral theorem as follows :

e−tHA,V =

∞∫
0

e−tλ dEA,V
λ , e−tH0,0 =

∞∫
0

e−tλ dE 0,0
λ ,

where EA,V
λ and E 0,0

λ are spectral families corresponding to HA,V and H0,0,
respectively.
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In the bounded domain Ω the Laplacian H0,0 has pure discrete spectrum
and corresponding eigenfunctions form an orthonormal basis in L2(Ω).
That’s why e−tH0,0 is an integral operator with kernel denoted by
P0(t, x , y). Since P0 is a Heat kernel it can be proved the following
estimate

0 ≤ P0(t, x , y) ≤ 1

(
√

4πt)n
e−
|x−y|2

4t .

This fact allows us to rewrite DMI as

|e−tHA,V f (x)| ≤ 1

(
√

4πt)n

∫
Ω

e−
|x−y|2

4t |f (y)| dy , a.e. x ∈ Ω.
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Let λ > 0 is an eigenvalue and φ(x) is corresponding normalized
eigenfunction of HA,V . Using this general type of DMI we can obtain the
inequality for an eigenfunction

‖φ‖L∞(Ω) ≤
( e

2πn

) n
4
λ

n
4 .

This is very nice estimate (if we take into account so general conditions for
A and V ). But in the applications it is usually needed more, namely the
estimates for the ”bundle” of eigenfunctions∑

λ≤λk<2λ

|φk(x)|2 ≤ Cλ
n
2

uniformly with respect to x ∈ Ω, and the estimates of the normalized
eigenfunctions in some Sobolev spaces. For these purposes we need more
restrictive conditions for the coefficients of the magnetic Schrödinger
operator.
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Let us assume that A ∈ Ln(Ω) for n ≥ 3, A ∈ Ls(Ω), s > 2, for n = 2 and
V ∈ L1(Ω) and V ≥ 0, as it was before. Then instead of the first
inequality for the quadratic form we can obtain for any u ∈ C∞0 (Ω) the
Gårding’s inequality

(HA,V u, u)L2 ≥ c1‖u‖2
W 1

2
− c2‖u‖2

L2 ,

where 0 < c1 < 1 and c2 > 0. This inequality implies that HA,V has the
Friedrichs self-adjoint extension with pure discrete spectrum

λ1 ≤ λ2 ≤ ... ≤ λk ...→ +∞

of finite multiplicity with only one accumulation point at +∞. The
corresponding orthonormal eigenfunctions {φk(x)}∞k=1 form orthonormal
basis in L2(Ω).
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Even more is true in that case. Namely, e−tHA,V is an integral operator
with kernel denoted by P(t, x , y). And DMI can be rewritten as

|
∫
Ω

P(t, x , y)f (y) dy | ≤ 1

(
√

4πt)n

∫
Ω

e−
|x−y|2

4t |f (y)| dy ,

where f ∈ L2(Ω). It holds a.e. x ∈ Ω.
Using then the Hardy-Littlewood maximal functions from this inequality
we can obtain the inequality

|P(t, x , y)| ≤ 1

(
√

4πt)n
e−
|x−y|2

4t

that holds a.e. in x ∈ Ω.
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Let λ > 0, then (HA,V + λI )−1 exists and it is an integral operator. The
kernel of this operator is called Green’s function denoted by G (x , y , λ). It
can be calculated as a Laplace transform of P(t, x , y)

G (x , y , λ) =

∞∫
0

e−tλP(t, x , y) dt.

Using this we can easily obtain that

|G (x , y , λ)| ≤ (2π)−
n
2

(
|x − y |√

λ

)− n−2
2

K n−2
2

(
√
λ|x − y |),

where Kν is the Mcdonald function of order ν.
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Using the estimates for the Mcdonald functions we can obtain more useful
estimates for the Green’s function

|G (x , y , λ)| ≤ C |x − y |2−ne−
√
λ|x−y |, n ≥ 3,

and

|G (x , y , λ)| ≤ C
(

1 + | log(
√
λ|x − y |)|

)
e−
√
λ|x−y |, n = 2,

where x , y ∈ Ω and C does not depend on λ and x , y ∈ Ω.
Remark.
It can be mentioned here that these estimates of the Green’s function are
obtained for very weak conditions of the coefficients of HA,V .
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Assume that A ∈W 1
p (Ω) and V ∈ Lp(Ω) for some p > n

2 , and consider
the Dirichlet boundary value problem

(HA,V + λI )u(x) = 0, x ∈ Ω, u(x) = f (x), x ∈ ∂Ω,

where f (x) belongs to Besov space Bt
pp(∂Ω) with

t >
n − 1

p
,

n

2
< p ≤ n, t =

p − 1

p
, p > n.

We can conclude (see Gilbarg and Trudinger) that there exists a unique
solution u of the corresponding boundary value problem which belongs to

u ∈W 2
p,loc(Ω) ∩W

t+ 1
p

p (Ω).
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Thus, we may define the Dirichlet-to-Neumann map ΛA,V+λ by

ΛA,V+λf (x) :=
∂u(x)

∂ν
+ iA · νf (x), x ∈ ∂Ω,

where ν is outward normal vector.
Green’s function estimates allow us also to obtain the estimates

‖φk‖W 2
p (Ω) ≤ Cλ

1+ n
4

k ,

where p is as above, and the convergence of the series
∞∑
k=1

1

(λk + λ)σ
<∞, σ >

n

2
.

These two facts imply

Theorem

Under the above conditions for Aj , Vj , j = 1, 2 with A1(x) = A2(x) at the
boundary ∂Ω and f is as above, for any 0 < δ < 1− 1

p

lim
λ→+∞

‖ΛA1,V1+λf − ΛA2,V2+λf ‖Bδpp(∂Ω) = 0.
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Applying this Theorem, we can obtain

Theorem

Assume that Aj ∈W 1
p (Ω) and Vj ∈ Lp(Ω), j = 1, 2, for some p > n

2 .
Assume in addition that A1(x) = A2(x) at the boundary ∂Ω. Assume also
that for each k = 1, 2, ...

λk(A1,V1) = λk(A2,V2),

∂φk
∂ν

(x ; A1,V1) =
∂φk
∂ν

(x ; A2,V2).

Then for all λ ≥ λ0

ΛA1,V1+λ = ΛA2,V2+λ.
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Now we can present the main result for the magnetic Schrödinger
operator, i.e. Borg-Levinson theorem (n ≥ 3)

Theorem

If Aj ∈W 1
∞(Ω) and Vj ∈ L∞(Ω), j = 1, 2, and all conditions of the

previous theorem are satisfied, then

dA1 = dA2, V1 = V2,

where the 2-form dA is defined by

dA =
n∑
j ,k

(
∂ak
∂xj
−
∂aj
∂xk

)
dxk ∧ dx j .
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Consider now in the smooth bounded domain Ω ⊂ Rn, n ≥ 2, the following
operator of order 4 :

H4 = ∆2 + i∇(∇(A∇)) + i∇(A∆)−∇(F∇)− 2iG∇− i∇G + V

with vector-valued functions A and G , and with scalar functions F and V .
We assume that all these coefficients are real-valued and satisfy the
following quite general conditions :

A(x) ∈W 3
p (Ω), F (x) ∈W 2

p (Ω), G (x) ∈W 1
p (Ω),

V (x) ∈ Lp(Ω), p >
n

2
, n ≥ 2

with the same value of p. It can be mentioned here that for the operators
of order 4 or higher DMI does not hold and the technique for getting
Green’s function estimates is completely different in this case.
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Under the mentioned above conditions for the coefficients of H4 we can
obtain for any u ∈ C∞0 (Ω) the inequality

(H4u, u)L2 ≥ c1‖u‖2
W 2

2
− c2‖u‖2

L2 ,

where 0 < c1 < 1 and c2 > 0. This inequality implies that H4 has the
Friedrichs self-adjoint extension with pure discrete spectrum

λ1 ≤ λ2 ≤ ... ≤ λk ...→ +∞

of finite multiplicity with only one accumulation point at +∞. The
corresponding orthonormal eigenfunctions {φk(x)}∞k=1 form orthonormal
basis in L2(Ω).

V.Serov (University of Oulu) 23 / 31



Let λ > 0, then (H4 + λI )−1 exists and it is an integral operator. The
kernel of this operator is called Green’s function denoted by G (x , y , λ). It
can be proved the following estimates :

|G (x , y , λ)| ≤ C |x − y |4−ne−δ|x−y |λ
1
4 , n ≥ 5,

|G (x , y , λ)| ≤ C
(

1 + | log(|x − y |λ
1
4 )|
)

e−δ|x−y |λ
1
4 , n = 4,

|G (x , y , λ)| ≤ C

λ
4−n

4

e−δ|x−y |λ
1
4 , n ≤ 3,

where x , y ∈ Ω and C does not depend on λ and x , y ∈ Ω.
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Assume that A ∈W 3
p (Ω), F ∈W 2

p (Ω), G ∈W 1
p (Ω) and V ∈ Lp(Ω) for

some p > n
2 , and consider the Dirichlet boundary value problem

(H4 + λI )u(x) = 0, x ∈ Ω,

u(x) = f0(x), ∂νu(x) = f1(x), x ∈ ∂Ω,

where f0(x) belongs to Besov space B
3− 1

p
pp (∂Ω) and f1(x) belongs to Besov

space B
2− 1

p
pp (∂Ω). We may conclude (see Mazja) that there exists a unique

solution u which belongs to

u ∈W 4
p,loc(Ω) ∩W 3

p (Ω).
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Thus, we may define the Dirichlet-to-Neumann map Λλ by

Λλ{f0, f1}(x) :=

{∂ν(∆u)(x) + i∂ν(A∇u) + iνA∆u(x)− Ff1(x)− iνGf0(x),

−∆u(x)− iA∇u(x)}, x ∈ ∂Ω.

In the particular case of zero perturbation of bi-harmonic operator we have
that the Dirichlet-to-Neumann map has the form

Λλ{f0, f1}(x) := {∂ν(∆u)(x),−∆u(x)}.

This corresponds to earlier result of Ikehata for zero perturbation of
bi-harmonic operator.
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Green’s function estimates allow us to obtain two very important things.
The first one is the estimate for the normalized eigenfunctions in Sobolev
norms

‖φk‖W 4
p (Ω) ≤ Cλ

1+ n
8

k .

And the second is the convergence of the following number series :

∞∑
k=1

1

(λk + λ)σ
<∞, σ >

n

4
.

These two estimates play the crucial role in the inverse boundary spectral
problems. At the same time these results certainly have some independent
interest.
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More precisely, these two facts imply one of the main results for this
operator H4. Namely, the following theorem holds.

Theorem

Assume that Aj , Fj , Gj and Vj , j = 1, 2, and f0, f1 are as above. Assume in
addition that A1(x) = A2(x), F1(x) = F2(x), G1(x) = G2(x) at the
boundary. Then, for any 0 < δ < 1− 1

p

lim
λ→+∞

‖Λ(1)
λ {f0, f1} − Λ

(2)
λ {f0, f1}‖Bδpp(∂Ω) = 0,

where Λ
(j)
λ denotes the corresponding Dirichlet-to-Neumann map for

Aj ,Fj ,Gj ,Vj + λ, j = 1, 2.
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Theorem

Assume that all conditions of the previous theorem are satisfied. Assume
also that for each k = 1, 2, ... and for x ∈ ∂Ω

λk(A1,F1,G1,V1) = λk(A2,F2,G2,V2),

∇φk(x ; A1,F1,G1,V1) = ∇φk(x ; A2,F2,G2,V2),

∂ν(A1∇φk(x ; A1,F1,G1,V1)) = ∂ν(A2∇φk(x ; A2,F2,G2,V2)),

∆φk(x ; A1,F1,G1,V1) = ∆φk(x ; A2,F2,G2,V2).

∂ν∆φk(x ; A1,F1,G1,V1) = ∂ν∆φk(x ; A2,F2,G2,V2).

Then for all λ big enough

Λ
(1)
λ {f0, f1} = Λ

(2)
λ {f0, f1}.
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Now we can present the main result for the operator H4, i.e.
Borg-Levinson theorem (n ≥ 3).

Theorem

If A = 0, Fj ∈W 2
∞(Ω), Gj ∈W 1

∞(Ω) and Vj ∈ L∞(Ω), ‖Fj‖W 2
∞(Ω)

(j = 1, 2) is small enough and for each k = 1, 2, ... and x ∈ ∂Ω

λk(F1,G1,V1) = λk(F2,G2,V2),

∆φk(x ; F1,G1,V1) = ∆φk(x ; F2,G2,V2),

∂ν∆φk(x ; F1,G1,V1) = ∂ν∆φk(x ; F2,G2,V2),

then
F1(x) = F2(x), G1(x) = G2(x), V1(x) = V2(x)

a.e. in Ω.
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Thanks very much for your attention !
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